
1598
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

PAPER Special Section on Information and Communication System Security

Online-Efficient Interval Test via Secure Empty-Set Check∗∗

Katsunari SHISHIDO†∗a), Nonmember and Atsuko MIYAJI†,††b), Member

SUMMARY In the age of information and communications technology
(ICT), not only collecting data but also using such data is provided in var-
ious services. It is necessary to ensure data privacy in such services while
providing efficient computation and communication complexity. In this
paper, we propose the first interval test designed according to the notion
of online and offline phases by executing our new empty-set check. Our
protocol is proved to ensure both server and client privacy. Furthermore,
neither the computational complexity of a client in the online phase nor the
communicational complexity from a server to a client depends on the size
of the set. As a result, even in a practical situation in which one server
receives requests from numerous clients, the waiting time for a client to
obtain the result of an interval test can be minimized.
key words: secure interval test, private set intersection, empty-set check

1. Introduction

In this age of information and communications technology
(ICT), important data are sent to servers for various applica-
tions such as automobile insurance, healthcare records, and
school records. Both the collection and use of data is also
provided by various services. In such services, it is neces-
sary to protect data privacy. One of the effective privacy-
preserving methods of utilizing data is a private set intersec-
tion (PSI) [3], [6]. PSI is executed by two parties, a client
and a server, in which both jointly compute the intersection
of their private sets and, at the end, only the client learns
the intersection and the server learns nothing. PSI is ex-
tended to the multiparty private set intersection (MPSI) pro-
tocol [2], [5], [6], [9], [14]. MPSI is executed by multiple
parties who jointly compute the intersection of their private
datasets, and ultimately, only the designated parties learn the
intersection while others do not have access.

An empty-set check is a special case of PSI. An empty-
set check has an important role in an interval test. A interval
test is that in which a client possesses a value x, a server
possesses a range I = [a, b] = {x|a ≤ x ≤ b}, and the client
wants to check whether x ∈ I while protecting client value x
to a server and server’s interval I to a client. This problem is

Manuscript received August 31, 2019.
Manuscript revised January 8, 2020.
Manuscript publicized May 14, 2020.
†The authors are with Graduate School of Engineering, Osaka

University, Suita-shi, 565–0871 Japan.
††The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923–1211 Japan.
∗Presently, with the FUJITSU LABORATORIES LTD.
∗∗The part of this paper was presented at ASIAJCIS 2019 [15].

a) E-mail: shishido@cy2sec.comm.eng.osaka-u.ac.jp
b) E-mail: miyaji@comm.eng.osaka-u.ac.jp

DOI: 10.1587/transinf.2019ICP0014

a variant of the famous Yao’s Millionaires’ problem in which
one determines who is richer between two parties such that
no information about a party’s amount of assets is leaked
to the other party [17]. To solve Yao’s Millionaires’ prob-
lem using PSI, the 0/1 encoding technique was introduced
in [7]. To solve an interval test regarding whether x ∈ I is
transformed to an empty-set check whether S x ∩ S I = φ—
that is,

x ∈ I ⇐⇒ S x ∩ S I = φ, (1)

where S x and S I are sets corresponding to x and I, respec-
tively. Thus, if we construct an efficient empty-set check
protocol compared with an ordinary PSI, then we can also
provide an efficient interval test.

In this paper, we construct an interval test between a
client and a server by executing our new empty-set check to
sets induced by Eq. (1). We note that all features satisfied
with our interval test hold on our empty-set check. Let us
explain our design idea of an interval test and an empty-set
check. The server’s processing power or network bandwidth
is limited. As a result, the fulfillment of clients’ requests is
delayed. Our main idea is to reduce the time it takes to ob-
tain a result. For this purpose, we divide a protocol into
two phases, the offline phase and online phase. In the offline
phase, a client computes data sent to a server beforehand; in
the online phase, a server gets data from a client and com-
putes data sent back to a client. A client obtains data from
a server and computes a result. In general, the offline phase
can be conducted beforehand; thus, client’s waiting times
depend on the online phase. Our protocol focuses on the
online phase and reduces the computational complexity of
the online phase. Furthermore, we also focus on communi-
cational complexity from a server to a client. In fact, com-
municational complexity from a server to a client is more
critical than that from a client to a server since a server must
reply to requests from many clients.

To design the interval test/empty-set-check protocol in
two phases, we start with MPSI [9] based on the Bloom filter
and reconstruct the server computation phase in such a way
to combine all arrays in Bloom Filter into one array. Our
protocol ensures both server and client privacy; after exe-
cuting the protocol, a server cannot obtain any information
on client data by utilizing the knowledge of a server, and a
client cannot get any information on server data by utilizing
the knowledge of a client, except as a result of an interval
test/empty-set check. Our protocol has the following advan-
tage: the computational complexity of a client in the online

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

SHISHIDO and MIYAJI: ONLINE-EFFICIENT INTERVAL TEST VIA SECURE EMPTY-SET CHECK
1599

phase is just one field exponentiation E that does not depend
on the size of set. The computational complexity of a server
in online phase is at most 2(mM + E) in which m is the
size of the Bloom filter and M is the computational com-
plexity of one field multiplication. The communicational
complexity from a server to client is just two field elements
|Fp|, which does not depend on the size of set. Our proto-
col reduces the computational complexity of a client in the
online phase thanks to that of server. Considering compu-
tational complexity of server, our protocol is suitable for a
small range test such as an income, an academic record of
the grade point average (GPA), the TOEFL score, etc. We
remark that this is the first interval test/empty-set-check pro-
tocol designed using the notion of online and offline phases
that achieves total computational complexity of a client in
the online phase is independent to the size of interval test.

This paper is organized as follows. Building blocks
used to develop the proposed protocol are summarized in
Sect. 2. Section 3 introduces several related studies on in-
terval tests. We propose the new interval test in Sect. 4.
We note that our interval test is achieved by executing our
empty-set check on sets induced by Eq. (1), and, thus only
interval test are presented. We explain how appropriate pa-
rameters of our protocol are chosen in Sect. 5 and evaluate
complexity in our protocol in Sect. 6. Finally, we conclude
our work in Sect. 7.

2. Preliminary

2.1 Decisional Diffie–Hellman Assumption

Let G be a finite field and g ∈ G be a basepoint whose order
is a prime q. The decisional Diffie–Hellman (DDH) assump-
tion is for any probabilistic polynomial-time algorithmA to
be impossible to distinguish the DDH tuple (g, gα, gβ, gαβ)
from the non-DDH tuple (g, gα, gβ, gγ), where α, β, γ ← Z∗q.
Precisely, for any probabilistic polynomial-time algorithm
A, the following formula holds: |Pr[A(g, gα, gβ, gαβ) →
1|α, β ← Z∗q] − Pr[A(g, gα, gβ, gγ) → 1|α, β, γ ← Z∗q]| ≤
negl(λ), where λ is security parameter and negl(λ) is the
negligible function of λ.

2.2 The 0/1 Encoding

Lin and Tzeng proposed the 0/1 encoding [7], which reduces
the Millionaire’s problem [16] to find the intersection of two
sets. Precisely, for two integers a, b ∈ {0, 1}�, the 0/1 encod-
ing generates two binary string sets S 1

a and S 0
b, respectively,

and then we compute S 1
a ∩ S 0

b. If S 1
a ∩ S 0

b � φ, then it means
a > b. Otherwise, it means a ≤ b. Hereafter, we describe
how to solve the greater-than problem by using the 0/1 en-
coding. Let s = s1s2 · · · s� ∈ {0, 1}� be a set of binary digits
of length �.

Definition 2.1 (The prefix string set Ps): The prefix string
set Ps is the set of binary strings such that Ps =

{s1s2 · · · sh|1 ≤ h ≤ �}.

Definition 2.2 (The 0–encoding set S 0
s): The 0–encoding

set S 0
s is the set of binary strings such that S 0

s =

{s1s2 · · · sh−11 | sh = 0, 1 ≤ h ≤ �}.
Definition 2.3 (The 1–encoding set S 1

s): The 1–encoding
S 1

s is the set of binary strings such that S 1
s =

{s1s2 · · · sh−1sh | sh = 1, 1 ≤ h ≤ �}.
Theorem 2.1: If we encode a into its 1–encoding S 1

a and b
into its 0–encoding S 0

b, we can see that a > b⇐⇒ S 1
a∩S 0

b �
φ.

As a proof of Theorem 2.1, please refer to the paper [7].
We define the new 0–encoding set and the new 1–encoding
set [4] for the Lemma 2.1 in below.

Definition 2.4 (The new 0–encoding set S̃ 0
s): The new 0–

encoding set S̃ 0
s is the set of binary strings such that S̃ 0

s =

{s1s2 · · · sh−10 | sh = 0, 1 ≤ h ≤ �}.
Definition 2.5 (The new 1–encoding set S̃ 1

s): The new 1–
encoding set of s is the set S̃ 1

s of binary strings such that
S̃ 1

s = {s1s2 · · · sh−10 | sh = 1, 1 ≤ h ≤ �}.
Lemma 2.1: Let d be an integer. We denote Pd as the pre-
fix string set of d.

If we encode a into the new 1–encoding S̃ 1
a and b into

the 0–encoding S 0
b, we can see that

d � [a, b] ⇐⇒ d < a or b < d

⇐⇒ Pd ∩ S̃ 1
a � φ or Pd ∩ S 0

b � φ.

Proof 2.1: We know that d � [a, b] if and only if d <
a or b < d obviously. So we prove that d < a or b <
d ⇐⇒ Pd ∩ S̃ 1

a � φ or Pd ∩ S 0
b � φ. Firstly, we assume that

d < a or b < d. According to the Theorem 2.1, d < a =⇒
S 1

a ∩ S 0
d � φ. This condition indicates that there exists a bi-

nary string such that a1a2 · · · ah−11|ah=1 = d1d2 · · · dh−11|dh=0

for 1 ≤ h ≤ �. This is equivalent to a1a2 · · · ah−10|ah=1 =

b1b2 · · · bh−10|bh=0, that is, S 1
a ∩ S 0

d = S̃ 1
a ∩ S̃ 0

d. Since
S̃ 0

d ⊆ Pd, d < a =⇒ S̃ 1
a ∩ Pd � φ. Similarly, owing to the

b < d =⇒ S 1
d∩S 0

b � φ and S 1
d ⊆ Pd, b < d =⇒ Pd∩S 0

b � φ.
Lastly, we assume that Pd ∩ S̃ 1

a � φ or Pd ∩ S 0
b � φ. When

S̃ 1
a ∩ Pd � φ, their exists common elements denoted as

a1a2 · · · ah−10|ah=1 = d1d2 · · · dh−1dh. These common ele-
ments indicate that ai = di for 1 ≤ ∀i ≤ h − 1 and ah > dh.
Thus, S̃ 1

a∩Pd � φ =⇒ a > d. When Pd∩S 0
b � φ, there exist

binary strings such that d1d2 · · · dh−1dh = b1b2 · · · bh−11|bh=0,
which means that di = bi for for 1 ≤ ∀i ≤ h− 1 and dh > bh.
Therefore, d > b. �

2.3 Bloom Filter

H. Bloom proposed a probabilistic data structure called a
Bloom filter [1] that can check whether an element x is
contained in a set S . It consists of an array of length m
and k hash functions. There are two algorithms denoted
by const.BF and check.BF. The const.BF takes a set S as
an input and generates a Bloom filter BFS . The check.BF
takes a Bloom filter BFS and an element x as input and

1600
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Algorithm 1 const.BF(S)
Require: A set S , k hash functionsH = {h1, · · · , hk

}

Ensure: A Bloom filter BFS

1: for i = 0 to m − 1 do
2: BFS [i]←− 0
3: end for
4: for all x ∈ S do
5: for i = 0 to k − 1 do
6: j = hi(x)
7: if BFS [j] = 0 then
8: BFS [j]←− 1
9: end if

10: end for
11: end for

Algorithm 2 check.BF(BFS , x)
Require: A Bloom filter BFS , x, k hash functionH = {h1, · · · , hk}
Ensure: True if x ∈ S , False otherwise
1: for i = 0 to k − 1 do
2: j = hi(x)
3: if BFS [j] = 0 then
4: return False
5: end if
6: end for
7: return True

then outputs x ∈ S or x � S . A false positive occurs
when check.BFS outputs x ∈ S probabilistically, even if
x � S . On the other hand, check.BF always outputs x ∈ S if
x ∈ S —that is, a false negative does not occur.

Hereafter, we explain how to generate the BFS repre-
senting a set S . The algorithm 1 shows the procedure of
generating a Bloom filter. It takes a set S as an input and
outputs the Bloom filter BFS . Initially, all bits in an array
are set to 0. To insert an element x ∈ S into the filter, the
element is hashed using k hash functions to obtain k index
numbers. The bits at these indexes are set to 1—that is, we
set BFS [hi(x)] = 1 for 1 ≤ i ≤ k.

Next, we explain how to check whether an element is
contained in a set. Algorithm 2 shows the procedure of
checking whether an element is contained in a set S . It takes
the Bloom filter BFS and an element x as inputs, and outputs
x ∈ S or x � S . To check if the element x ∈ S , x is hashed
using the k hash functions; all locations at which x is hashed
are checked. The element x is considered to not be in S if
one place at checked locations is 0; otherwise, x is probably
in S . Some false positive matches may occur—that is, it is
possible for all BFS [hi(y)] to be set to 1 because of some
collisions of hash values on the Bloom filter even if y � S .

The false positive rate (FPR) denoted by σ is σ =(
1−(1− 1

m)kw)w ≈ (1−ekw/m)k [8]. Given a set S with at most
w elements and a length of BFS denoted by m, the number
of hash functions denoted by k that minimizes FPR is k =
(m/w) ln 2. When e−(kw/m) = 1/2, σ = (1/2)k ≈ (0.6185)k.
However, false negatives are not possible; thus, Bloom fil-
ters have a 100% recall rate. Given a FPR, denoted by σ,
and the cardinality of a set, denoted by w, a length of BFS is
m = −(w · lnσ)/(ln2 σ).

2.4 Exponential ElGamal Encryption

Exponential ElGamal encryption is a public key encryption
based on the discrete logarithm problem, which achieves
IND-CPA security under the DDH assumption. The system
parameter is denoted by params = (Fp, g, q), where Fp is a
finite field, g ∈ Fp is a basepoint, and q is a prime order of
g. There are three algorithms that are called key generation,
encryption, and decryption.

• Key generation: KeyGen(params)→ (x, y)
A key generation algorithm takes params as an input.

It samples a random integer x
U←− Z∗q† and then com-

putes y = gx mod p. Finally, it outputs x as a secret
key and y as a public key.

• Encryption: Enc(y, d)→ (u, v)
An encryption algorithm takes a public key y and a
message d as inputs. It samples a random integer

r
U←− Z∗q and then computes u = gr mod p and v =

gd ·yr mod p. Finally, it outputs (u, v) as a ciphertext of
the message d.

• Decryption: Dec(x, (u, v))→ gd mod p
A decryption algorithm takes a secret key x and a ci-
phertext (u, v) as inputs and then computes gd = v ·
u−x mod p. Finally, it outputs gd mod p as a result of
decryption.

Exponential ElGamal encryption has the following proper-
ties: Let s, t, and c be integers in Zq. The encryption al-
gorithm satisfies the following formulas: Enc(y, s + t) =
Enc(y, s) · Enc(y, t) and Enc(y, c · s) = Enc(y, s)c.

Exponential ElGamal encryption is referred to as addi-
tively homomorphic encryption, which has the aforemen-
tioned properties. Another famous additively homomor-
phic encryption is Paillier encryption [12]. Exponential El-
Gamal encryption is more efficient than Paillier encryp-
tion. However, the decryption algorithm outputs gd mod p.
Since the discrete logarithm problem is hard for any prob-
abilistic polynomial-time algorithm, it is usually impossi-
ble to decrypt d from gd mod p. In [13], it is necessary
to learn the original message d using the decryption al-
gorithm. Thus, Peng et.al should employ Paillier encryp-
tion. In our scheme, we use a improved Exponential El-
Gamal encryption that generates the public key such that
y = g−x mod p. Therefore, it is not necessary for decryption
to calculate a field inverse—that is, the decryption algorithm
is denoted by Dec(x, (u, v)) = v · ux ≡ gd mod p instead of
v · u−x ≡ gd mod p in the original Exponential ElGamal en-
cryption.

2.5 Secure Two-Party Interval Test

We begin by defining the following interval test and its secu-
rity model. If given two sets instead of the prefix encoding

†x
U←− Z∗q represents that a integer x is sampled uniformly at

random from a set Z∗q.

SHISHIDO and MIYAJI: ONLINE-EFFICIENT INTERVAL TEST VIA SECURE EMPTY-SET CHECK
1601

set and the 0/1 encoding set, the notions are changed to the
case of the empty-set check.

Definition 2.6 (Secure two-party interval test): A secure
two-party interval test assumes that there are two parties—a
client and a server. The client has a secret integer d ∈ {0, 1}�
and the server has a secret interval I = [a, b] ∈ {0, 1}� ×
{0, 1}�, where � is the number of binary digits in the binary
string of integers. The secure two-party interval test does
not allow the client to learn any information except for d ∈ I
or d � I. During and after executing the test, the server does
not learn any information.

Our scheme aims to preserve both the client’s secret
integer d and the server’s secret interval I = [a, b] during
and after executing the scheme. We define a security model
for the secure two-party interval test.

Definition 2.7 (Security model for the secure interval test):
We define a scheme of the secure two-party interval test as
being secure if it achieves the following properties.

• Client privacy I (CPI): Any Probabilistic Polynomial-
Time Algorithm (PPTA) cannot distinguish the data
strings that the client sends to the server from random
strings.

• Client privacy II (CPII): Server cannot distinguish re-
ceived data strings from random strings even if the
server utilizes own knowledge.

• Server privacy I (SPII): Any PPTA cannot distinguish
the data strings that the server sends to the client from
random strings.

• Server privacy II(SPII): Client cannot learn any infor-
mation except for d ∈ I or d � I even if the client uti-
lizes own knowledge—that is, client cannot learn the
server’s secret interval I = [a, b].

3. Related Work

Secure interval test protocols [7], [10], [11] have been stud-
ied as well as the secure comparison protocol ever since
Yao proposed the milionaire’s problem [17]. Not only the
secret sharing schemes, but also the (fully) homomorphic
encryption can be applied to constructing the secure multi–
party computation. Nishide and Ohta [11] proposed a secret
sharing based constant-round secure interval test protocol.
Based on their idea, Morita and Attrapadung [10] proposed
a secure interval test protocol employing client–aid model,
in which clients not only provide input but also can gener-
ate and secret–share correlated randomness to server. Such
correlated randomness is used by N servers to make secure
computation more efficient. However, this model restricts
that any server is not allowed to collude with any client. Lin
and Tzeng [7] proposed a homomorphic encryption based
secure comparison protocol employing the 0/1 encoding.
Since our protocol employs the homomorphic encryption,
the rest of this section summarizes the Lin and Tzeng [7]’s
protocol in detail.

3.1 Secure Comparison Protocol Proposed by Lin et al.

Lin and Tzeng proposed a two-round protocol for solving
the Millionaires’ problem in the presence of honest–but–
curious adversaries. By using the 0/1 encoding, the protocol
turns data comparison to the problem of finding the inter-
section of two sets. Let Alice and Bob be parties in the
protocol. Alice has an integer a ∈ {0, 1}� and Bob has an
integer b ∈ {0, 1}�. The protocol does not allow Alice to
learn any information except for a > b or a ≤ b. Further-
more, Bob cannot learn any information from the protocol.
We now explain the procedure of the protocol briefly. Ini-
tially, Alice first sets up Exponential ElGamal encryption
and obtains a secret key x and public key y; then, Alice
executes the 1–encoding of a and obtains the 1–encoding
set S 1

a. Similarly, Bob executes the 0–encoding of b and
obtains the 0–encoding set S 0

b. Let ai ∈ {0, 1} be the i–
th digit of the binary string a = a1a2 · · · a� ∈ {0, 1}�. We
define ai = 1 − ai. Alice constructs a 2 × � table T [i, j]
for i ∈ {0, 1} and 1 ≤ j ≤ � as follows: she samples

� random integers [r1, · · · , r�] U←− (Z∗q)�, and computes �
Enc(y, 0) and Enc(y, r j) for 1 ≤ j ≤ �. Finally, she ex-
ecutes T [a j, j] ← Enc(y, 0) and T [a j, j] ← Enc(y, r j) for
1 ≤ j ≤ �.

She sends the 2 × � table T [i, j] to Bob. Bob exe-
cutes cβ = T [t1, 1] · T [t2, 2] · · · T [tβ, β] for all tβ ∈ S 0

b.
Let n be n = � − |S 0

b|. Bob samples n random integers

[r′1, · · · , r′n]
U←− (Z∗q)n and generates n ciphertexts c′1, · · · , c′n,

in which c′1 ← Enc(y, r′1), · · · , c′n ← Enc(y, r′n), and then
sends � ciphertexts denoted by c1, · · · , c|S 0

b |, c
′
1, · · · , c′n to Al-

ice. Finally, Alice decrypts all received ciphertexts and ob-
tains plaintexts denoted by d0, d1, · · · , d�. By Theorem 2.1,
if g0 mod p ∈ [d0, d1, · · · , d�], then Alice gets a > b. Oth-
erwise, Alice gets a ≤ b. This protocol cannot be expanded
to a secure interval test easily because it is impossible to
check whether a ≤ d and d ≤ b simultaneously. Repeating
a secure comparison protocol from 2 times discloses infor-
mation about a secret range.

4. Our Secure Two–Party Interval Test

We present our secure two-party interval test in this section.
First, we apply a private set intersection proposed by Miyaji
et.al [9] to an interval test. Then, we present a new interval
test by introducing a method of checking whether an inter-
section of two sets is empty. We assume that a client has
a secret integer d ∈ {0, 1}� and a server has a secret inter-
val I = [a, b] ∈ {0, 1}� × {0, 1}�, and � denotes the length of
binary digits of integers.

4.1 Application of PSI to Interval Test

We present how to apply PSI to a two-party interval testing.
As the Lemma 2.1 shows, Pd ∩ S I � φ if and only if d ∈
[a, b]. Note that S I denotes as S̃ 1

a ∪ S 0
b in this paper. So if

1602
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

we compute two-party private set intersection [9], then we
can check whether Pd ∩ S I � φ and learn the result of the
interval test such as d � I or d ∈ I. This protocol consists
of three phases, which are initialization, online phase, and
offline phase. The procedure of this protocol is as follows.

• Initialization:

1. Client sets up Exponential ElGamal encryption
and obtains a system parameter, secret key, and
public key such as

(
params = (Fp, g, q), x, y

)
.

2. Client gets the prefix string set Pd of the integer d.
We define C as Pd.

3. Server applies the 0/1 encoding into its own secret
interval I = [a, b] and obtains the 0–encoding set
S 0

b of b and new 1–encoding set S̃ 1
a of a. We define

S as S I .

• Offline phase:

1. Client and server execute BFC ← const.BF(C)
and BFS ← const.BF(S), respectively.

2. Client runs the encryption algorithm Enc(y, 1 −
BFC) = [Enc(y, 1 − BFC[0]), · · · ,Enc(y, 1 −
BFC[m − 1])], and sends it to the server.

• Online phase: Server computation

1. Server runs the encryption algorithm Enc(y, 1 −
BFS) = [Enc(y, 1 − BFS [0]), · · · ,Enc(y, 1 −
BFS [m − 1])].

2. Server samples m random integers r0, · · · , rm−1
U←−

(Z∗q)m and calculates Enc(y, IBF) = [
(
Enc(y, 1 −

BFC[0]) · Enc(y, 1 − BFS [0])
)r0 , · · · , (Enc(y, 1 −

BFC[m−1])]·Enc(y, 1−BFS [m−1])
)rm−1]. Finally,

the server sends Enc(y, IBF) to client.
3. Client executes the decryption algorithm IBF ←

Dec(x,Enc(y, IBF)).

• Online phase: Client Test:

1. For each e ∈ C, client executes result ←
check.BF(IBF, e) and outputs d � I if result =
True. For any e ∈ C, it outputs d ∈ I if any
result = False.

The correctness of this protocol is trivial because two-party
PSI is able to find C ∩ S . C ∩ S � φ if at least one element
e ∈ C is contained in S . It means d � I. This protocol
computes Pd ∩ S I � φ which is more information than nec-
essary since we just need whether Pd ∩ S I � φ. We polish
the PSI to check whether Pd ∩S I � φ and reduce to the total
computational and communicational compplexity.

4.2 Our Protocol

We now present our secure two-party interval test, which
is an extension of PSI-based interval test in Sect. 4.1.
To reduce the redundant computation, we the following
Lemma 4.1.

Lemma 4.1: Let S 1 and S 2 be sets such that S 1 ∩ S 2 � φ.

We set BFS 1 ← const.BF(S 1) and BFS 2 ← const.BF(S 2).
Then, the following feature holds: S 1 ∩ S 2 � φ =⇒ ∃i ∈
[0,m) s.t. BFS 1 [i] ∧ BFS 2 [i] = 1.

According to the Lemma 4.1, we only check whether ∃i ∈
[0,m) s.t. BFPd [i]∧BFS I [i] = 1 and then output d � I if there
exists i ∈ [0,m). Otherwise, we output d ∈ I. However, this
method may output the wrong results, that is, it outputs d � I
even if d ∈ I. After we explain the construction of our proto-
col, we prove that our protocol achieves the correctness and
defined security goals in Sect. 2.7. In Sect. 5, we consider
how to set up an optimized Bloom filter for our protocol.
Our protocol uses the same the initialization as PSI-based
interval test in Sect. 4.1. Thus, we omit the initialization.
The construction is as follows:

• Offline phase:

1. Client and server execute BFC ← const.BF(C)
and BFS ← const.BF(S), respectively.

2. Client runs the encryption algorithm Enc(y,BFC)
= [Enc(y,BFC[0]), · · · ,Enc(y,BFC[m − 1])] and
sends it to the server.

• Online phase: Server computation

1. Server calculates Enc(y,
∑m−1

i=0 BFC[i] · BFS [i]) =∏m−1
i=0 Enc(y,BFC[i])BFS [i].

2. Server samples random integer r
U←− Z∗q, and

calculates Enc(y, r · ∑m−1
i=0 BFC[i] · BFS [i]) =

Enc(y,
∑m−1

i=0 BFC[i] · BFS [i])r.
3. Server sends Enc(y, r ·∑m−1

i=0 BFC[i] ·BFS [i]) to the
client.

4. Client runs the decryption algorithm ξ ←
Dec
(
x,Enc

(
y,Enc(y, r ·∑m−1

i=0 BFC[i] · BFS [i])
))

.

• Online phase: Client Test:

1. Client learns d � I if ξ � g0 mod p. Otherwise, it
learns d ∈ I.

4.3 Correctness and Security

We show that our protocol exhibits correctness and security
as follows. Firstly, we prove that our protocol is accurate.

Theorem 4.1 (Correctness): Our protocol outputs d � I if
for any d � I. It means that the following formula holds:
Pr[ξ � g0 mod p|d � I] = 1.

Proof 4.1: We assume that d � I = [a, b], which means
that C ∩ S � φ by Lemma 2.1. Client finally gets ξ by de-
crypting Enc

(
y,Enc(y, r · ∑m−1

i=0 BFC[i] · BFS [i])
)
— that is,

ξ = gr·∑m−1
i=0 BFC [i]·BFS [i] mod p. Since this assumption sup-

poses that there exists at least one common element in C
and S , i ∈ [0,m) must exist such that BFC[i] = 1 and
BFS [i] = 1. Therefore, ξ � g0 mod p if d � I. Our pro-
tocol holds Pr[ξ � g0 mod p|d � I] = 1. �

Secondly, we analyze the security of our protocol to
prove that it achieves the defined security goals.

SHISHIDO and MIYAJI: ONLINE-EFFICIENT INTERVAL TEST VIA SECURE EMPTY-SET CHECK
1603

Theorem 4.2: Our protocol achieves the defined client pri-
vacy I and client privacy II against honest-but-curious adver-
saries under the DDH assumption.

Proof 4.2: We use the contraposition to prove the Theo-
rem 4.2. Supposing that there exists a distinguisher D that
can distinguish the data strings that the client sends to the
server from random strings with probability ε, then there ex-
ists a polynomial-time adversaryA that can solve the DDH
problem with non-negligible probability. We construct the
polynomial-time adversary A, which uses the distinguisher
D as a subroutine to solve the DDH problem.

Firstly, the adversary A receives a tuple (g, gα, gβ, gζ)

and samples m random integers r0, · · · , rm−1
U←− (Z∗q)m and

m − 1 random integers γ1, · · · , γm−1
U←− (Z∗q)m−1. After, the

adversary generates δ such that δ =
(
(gα, r0 · gζ), (gα)γ1 , r1 ·

(gζ)γ1 , · · · , (gα)γm−1 , rm−1 · (gζ)γm−1
)

and inputs δ in the distin-
guisher D. Since δ is same distribution as the data strings
that the client sends to the server in our protocol, the dis-
tinguisher D outputs 1 with probability of ε if ζ = α · β—
that is, the tuple is the DDH tuple (g, gα, gβ, gα·β). On the
other hand, since δ is not same distribution in our protocol,
the distinguisher D outputs 1 with a probability of 1/2 if
the tuple is the non-DDH tuple. Thus, the adversary A can
solve the DDH problem with a probability of 1/2+ ε, which
means the adversary can solve the DDH problem with non-
negligible probability. By using the contraposition, for any
PPTA, the data that the client sends to the server cannot be
distinguished from random strings under the DDH assump-
tion. Therefore, our protocol achieves client privacy I. In
addition, the server cannot decrypt all received data from
client, so that server cannot learn any information about d.
Thus, our protocol achieves client privacy II. �

Theorem 4.3: Our protocol achieves server privacy I and
server privacy II against honest-but-curious adversaries.

Proof 4.3: Supposing that there exists a distinguisher D
that can distinguish the data strings that the server sends to
the client from random strings with probability ε, then there
exists a polynomial-time adversary A that can solve the
DDH problem with non-negligible probability. In the same
way of the Theorem 4.2, we can show that for any PPTA, the
data the the server sends to the client cannot be distinguished
from random strings under the DDH assumption. There-
fore, server privacy I is achieved. In online phase 4) of our
protocol, the client learns ξ such that ξ = gr·∑m−1

i=0 BFC [i]·BFS [i].
According to our protocol, ξ = g0 mod p means d ∈ I and
ξ � g0 mod p means d � I. In the case of d ∈ I, client gets
only BFS [i] = 0 for all i such that BFC[i] = 1. In the case of
d � I, the client learns nothing because ξ is a random inte-
ger depending on r. Therefore, our protocol achieves server
privacy II. �

In summary, based on the Definition 2.7, we conclude
that our protocol is secure against honest-but-curious adver-
saries under the DDH assumption.

5. Analysis

5.1 Bloom Filter for the Empty-Set Check

It is clear that our protocol in Sect. 4.2 employs the Bloom
filter to execute the empty-set check of the set intersection
of two sets. We use Lemma 4.1 and the 0/1 encoding to
construct our protocol. Some false positive matches may
occur—that is, it is possible for arrays BFC[i] and BFS [i] to
be set to 1 even if C ∩ S = φ. We have analyzed the proba-
bility of false positive matches occurring in our protocol as
follows.

In Sect. 2.3, the probability of obtaining a false positive
for the Bloom filter BFS isσ =

(
1−(1− 1

m)kw)w ≈ (1−ekw/m)k,
where m, k, and w denote a size of Bloom filter, the number
of hash functions and a cardinality of set S , respectively.
It means that the probability of a false positive match oc-
curring for an element y � S . Let S 1 and S 2 be sets such
that S 1 ∩ S 2 = φ, |S 1| = w1, and |S 2| = w2. Considering
that we run check.BF(y,BFS 1) for all y ∈ S 2, we evalu-
ate the probability that check.BF(y,BFS 1) outputs True for
at least one element y ∈ S 2. The probability that a false
positive match does not occur for all y ∈ S 2 is (1 − σ)w2 .
Therefore, by considering complementary events, the prob-
ability of false positive matches μ is μ = 1 − (1 − σ)w2 =

1 − (1 − (1 − (1 − 1
m)kw1

)k)w2 . As the number of hash func-
tions increases, FPR becomes higher. In order to achieve a
lower FPR, we set k = 1. In this case, the probability of
false positive matches μ is μ = 1 − (1 − 1

m)w1w2 . Therefore,
by rearranging the formula above, the optimized size of the
Bloom filter is m = 1/(1 − (1 − μ)1/(w1w2)).

We verify the validity of the formulas μ by develop-
ing the following experiment. In the experiment, given
� = 16, 32, 64, we sample d ∈ {0, 1}�, a ∈ {0, 1}�, and
b ∈ {0, 1}� such that d ∈ [a, b] randomly for each � and con-
struct the prefix encoding set Pd of d, the new 1–encoding
set S̃ 1

a of a and the 0–encoding set S 0
b of b. We take μ,

w1 = |Pd | and w2 = |S I | as inputs and decide the size of the
Bloom filter by calculating m = 1/(1− (1− μ)1/(|Pd |·|S I |)). We
check whether Pd ∩ S I = φ by using two Bloom filters BFPd

and BFS I , the sizes of which are m. We repeat this exper-
iment 104 times and compute the probability of obtaining
a false positive. Table 1 indicates that the comparison be-
tween the theoretical FPR μ and experimental false positive
probabilities. Table 1 shows the error rates of the theoretical
FPR and experimental false positive probabilities are less
than 5%. These results validate our claims.

Table 1 Comparison with FPR with w2 = |S I |
FPR

Bit length
16 32 64

0.2 0.195 0.196 0.192
0.1 0.104 0.105 0.098

0.05 0.052 0.052 0.052

1604
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

5.2 Optimized Bloom Filter for the Proposed Protocol

In order to execute our protocol, we initially decide the size
of Bloom filters m. It relies on the FPR μ, the size of a prefix
string |Pd |, and the size of the union of the 0–encoding set
and a new 1–encoding set, which denotes S I = S̃ 1

a ∪ S 0
b.

However, clients do not learn |S I | because our protocol does
not allow the server to convey this to clients for achieving
security. Thus, clients need to get the size of Bloom filter
m even if they do not know |S I |. In this section, we discuss
how to construct an optimized Bloom filter even if the client
does not know |S I |.
Lemma 5.1: Given �, the size of a prefix string set of d is
|Pd | = �.
By the Lemma 5.1, we set ω1 = � in our protocol. On
the contrary, a set S I such as ω2 = |S I | is not determined
uniquely. Consequently, even given |S I |, we cannot specify
a set S I such that |S I |. Since |S I | has affected the FPR μ, we
theoretically discuss how to construct an optimized Bloom
filter. There are two ways to determine ω2: one in which the
server determines ω2 by considering the S I and another in
which the client determines ω2 independent on the S I .

Lemma 5.2: Given �, let w2 be |S I |, that is, w2 = |S I |.
• In the case of ω2 = 2� − 2, the number of possible

intervals is 1 such that I = [
∑�−2

i=0 2i, 2�−1].
• In the case of ω2 = 1, the number of possible in-

tervals is 2� such that I = [0,
∑�−2

i=0 2i], [0,
∑�−3

i=0 2i +

2�−1], · · · , [0,∑�−1
i=1 2i], [20, 2� − 1], [21, 2� − 1], · · · ,

[2�−1, 2� − 1].
• In the case of ω2 = �, the number of possible intervals

is
∑�

i=0

(
�
i

)
!.

By the Lemma 5.2, the probability of |S I | = 1 or |S I | = 2�−2
is lesser than the probability of |S I | = �. Therefore, we
establish the way in which ω2 = �. We verify how much
this way has affected the FPR by developing an experiment.
This experiment is almost same as the previous experiment.
The difference is to calculate m = 1/(1 − (1 − μ)1/�2) to
decide the size of the Bloom filter. Table 2 indicates that for
each � = 16, 32, 64, the comparison between the theoretical
FPR μ and experimental false positive probabilities and the
concrete size of the Bloom filter. Table 2 shows the error
rates of the theoretical FPR and experimental false positive
probabilities are less than 10%. Therefore, our protocol uses
this method to initially construct the Bloom filter.

Table 2 The size of Bloom filter m and FPR with w2 = �

� 16 32 64
FPR m FPR m FPR m FPR
0.2 1148 0.185 4589 0.202 18356 0.192
0.1 2430 0.095 9720 0.098 38877 0.095
0.05 4991 0.056 19964 0.045 79855 0.048

6. Evaluation on Practical Situation

In this section we show the experimental result of our pro-
tocol in some practical situations. Our protocol is suitable
for a small range test. For example, it can be used to check
whether an annual income is contained in a certain interval
given by an insurance company when we contract an insur-
ance. The annual income decides a benefit of the insurance
product. Typically, 27-bit length is enough for representing
the annual income: 227 = 134217728. 32-bit binary repre-
sentation is enough for handing practical problems: Internet
Protocol version 4 (IPv4) uses 32-bit addresses which limits
the address space. As for other small range cases, it can be
used to check an academic record: the grade point average
(GPA), the TOEFL score, etc. In these cases, 8-bit binary
representation is enough. Here, we evaluate our protocol in
such small ranges equal or less than 32 bits.

We implemented a prototype in Python3 using the Py-
Cryptodome (PyCrypt) library (version 3.8.2). PyCrypt is
used for parameters generation and random number genera-
tion in the Exponential ElGamal Encryption. To instantiate
a hash function for the Bloom filter, we used SHA–1 in Py-
Crypt.

The most expensive process of our protocol is Bloom
filter encryption. In this paper, we divide our protocol into
the offline phase and online phase. Bloom filter encryption
is executed in the offline phase, which means that we can ex-
ecute Bloom filter encryption before the interaction between
a client and a server. Our aim is to reduce the time clients
take to obtain a result.

All experiments were performed on a single server ma-
chine and a single laptop machine. We used the Ubuntu
18.04 LTS operating system with Intel(R) Xeon(R) Gold
6130 2.10 GHz CPU and 200 GB memory as a single server
machine. We also used a Windows 10 Pro Education operat-
ing system with Intel(R) Core(TM) i7-3770 3.40GHz CPU
and 8GB memory as a single laptop machine. We measured
the performance for � ∈ {4, 8, 16, 24, 32} bits integers. The
time required for whole server processing and whole client
processing in the online phase was measured. We set the se-
curity parameter to λ = 80, and group size |Fp| = 2048 and
sub group size |Fq| = 160 were used in reference to the NIST
guidelines for key management. We evaluated our protocol
with false positive rates FPR ∈ {0.2, 0.1, 0.05, 0.01, 0.001}.

6.1 Comparison of Theoretical Complexity

We compare our protocol with Lin and Tzeng’s secure com-
parison protocol [7] and an application in Sect. 4.1. Table 3
indicates that the comparison of the computational and com-
municational theoretical complexity among these protocols.
All protocols are secure against honest-but-curious adver-
saries, and they employ Exponential ElGamal encryption.
In this paper, we separate processing in protocols into offline
and online phases and evaluate these protocols. The offline
phase is all processing before the server receives encryption

SHISHIDO and MIYAJI: ONLINE-EFFICIENT INTERVAL TEST VIA SECURE EMPTY-SET CHECK
1605

Table 3 The comparison of theoretical complexity

Computational complexity
Comm. comp.

Client Server

Lin and Tzeng’s secure comparison protocol [7]
Offline 6�E - Upload: 4�|Fp |
Online �(E + M) 3(� − |S 0

b |)E +
∑

tβ∈S 0
b
|tβ |M Download: 2�|Fp |

An application of PSI to Interval test in Sect. 4.1
Offline 2mE - Upload: 2m|Fp |
Online mE 5mE + 2mM Download: 2m|Fp |

Our (Interval test based on Empty-set check)
Offline 2mE - Upload: 2m|Fp |
Online E + M 2(E + mM) Download: 2|Fp |

Table 4 Practical communication cost of upload in our protocol (80-bits
security) (MB)

FPR
Bit length

4 8 16 24 32
0.2 0.035 0.140 0.561 1.261 2.241
0.1 0.074 0.297 1.187 2.669 4.741
0.05 0.152 0.609 2.437 5.483 9.748
0.01 0.777 3.109 12.44 27.98 49.75
0.001 7.809 31.23 124.9 281.1 499.8

of the Bloom filter Enc(y,BFC) from the client. The online
phase is all processing after the server receives encryption
of the Bloom filter Enc(y,BFC) from the client. The com-
putational complexity of a field multiplication, a field ex-
ponentiation and a field inverse are denoted by M, E and I,
respectively. Even though field multiplications are used in
these protocols, its computational complexity is much lower
than the computational complexity of a field exponentiation.
The communicational complexity is denoted by the number
of field elements in Fp. Similarly, we separate communica-
tion into upload and download to evaluate these protocols.
Note that the size of the Bloom filter m is larger than �. Ta-
ble 3 shows that the comparison of complexity between our
protocol and other protocols. In [7] and an application in
Sect. 4.1, the computational complexity of online phase and
the communicational complexity of download depend on �
and the size of the Bloom filter m, respectively. On the other
hand, the computational and communicational complexity
of our protocol don’t depend on any parameters—that is,
the client receives only two field elements and requires just
one decryption. However, the computational and communi-
cational complexity of our protocol is larger than other pro-
tocols because the complexities depend on m. We conclude
that our protocol needs to receive only two field elements,
and the client executes just one decryption. Therefore, our
protocol is faster than other protocols in online phase.

6.2 Comparison of Practical Complexity

We report the practical communication cost in Tables 4, 5,
and 6. The communication cost of our protocol is bigger
than the others. Precisely, our communication cost of up-
load is approximately 1000 times of the others communica-
tion cost. In regard in download, the server send only one
ciphertext to the client in any FPR. Therefore, communica-
tion cost is the size of ciphertext. Namely, 2|Fp| bits is the
communication cost in download. On the other hand, the
others’ communication costs are almost same as the com-

Table 5 Practical communication cost of upload and download in Lin
and Tzeng’s protocol [7] (80-bits security) (KB)

Bit length
4 8 16 24 32

Upload 4.0 8.0 16.0 24.0 32.0
Download 2.0 4.0 8.0 12.0 16.0

Table 6 Practical communication cost of upload and download of an
application in Sect. 4.1 (80-bits security) (KB)

FPR
Bit length

4 8 16 24 32
0.2 14.0 27.0 54.0 81.0 108.0
0.1 20.0 39.0 77.0 116.0 154.0

0.05 25.0 50.0 100.0 150.0 200.0
0.01 39.0 77.0 154.0 231.0 307.0
0.001 58.0 116.0 231.0 346.0 461.0

Table 7 Server’s average runtime in our protocol (ms)

FPR
Bit length

4 8 16 24 32
0.2 5.866 6.167 6.481 7.344 8.250
0.1 6.241 7.370 6.207 9.146 11.81
0.05 6.723 6.977 7.510 12.96 21.13
0.01 3.091 7.827 27.84 59.89 104.9

0.001 17.93 65.82 274.5 593.2 1078

Table 8 Server’s average runtime in Lin and Tzeng’s protocol [7] (ms)

Bit length
4 8 16 24 32

15.19 20.57 27.54 36.64 46.69

Table 9 Server’s average runtime of an application of PSI in Sect. 4.1
(ms)

FPR
Bit length

4 8 16 24 32
0.2 49.70 86.24 162.5 237.9 313.0
0.1 66.94 120.3 226.0 335.8 443.6
0.05 81.06 151.5 292.0 431.8 573.1
0.01 119.9 226.8 444.3 659.5 873.2

0.001 174.0 336.1 660.6 982.9 1307

munication cost of upload.
We compared our protocol with Lin and Tzeng’s se-

cure comparison protocol [7] and an application in Sect. 4.1.
We implemented them in Python3 with Pycrypt library for
the comparison. All measurements were conducted in the
sequential processing mode and repeated these protocols 10
times and computed average runtime. The results are pre-
sented in Tables 7, 8, 9, 10, 11, and 12 (Figs. 1 and 2).

1606
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Table 10 Client’s average runtime in our protocol (ms)

FPR
Bit length

4 8 16 24 32
0.2 1.967 1.852 3.183 6.072 3.589
0.1 3.937 2.458 1.923 3.512 2.361
0.05 3.049 5.423 2.515 2.469 3.899
0.01 4.456 1.834 1.872 1.769 1.757
0.001 2.212 1.756 1.313 1.849 2.635

Table 11 Client’s average runtime in Lin and Tzeng’s protocol [7] (ms)

Bit length
4 8 16 24 32

7.227 15.54 28.64 34.39 43.90

Table 12 Client’s average runtime of an application in Sect. 4.1 (ms)

FPR
Bit length

4 8 16 24 32
0.2 13.19 37.84 58.81 85.03 103.6
0.1 36.68 50.22 81.09 109.9 141.5
0.05 39.48 57.07 99.99 135.5 176.8
0.01 50.33 80.48 143.1 201.1 259.6
0.001 64.09 111.2 198.4 292.3 377.8

Fig. 1 Server average runtime in online

Fig. 2 Client average runtime in online

Figure 1 shows that server’s average runtime of our
protocol is faster than Lin and Tzeng’s secure comparison
protocol except when FPR is less than 0.05, and an appli-

cation in Sect. 4.1. Especially, Fig. 2 shows that client’s av-
erage runtime is almost fixed time independent on the bit
length of input in our protocol and faster than the others in
any cases.

As we discussed the false positive probability of our
protocol in Sect. 5.1, it relies on the size of a prefix string
w1 = |Pd |, and the size of the union of the 0–encoding set
and a new 1–encoding set w2 = |S̃ 1

a∪S 0
b|. We should choose

an appropriate FPR according to the |Pd | and |S̃ 1
a ∪ S 0

b|.
As we discussed optimized Bloom filter for our protocol in
Sect. 5.2, |Pd | and |S̃ 1

a ∪ S 0
b| are set to �, where � is bit length

of integers. When � = i, the number of combination is 2i.
This number is the same as the number of candidate element
of set Pd and S̃ 1

a ∪ S 0
b. So it is desirable that the appropriate

FPR is 2−�. In the cases of 8 bits or less, we can choose
the appropriate FPR: FPR = 2−4 = 0.0625 when � = 4 and
FPR = 2−8 ≈ 0.0039 when � = 8. In these cases, our pro-
tocol is better than the others on the practical situations. On
the other hand, the others is faster than our protocol when bit
length is 16 or more because we cannot choose the appropri-
ate FPR. However, our evaluation indicates that it is faster
than the others for rough situations, in which the protocol
is allowed to go wrong every several executions in average.
Our protocol is available for rough cases even if bit length
is 16 or more.

7. Conclusion

We proposed our new empty-set check, and designed a se-
cure two-party interval test by using our empty-set check.
Our scheme solves the problem of client and server com-
plexity. To compare two integers, our scheme adopts the
0/1 encoding technique, and constructs a secure interval test.
To avoid increasing complexity after a client sends encryp-
tion of a Bloom filter, our scheme has introduced a novel
method of the empty-set check based on Bloom filter. We
formally analyze security in our scheme and prove that it
is secure against honest-but-curious adversaries under the
DDH assumption. We also formally analyze the false pos-
itive probability and how to theoretically generate an opti-
mized Bloom filter for our scheme, which shows that the
error rate between the theoretical false positive probability
and the experimental false positive probability is less than
10% if our scheme adopts w2 = �. The theoretical compar-
ison of results indicates that the complexity of our scheme
after the client sends encryption of a Bloom filter is less than
the others. We evaluated our protocol on practical situation;
then the practical comparison of results indicates that the
runtimes of a client and a server are faster than the others
in online phase if the situation, that go wrong every several
executions in average, is allowed. Thus, our scheme allows
the client to quickly obtain the result of an interval test after
sending data to the server.

Acknowledgments

This work is partially supported by CREST (JPMJCR1404)

SHISHIDO and MIYAJI: ONLINE-EFFICIENT INTERVAL TEST VIA SECURE EMPTY-SET CHECK
1607

at Japan Science and Technology Agency, Project for Es-
tablishing a Nationwide Practical Education Network for
IT Human Resources Development, Education Network for
Practical Information Technologies and Innovation Platform
for Society 5.0 at MEXT.

References

[1] B.H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol.13, no.7, pp.422–426, 1970.

[2] M. Burkhart and X. Dimitropoulos, “Fast private set operations with
sepia,” Tech. Rep. 345, 2012.

[3] E. De Cristofaro, J. Kim, and G. Tsudik, “Linear-complexity private
set intersection protocols secure in malicious model,” In Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Secu-
rity, Singapore, Dec. 5-9, 2010. Proceedings, vol.6477, pp.213–231,
2010.

[4] Y. Dou, H.C.B. Chan, M.H. Au, and Y. Mu, “Order-hiding range
query over encrypted data without search pattern leakage,” Comput.
J., vol.61, no.12, pp.1806–1824, 2018.

[5] R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J.
Tillmanns, “Privately computing set-union and set-intersection car-
dinality via bloom filters,” In Information Security and Privacy -
20th Australasian Conference, ACISP 2015, Brisbane, QLD, Aus-
tralia, June 29 - July 1, 2015, Proceedings, vol.9144, pp.413–430,
2015.

[6] L. Kissner and D.X. Song, “Privacy-preserving set operations,” In
Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, vol.3621, pp.241–257, 2005.

[7] H.-Y.Lin and W.-G. Tzeng, “An efficient solution to the millionaires’
problem based on homomorphic encryption,” In Applied Cryptog-
raphy and Network Security, Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005, Proceedings, vol.3531,
pp.456–466, 2005.

[8] M. Mitzenmacher and E. Upfal, “Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis,” Cambridge Uni-
versity Press, 2005.

[9] A. Miyaji, K. Nakasho, and S. Nishida, “Privacy-preserving integra-
tion of medical data - A practical multiparty private set intersection,”
J. Medical Systems, vol.41, no.3, pp.37:1–37:10, 2017.

[10] H. Morita and N. Attrapadung, “Client-aided two-party secure inter-
val test protocol,” In Cryptology and Network Security - 18th Inter-
national Conference, CANS 2019, Fuzhou, China, Oct. 25-27, 2019,
Proceedings, vol.11829, pp.328–343, 2019.

[11] T. Nishide and K. Ohta, “Constant-round multiparty computation
for interval test, equality test, and comparison,” IEICE Transactions,
vol.90-A, no.5, pp.960–968, 2007.

[12] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” In Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, vol.1592, pp.223–238, 1999.

[13] K. Peng, F. Bao, and E. Dawson, “Correct, private, flexible and ef-
ficient range test,” Journal of Research and Practice in Information
Technology, vol.40, no.4, pp.275–289, 2008.

[14] Y. Sang and H. Shen, “Efficient and secure protocols for privacy-p-
reserving set operations,” ACM Trans. Inf. Syst. Secur., vol.13, no.1,
pp.9:1–9:35, 2009.

[15] K. Shishido and A. Miyaji, “Secure online-efficient interval test
based on empty-set check,” In 14th Asia Joint Conference on In-
formation Security, AsiaJCIS 2019, Kobe, Japan, Aug. 1-2, 2019,
pp.56–63, 2019.

[16] A.C.-C. Yao, “Protocols for secure computations (extended ab-
stract),” In 23rd Annual Symposium on Foundations of Computer

Science, Chicago, Illinois, USA, 3-5 Nov. 1982, pp.160–164, 1982.
[17] A.C.-C. Yao, “How to generate and exchange secrets (extended ab-

stract),” In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 Oct. 1986, pp.162–167, 1986.

Katsunari Shishido received the B.E. de-
gree from the National Institute of Technology,
Advanced course, Ibaraki College in 2016 and
the M.S. degree from Osaka University in 2018.
Since 2019, he has worked for the FUJITSU
LABORATORIES LTD., Japan. His current re-
search interests include information security and
AI security. He received the 14th Asia Joint
Conference on Information Security (AsiaJCIS
2019) Best Paper Award.

Atsuko Miyaji received the B.Sc., the
M.Sc., and the Dr. Sci. degrees in mathemat-
ics from Osaka University, in 1988, 1990, and
1997 respectively. She joined Panasonic Co.,
LTD from 1990 to 1998 and engaged in re-
search and development for secure communi-
cation. She was an associate professor at the
Japan Advanced Institute of Science and Tech-
nology (JAIST) in 1998. She joined the com-
puter science department of the University of
California, Davis from 2002 to 2003. She has

been a professor at Japan Advanced Institute of Science and Technology
(JAIST) since 2007. She has been a professor at Graduate School of En-
gineering, Osaka University since 2015. Her research interests include the
application of number theory into cryptography and information security.
She received Young Paper Award of SCIS’93 in 1993, Notable Invention
Award of the Science and Technology Agency in 1997, the IPSJ Sakai Spe-
cial Researcher Award in 2002, the Standardization Contribution Award in
2003, the AWARD for the contribution to CULTURE of SECURITY in
2007, the Director-General of Industrial Science and Technology Policy
and EnvironmentBureau Award in 2007, DoCoMo Mobile Science Awards
in 2008, Advanced Data Mining and Applications (ADMA 2010) Best Pa-
per Award, Prizes for Science and Technology, the Commendation for Sci-
ence and Technology by the Minister of Education, Culture, Sports, Sci-
ence and Technology, International Conference on Applications and Tech-
nologies in Information Security (ATIS 2016) Best Paper Award, the 16th
IEEE Trustocm 2017 Best Paper Award, IEICE milestone certification in
2017, and the 14th Asia Joint Conference on Information Security (AsiaJ-
CIS 2019) Best Paper Award. She is a member of the International Asso-
ciation for Cryptologic Research, the Institute of Electrical and Electronics
Engineers, the Institute of Electronics, Information and Communication
Engineers, the Information Processing Society of Japan, and the Mathe-
matical Society of Japan.

http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://dx.doi.org/10.1093/comjnl/bxy075
http://dx.doi.org/10.1007/978-3-319-19962-7_24
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11496137_31
http://dx.doi.org/10.1017/cbo9780511813603
http://dx.doi.org/10.1007/s10916-016-0657-4
http://dx.doi.org/10.1007/978-3-030-31578-8_18
http://dx.doi.org/10.1093/ietfec/e90-a.5.960
http://dx.doi.org/10.1007/3-540-48910-x_16
http://dx.doi.org/10.1145/1609956.1609965
http://dx.doi.org/10.1109/asiajcis.2019.000-5
http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1982.38
http://dx.doi.org/10.1109/sfcs.1986.25

