
1476
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

PAPER Special Section on Information and Communication System Security

ROPminer: Learning-Based Static Detection of ROP Chain
Considering Linkability of ROP Gadgets

Toshinori USUI†,††a), Tomonori IKUSE†, Yuto OTSUKI†∗, Nonmembers, Yuhei KAWAKOYA†,
Makoto IWAMURA†, Jun MIYOSHI†, Members, and Kanta MATSUURA††, Senior Member

SUMMARY Return-oriented programming (ROP) has been crucial for
attackers to evade the security mechanisms of recent operating systems.
Although existing ROP detection approaches mainly focus on host-based
intrusion detection systems (HIDSes), network-based intrusion detection
systems (NIDSes) are also desired to protect various hosts including IoT
devices on the network. However, existing approaches are not enough for
network-level protection due to two problems: (1) Dynamic approaches
take the time with second- or minute-order on average for inspection. For
applying to NIDSes, millisecond-order is required to achieve near real time
detection. (2) Static approaches generate false positives because they use
heuristic patterns. For applying to NIDSes, false positives should be min-
imized to suppress false alarms. In this paper, we propose a method for
statically detecting ROP chains in malicious data by learning the target
libraries (i.e., the libraries that are used for ROP gadgets). Our method ac-
celerates its inspection by exhaustively collecting feasible ROP gadgets in
the target libraries and learning them separated from the inspection step. In
addition, we reduce false positives inevitable for existing static inspection
by statically verifying whether a suspicious byte sequence can link prop-
erly when they are executed as a ROP chain. Experimental results showed
that our method has achieved millisecond-order ROP chain detection with
high precision.
key words: return-oriented programming, static detection, machine learn-
ing

1. Introduction

Return-oriented programming (ROP) [1] is an attack tech-
nique used to bypass protection mechanisms of operating
systems (OSes) such as no-execute bit (NX bit), which dis-
ables malicious code injected into a writable section to be
run in the host. To detect the attacks using ROP (ROP at-
tacks), there are mainly two approaches. One is a dynamic
approach by running the code containing ROP in a real or
virtualized host environment and monitoring the feasibility
of its execution. The other is a static approach involved in
detecting statistical features or specific patterns of the attack
code for ROP (ROP chain), such as the frequency of appear-
ances of specific byte sequences.

Although these approaches achieve a certain level of
detection against ROP attacks, they are not enough for

Manuscript received August 31, 2019.
Manuscript revised January 8, 2020.
Manuscript publicized April 7, 2020.
†The authors are with NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
††The authors are with Institute of Industrial Science, The Uni-

versity of Tokyo, Tokyo, 153–8505 Japan.
∗Presently, the author is with NTT Security (Japan) KK,

Tokyo, 101–0021 Japan.
a) E-mail: toshinori.usui.rt@hco.ntt.co.jp

DOI: 10.1587/transinf.2019ICP0016

being applied to network-level detection with the follow-
ing two reasons. First is that dynamic approaches take time
with second- or minute-order on average to inspect if arrived
packets contain a ROP chain. This overhead for inspection
is not acceptable for use cases of network-level detection,
which requires millisecond-order to complete an inspection.
Second is that existing static approaches depend on obser-
vations of existing ROP chain patterns. They use heuris-
tic detection patterns generated by analyzing existing ROP
chains for detection. However, since an attacker can create
a new type of ROP chain pattern in a short time frame, a
constructed detection pattern may become obsolete and not
be alive long. For preparing a heuristic pattern for detecting
a newly emerging ROP, we have to create them mostly in
manual.

To solve these problems, we present a method for stat-
ically detecting ROP chains, which is suitable for being ap-
plied to network-level protection. With our method, we are
able to complete an inspection with millisecond-order, i.e.,
less than one second. Also, we can create models for detec-
tion without human interventions with known ROP chains.

Our method is composed of two phases: offline learn-
ing and online detection. In the learning phase, our method
learns the order of ROP components and the byte patterns of
each component. ROP components are an element compris-
ing a ROP payload and they are categorized into three types;
pointer-type, constant value, and junk data. Our method
learns the order of these components from real-world ROP
chains and builds a model for detection with hidden Markov
models (HMMs). In the online detection phase, we deploy
the built model to an edge of the network for protection. To
inspect arrival packets, we make a copy of network packets
and pass them to the model to check whether the packets
contain ROP payloads. If we detect a ROP payload in pack-
ets, we simply discard them. Otherwise, we pass them to the
network to deliver.

A challenge in this paper is that we have to handle ac-
cidentally appeared benign byte sequences that have similar
byte patterns to ROP chains. Since these byte sequences
confuse static detectors and produce false positives, they
should be clearly identified as benign. However, it is dif-
ficult to identify them as benign only with static byte pat-
terns since their byte patterns are similar to those of ROP
chains. To overcome this difficulty, we use a feature of dy-
namic linking between two ROP gadgets in addition to static
byte patterns. Because verifying this dynamic feature of

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1477

ROP gadgets with a dynamic manner produces prohibitive
runtime overhead, we managed to achieve this in a static
manner at the online detection phase. Our method executes
all ROP gadget candidates in the libraries that are used for
ROP gadgets (ROP target libraries) and creates a dictionary
that contains ROP gadget addresses and the corresponding
offsets that indicates how much the stack pointer gains if the
ROP gadget is executed (stack offset). This is done at the of-
fline learning phase and enables to verify the dynamic link-
ing feature in a static manner at the online detection phase.

We have implemented a prototype system which is
based on our method called ROPminer. ROPminer is instan-
tiated for detecting malicious Microsoft (MS) Office docu-
ments that are transferred on the network. This is because
these malicious documents are one of the major attack vec-
tors in the recent ROP-based exploits [2], [3]. We have
tested ROPminer with real-world datasets of malicious and
benign documents. The experimental results showed that
ROPminer can detect ROP-based malicious documents with
no false negatives and 3% false positives at 0.96 s/file on
average.

We have achieved millisecond-order ROP chain detec-
tion with ROPminer. However, our method still has two
limitations. The first is JIT-ROP, which dynamically crafts
ROP chains in memory of the target host with the result of
memory disclosure exploits to defeat address space layout
randomization (ASLR). The second is encrypted commu-
nications. Note that these limitations are common among
static detection methods and NIDSes. Even though there are
these limitations, we argue that our method is still valuable
for sharing among the security community. This is because
we can handle these limitations by using our static detec-
tor combined with dynamic analysis like the existing meth-
ods [4], [5], and deployed with an SSL decryption gateway.

Our contributions are summarized as follows.

• We present a method for statically detecting ROP
chains by learning the orders of ROP components and
the byte patterns of the each component.
• We applied dynamic verification of the linkability of

ROP gadgets to static detection by using the pre-
calculation of stack offsets.
• We implemented ROPminer, a prototype system with

our method, and evaluated its effectiveness on 1,067
malicious samples and 1,391 benign files used in the
real world.

The rest of this paper is organized as follows. The
ROP attack mechanism and byte-level characteristics of
ROP chains are explained in Sect. 2. Our method is de-
scribed in detail in Sect. 3. The implementation details of
ROPminer are presented in Sect. 4. The evaluation of
ROPminer is shown in Sect. 5. The discussion of the method
is presented in Sect. 6. Section 7 discusses related publica-
tions that are not discussed well in the previous sections.
Finally, Sect. 8 concludes the paper.

2. Return-Oriented Programming

2.1 Mechanism

ROP is a technique for executing arbitrary code without in-
jecting it into the target process. ROP attack enables attack-
ers to evade NX bit since only the existing executable code
(e.g., library code) in the target process memory is used for
the attack. In the first step of the ROP attack, the attacker lo-
cates ROP chains in the memory of the target process. ROP
chains mainly consist of the addresses which point to an in-
struction sequence in the existing executable code that at-
tacker intends to execute. The instruction sequences, called
gadgets, are small and terminate in return (RET) instruction
in general. In the second step, the attacker controls the stack
pointer and makes it point to the top of the ROP chain. This
is generally done by exploiting a memory corruption vulner-
ability. After the next RET instruction, the gadgets specified
in the ROP chain is executed as the third step of the ROP at-
tack. Because the gadgets are the set of atomic tasks that an
attacker aims to execute, after executing all gadgets in the
ROP chain, the arbitrary code execution is achieved.

More detailed explanations of the ROP mechanism is
available in the existing papers [1], [6].

2.2 Byte-Level Characteristics

We discuss byte-level characteristics of ROP chains from a
viewpoint of static detection. ROP chains generally con-
sist of three components: ROP gadget addresses, constant
values, and junk data. We call these components ROP com-
ponents.

We first explain the role of each ROP component and
discuss byte patterns of them. The role of ROP gadget ad-
dresses is to point out the corresponding gadgets that are
executed during ROP attacks. Therefore, they determine the
instruction pointer. The byte patterns of ROP gadget ad-
dresses are characteristic since their bytes are determined
dependent on the loaded addresses of the ROP gadget li-
braries. The characteristics strongly appear in the first and
second bytes of addresses. For example, when a ROP chain
uses a library which is mapped at 0x7C340000 and whose
size is 0x30000, its ROP gadget addresses are in the range
of 0x7C340000-0x7C36FFFF.

Constant values play a role similar to immedi-
ate operands in assembly languages. They are mainly
used as arguments of API calls in ROP chains. The
APIs generally called in ROP chains are limited to
several memory-related APIs, e.g., VirtualAlloc or Vir-
tualProtect in Windows and mmap or mprotect in
Linux. Their arguments are symbolic constants such
as PAGE EXECUTE READWRITE (0x00000040) in Win-
dows and PROT READ | PROT WRITE | PROT EXECUTE
(0x00000007) in Linux or a multiple of the page size (i.e.,
typically 0x1000). Thus, they have characteristics in their
byte patterns. Junk data is used to adjust the address that the

1478
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Listing 1: Example of ROP chain seen in the wild

0x275de6ae JUNK
JUNK 0x275e0861
JUNK JUNK
0x27594a2c JUNK
0x2758b042 JUNK
0x2761bdea JUNK
0x275811c8 0x275ebac1
0x2760ea66 0x275e0327
0x275e0081 JUNK
0x40000000 0x40000000
0x00100000 0x275ceb04
0x00003000 JUNK
0x00000040 JUNK
0x00001000 JUNK
0x275fbcfc JUNK
[To the upper right] 0x40000040

stack pointer indicates and has no significance in its values.
Therefore, attackers can use arbitrary values for it, and it has
no characteristics in its byte patterns.

We also discuss order patterns of the ROP components.
ROP gadget addresses tend to continuously appear in ROP
chains because they are the main components of the chains.
Constant values appear mostly when preceding gadgets call
the Windows APIs, generally soon after the ROP gadget
addresses. Since APIs frequently used in ROP chains re-
quire several arguments, constant values also tend to con-
tinuously appear dependent on the number of required argu-
ments. Junk data is placed after ROP gadget addresses or
constant values. It also tends to sequentially appear depen-
dent on the offset that stack pointer gains.

Since we can represent these two patterns (i.e., byte
patterns and order patterns of the ROP components) by a
stochastic model, our proposing method leverages an HMM,
the stochastic model that is suitable for representing ROP
chains.

Listing 1 shows an example of a real-world 32-bit
ROP chain. This ROP chain uses MSCOMCTL.OCX, which
is always loaded at the address of 0x27580000 and has
the size of 0x90000, as a ROP gadget library. There-
fore, the ROP gadget addresses in the ROP chain are in
the range of 0x27580000-0x2761FFFF. The ROP chain has
several constant values that are multiples of the page size
(0x1000) that often indicates a memory address or size (e.g.,
0x40000000, 0x00100000, and 0x00001000 in the Listing
1. In addition, the ROP chain has the symbolic constants
of MEM COMMIT | MEM RESERVE (0x00003000) and
PAGE EXECUTE READWRITE (0x00000040). Note that
JUNK in Listing 1 means that attackers can put arbitrary
four bytes here.

3. Method

3.1 Overview

We first provide assumptions of our method. Since
our method uses byte-by-byte static analysis, we assume
that ROP chains are visible in the byte sequence of the

inspection target. This assumption is the same as exist-
ing static detectors [7]–[9]. Therefore, when handling com-
pressed or encrypted data, our method requires a decom-
pression or decryption process dependent on the format of
the target file. In addition, some ROP attacks dynamically
generate ROP chains only in memory using scripts. To de-
tect these ROP attacks, we have to execute the scripts and
analyze the memory region which contains the generated
ROP chains. We call these procedures to expose the ROP
chains as preprocessing. The details of the preprocessing
are described in Sect. 4.

Our method assumes no prior knowledge of run-time
environment except memory maps, which are used to update
models for handling ASLR. Thus, the only modification to
the machine, OS, and libraries is adding a mechanism to
transfer memory maps to the detector. We assume that our
method can use fundamental knowledge about the data for-
mat which our method handles.

Figure 1 shows an overview of our method. The
method consists of two phases: offline learning and on-
line detection. The offline learning phase is composed of
three steps: preprocessing, gadget exploration, and model
learning. The online inspection phase is composed of four
steps: preprocessing, model update, probability calculation,
and likelihood ratio test. Note that the preprocessing step is
commonly performed in both two phases. We input known
malicious and benign byte sequences with ground-truth la-
bels in the learning phase, as well as ROP gadget libraries
used by embedded ROP chains. After the learning phase,
our method outputs learned models. In the inspection phase,
suspicious byte sequences will be input to our method with
the learned models, and our method then outputs the result
of the inspection as malicious or benign.

We explain each step in detail in the rest of this
section.

3.2 Preprocessing

To start the whole learning and detection procedure, our
method preprocesses the input data. The purpose of this
preprocessing is to extract the byte sequence of learn-
ing/detection targets from the input data. The preprocess-
ing consists of three steps, protocol/file format identifica-
tion, format-dependent parsing, and gadget library identi-
fication. Note that this preprocessing is performed before
both learning and detection. The first step is to identify the
protocol/file format of all the input data. This is achieved in
a generic manner such as finding magic numbers and pars-
ing headers. The second step is to conduct format depen-
dent parsing. This is done only when the input data re-
quires the step to be judged from its file format. For ex-
ample, OOXML-formatted files are decompressed and RTF-
formatted files are parsed for extracting embedded binary
contents in which our method is interested, whereas OLE-
formatted files and most image files do not require any pro-
cessing because they are binaries. For traffic data, extracting
payloads of TCP/IP streams and parsing application-layer

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1479

Fig. 1 Overview of our method

protocols dependent on the target applications. The third
step is to identify the ROP gadget libraries. This step is de-
scribed in detail in Sect. 3.4.3.

3.3 Learning Phase

3.3.1 Gadget Exploration

The gadget exploration step has two objectives:

1. Exhaustively collecting all valid ROP gadgets in a li-
brary

2. Collecting stack offsets, which indicates how the stack
pointer is modified by executing the corresponding
ROP gadgets

Our goal is to create a dictionary which contains sets of ROP
gadget addresses and the corresponding stack offsets. The
dictionary is used both in the model learning and inspec-
tion steps. To create the dictionary with all possible gadgets
including the ones that are only used with the specific condi-
tion (e.g., specific stack and register condition), we leverage
symbolic execution.

Symbolic execution is a technique that explores all fea-
sible execution paths and generates inputs that can fulfill the
conditions of each execution path. It uses symbol variables
that can contain arbitrary values as inputs instead of concrete
inputs during execution. During the execution, the symbolic
variables are propagated based on the calculation regarding
the variable. When the execution encounters a conditional
branch with the symbolic variables, it collects the condition
as path constraints, which have to be fulfilled to take the ex-
ecution path. After the execution, it uses the satisfiability
modulo theories (SMT) solver to generate test inputs that
fulfill the collected path constraints.

This can enable to explore paths and collect the con-
straints that are required to follow each path. By examin-
ing the satisfiability of the constraints, one can determine

Fig. 2 Gadget exploration by symbolic execution

whether the path is reachable or not.
Figure 2 shows how our method exhaustively collects

the gadgets from a library with symbolic execution. Our
method repetitively conduct symbolic execution in which
the entry points of these executions are all the addresses in
the code section. That is, it first conducts symbolic execu-
tion by setting the top address of the code section to the in-
struction pointer register; then, it executes the code section
by setting the top + 1 address to the instruction pointer reg-
ister, and repeats the execution until it reaches the end of the
code section. If the result of symbolic execution indicates
that the gadget that starts from an entry point is valid, the
method adds the entry point of the execution and the stack
offset to the gadget dictionary.

We explain the setup of each execution. Our method
first symbolize the values of the stack and registers ex-
cept the instruction pointer. The instruction pointer register
should point to the entry point of each execution target. We
then begin the symbolic execution. When a symbolic value
on the stack is moved to the instruction pointer, the execu-
tion stops as it has reached the end of the gadget.

1480
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

3.3.2 Model Learning

For modeling byte sequences that include ROP chains, an
HMM is designed to use the byte sequence of data as an
observed sequence and the label sequence as a hidden state
sequence. Therefore, the emission symbols of an HMM are
the set of 0x00-0xFF. As argued in Sect. 2, ROP chains gen-
erally consist of three components: ROP gadget addresses
(addr), constant values (const), and junk data (junk). In ad-
dition, the ROP chains are embedded in data such as doc-
uments and network payloads that generally have the same
format as benign ones for being loaded on the memory prop-
erly. The bytes of this data have the label called data. There-
fore, the state space consists of the set of addr[1-4], const[1-
4], junk, and data labels, where the index number indicates
the byte-wise position in the components, e.g., addr3 means
the third byte of a ROP gadget address. Figure 3 depicts the

Fig. 3 State transition diagram for byte-wise HMM of 32-bit ROP chain
embedded in data

Fig. 4 Transition probabilities of an example model

state transition diagram of an HMM of 32-bit ROP chains
designed for our detection method. In the diagram, D de-
notes data, A addr, C const, and J junk.

Figure 4 and Fig. 5 shows an example model of ROP
chains embedded in OLE2 files that uses the library of
MSCOMCTL.OCX for their ROP gadgets. The former fig-
ure shows the transition probabilities of the model and the
latter shows the emission probabilities. These figures can
exhibit the differences in the probabilities among the labels.
The transition probabilities are compliant to the state tran-
sition diagram in the Fig. 3. In addition, the emission prob-
abilities are following the byte-level characteristics of ROP
chains described in Sect. 2.2.

With our method, HMM model parameters θ =
(A, B, π) are generated by supervised learning. We apply
labeled data for the training data every byte of which has a
corresponding label.

By using the training data, the transition probability
ai, j ∈ A in which state i transits to state j, the emission
probability b j,o ∈ B in which state j emits symbol o, and
the initial state probability πi ∈ π of state i are computed as
follows.

ai, j =
Ki, j∑

k∈Z Ki,k
, bi,o =

Mi,o∑
p∈V Mi,p

, πi =
Ni∑

j∈Z Nj
(1)

where V is the set of emission symbols, Z is the set of hidden
states, Ki, j is the number of transitions from state i ∈ Z to
state j ∈ Z, Mi,o is the number of symbols o ∈ V emitted by
state i, and Ni is the number of initial states i.

When calculating the emission probabilities of addr[1-

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1481

Fig. 5 Emission probabilities of an example model

4], a sampling bias problem occurs. This is because the
gadget addresses that appear in the known samples are
quite limited. However, attackers can create ROP chains
that behave equivalently to the known chains by using ad-
dresses that do not exist in the known chains. Therefore,
we avoid this problem by learning the libraries adopted for
ROP gadgets. We extract all available gadget address candi-
dates from the library used to create chains. The extracted
addresses are used to learn the emission probabilities of
addr[1-4] by using Eq. (1).

We applied HMMs because of the following three rea-
sons. First, a byte array of data is regarded as sequence
data, in which structured learning methods such including
HMMs are suitable. Second, the relationship between ob-
served bytes and ROP component labels is similar to latent
variable models such as an HMM. Third, the assumption of
Markov property strongly helps the method for accelerating
the probabilistic calculation done in the detection process.
Without the property, we cannot construct a quick method;
therefore, we adopt HMMs.

3.4 Detection Phase

3.4.1 Run-Time Model Update

Several exploits in the wild employ JIT-ROP [10] for their
ROP chains; therefore, our method targets ASLR-enabled
libraries if memory map information of the target applica-
tions is available. Under the ASLR-enabled environment, a
library is mapped at the various addresses. Therefore, prob-
abilities of gadget addresses (addr[1-4]) of learned models

Fig. 6 Transfer mechanism of memory map information

dynamically change depending on the mapped address. This
causes a problem that the model which only learned a static
binary information of a library cannot work properly. Our
method handles this problem by updating learned models on
the basis of input memory map information.

Figure 6 describes the transfer mechanism of memory
map information. Our method installs light-weight userland
agents to the defending target and collects memory map in-
formation via the agents. The information is generally col-
lected through system utilities provided by OSes. For ex-
ample, /proc/{PID}/maps can provide them on Linux and
VMMap [11] on Windows. The agents use them to collect
the information and send it to the NIDS implemented with
our method.

Since general ASLR implementation randomizes only
higher bytes of the mapped address, our method updates
a model of higher bytes of addr[1-4] by shifting its prob-

1482
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

ability histogram required times. For example, when a li-
brary whose base address of code region is 0x00100000
is mapped at 0x32200000, the probability histogram of
addr[1] is shifted by 0x32 times and addr[2] by 0x20 times.
Since this operation is done in O(1), we can update models
with little overhead.

3.4.2 Probability Calculation

Static ROP chain detection sometimes causes false positives
due to the appearance of byte sequences that look like gad-
get addresses in the data. For evading these false positives,
we introduce the concept of RCI checking to static ROP
chain detection. RCI is used to evaluate the integrity of a
ROP gadget properly linking to another ROP gadget. If gad-
gets do not link properly, the chain is considered an invalid
ROP chain. We call this situation “chain violation” (CV).
By RCI checking, we can reduce the number of false posi-
tives derived due to accidentally occurring gadget-address-
like byte sequences appearing. This is because false posi-
tives mostly cause CV.

To adopt RCI checking in our probabilistic method, we
computed the probability that the HMM emits the observed
byte sequence with no CV. This is used as the likelihood of
ROP-based malicious data. The likelihood L(θ|X) is com-
puted as follows;

L(θ|X) = P(X,
⋂

(i, j)∈JX

Fi, j|θ) (2)

= P(X|θ)P(
⋂

(i, j)∈Jx

Fi, j|X, θ) (3)

where X is the observed byte sequence, i, j are the steps in
which the corresponding byte xi, x j ∈ X are interpreted as
the chain source and destination, JX is the set of (i, j) in X
and Fi, j is a stochastic variable with which set (i, j) does not
cause CV.

Since directly computing the probability above is quite
difficult, we made two assumptions for making it easier with
approximate computation. (i) The probability that a ROP
gadget address does not cause CV is independent of the
probability that the other ROP gadget addresses do not cause
CV. (ii) The state probability of the chain source is indepen-
dent of that of the chain destination.

By assuming (i), the likelihood L(θ|X) of Eq. (2) is ap-
proximately calculated as follows.

L(θ|X) ≈ P(X|θ)
∏

(i, j)∈Jx

P(i � A1 ∪ j = A1|X, θ) (4)

It is then deformed as follows with the rule of complemen-
tary events.

L(θ|X) ≈ P(X|θ)
∏

(i, j)∈Jx

1 − P(i = A1 ∩ j � A1|X, θ) (5)

Eventually, it is approximately calculated as follows under
the assumption of (ii).

L(θ|X) ≈ P(X|θ)
∏

(i, j)∈Jx

1 − P(i = A1|X, θ)P(j � A1|X, θ)

(6)

where A1 is the label of addr[1].
Here, P(X|θ), P(i = ·|X, θ), and P(j � ·|X, θ) are

quickly calculated using forward and forward-backward al-
gorithms [12], respectively. Note that · here is a placeholder
of the symbols. Therefore, we can also compute the entire
likelihood L(θ|X) in a short time.

3.4.3 ROP Gadget Library Identification

To do the procedures introduced above, there are two ques-
tions to answer.

• What library should be employed to create a gadget
dictionary and model?
• Which library and model should be used to inspect

data?

For the first question, the method inspects target data with
the model and dictionary generated from the non-ASLR
DLLs for static ROP as the gadget libraries, as well as
major ASLR-enabled DLLs used for JIT-ROP such as
NTDLL.DLL and KERNEL32.DLL. The major ASLR-
enabled DLLs are chosen on the basis of statistics of ma-
licious data captured in the wild.

For the second question, the method adopts models and
gadget dictionaries of non-ASLR DLLs and major ASLR-
enabled DLLs for detection. Since our method gener-
ates a model for each gadget library, the method repeat-
edly inspects the target data while changing it. Therefore,
it is preferable to identify the gadget library that is actu-
ally used by a target malicious data if possible, for reduc-
ing the inspection times. Several applications tend to load
DLLs dependent on the contents that they read. Attack-
ers often leverage this mechanism to force an application
to load non-ASLR DLLs. For example, MS Office ap-
plications load non-ASLR DLLs such as MSVCR71.DLL,
MSVCRT.DLL, and MSCOMCTL.OCX on the basis of
ProgID/CLSID specified in the file as Li et al. [13]
investigated.

When using ASLR-enabled DLLs, the order of mod-
els and dictionaries used for detection is also defined by the
statistics of real-world attacks. This can reduce the num-
ber of detection times because attacks in the wild have a
tendency.

3.4.4 Likelihood Ratio Test

Our method detects ROP chains by conducting a likelihood
ratio test. Hence, the method first calculates the likelihood
ratio Z as follows.

Z =
P(X|HMal)
P(X|HBen)

=
L(θMal|X)
P(X|θBen)

(7)

where HMal is the hypothesis that the inspected data is ma-
licious (i.e., containing ROP chains), HBen is the hypothesis

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1483

that the inspected data is benign, θMal is the HMM of mali-
cious data with ROP chains, and θBen is the HMM of benign
data. Then, if Z > t the data is detected as malicious; other-
wise, it is benign, where t is a threshold.

How to define parameters is an important problem for
most learning-based systems. Since our method requires a
threshold parameter t for detection, we have to predefine it.
In general, theoretically defining t is difficult, we therefore
experimentally define it by inspecting a development set al-
ready known to be malicious or benign. First, our method
calculates the likelihood ratio of all data in the development
set. Second, it calculates the true positive rates (TPRs) and
false positive rates (FPRs) while changing t from a low value
to high value and plotting them as a curve. Then, it chooses
t on the basis of the strategy suitable for the task, e.g., the t
that produces the best balances of TPR and FPR or the t that
makes the best TPR under the condition of no FPR.

4. Implementation

We implemented a prototype system called ROPminer that
is based on our method for evaluation. ROPminer is instan-
tiated for detecting malicious MS Office documents that are
transferred on the network. This is because they are one of
the major attack vectors in the recent ROP-based exploits.

ROPminer supports three document formats: CDF,
OOXML, and RTF. We therefore implemented modules that
parse files of each format and extract binaries embedded in
them. If the input file is CDF, ROPminer just treats it as the
inspection target. This is because CDF is a binary format
and ROP chains are directly embedded in it. If the input
is OOXML, ROPminer unzips it and extracts contained bi-
nary files as the inspection target. These binary files are
generally used to contain ROP chains in OOXML-based ex-
ploits. If the input is RTF, ROPminer first finds \objdata
control words that contain binaries. Because \objdata con-
tains binaries in hex strings, ROPminer then decodes them
and regards the decoded binaries as the inspection target.

5. Evaluation

We conducted experiments with ROPminer for addressing
the following research questions;

• RQ1: How accurately does the ROPminer detect?
• RQ2: What is the false positive rate of ROPminer?
• RQ3: How well RCI checking works?
• RQ4: How fast is the throughput of the inspection by

ROPminer?
• RQ5: How much memory is consumed while

ROPminer performs inspection?
• RQ6: How is the overhead of gadget exploration and

model learning?

5.1 Experimental Setup

Table 1 lists the datasets used in the experiments. For

Table 1 Datasets for evaluation
Category Label Samples Source Collection period

Training
Malicious 50 VirusTotal (VT) [16] 2016/12/26–2017/2/24

Benign 278 govdocs [14], bing -

Test
Malicious 1029 VT [16] 2016/12/26–2017/2/24

Benign 1113 govdocs [14], bing -

Table 2 Execution environments for evaluation

CPU Intel Xeon CPU E5-2660 v3 @2.60GHz
Memory 32GB

OS Ubuntu 14.04 LTS

malicious samples, we collected the RTF-formatted and
OOXML-formatted malicious documents that are most
commonly used for file-based exploitation in the wild. Note
that these files contain the other formatted files (e.g., an
RTF-formatted file may contain OOXML-formatted files
and CDF-formatted files in it) because they sometimes
have nested structure. ROPminer also detects the mali-
cious files contained in this nested structure. We con-
firmed that the malicious samples include at least several
different ROP chains by manual analysis. According to
the reports by VirusTotal (VT), the malicious files in the
dataset exploit the following vulnerabilities: CVE-2010-
{1297, 2883, 3333}, CVE-2012-{0158, 1856, 2539}, CVE-
2013-{3346, 3906}, CVE-2014-{0496, 1761}, and CVE-
2015-{1641, 1770, 2545}. Note that these vulnerabilities are
sometimes used in combination for one malicious file. To
conduct better experiments on ROP chain detection, the two
data cleansing operations below are performed on the data.

• We removed the files that have < 2 positives in the VT
reports because they are false positives in most cases.
• We also removed the files that exploit the vulnerabili-

ties which are known to be exploitable without ROP.

For the training set, 50 samples were randomly chosen and
were labeled on the basis of manual analysis.

For benign samples, we adopted govdocs [14], which
are the datasets collected for forensic research. Since gov-
docs have several file formats, we can obtain MS Office doc-
ument files. In addition, we also collected benign files us-
ing Bing search API [15]. We removed the files that have no
data objects because they have no inspection target for ROP-
miner. After the removal, 40 files from govdocs and 1,351
files from bing remained.

Using the datasets, ROPminer first generated the
HMMs of malicious and benign documents with the training
set and then inspected the test set with them.

Table 2 shows the environment used for conducting the
experiments. All inspections were done on a single CPU.

5.2 Detection Accuracy

For answering RQ1 and RQ2, we evaluated the false
positives and false negatives in experiments. The result
of the experiment suggest that ROPminer detected all ma-
licious samples with no false negatives and that the aver-
age FPR was 0.03. The experiment is done by moving the

1484
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Fig. 7 ROC curve of inspection by ROPminer

parameter t for plotting the relationship between true posi-
tives and false positives as a receiver operating characteristic
(ROC) curve. Figure 7 describes the ROC curve of the in-
spection by ROPminer. The area under curve (AUC) is 0.97,
which in general indicates that it functions well as a recog-
nition system.

In addition, we conducted an experiment with the
cross-validation to reduce the sampling bias in the experi-
ment. The experiment employs the 50 malicious samples
with labels as well as the 50 benign samples that are under-
sampled from the benign category for avoiding the imbal-
anced data problem. Note that the ROP gadget libraries cor-
responding to the training data are used to build the models.
We adopted 5-fold cross-validation and calculated the aver-
age FPR and FNR for each detection trial. The experimental
result suggested that ROPminer detected all malicious sam-
ples with no false negatives and that the average FPR was
0.04. This result is almost identical to the previous experi-
ment. Note that how ROPminer can detect future malicious
documents by using the models generated with older sam-
ples is discussed in Sect. 6.6.

For answering RQ3, we prepared another version of
ROPminer which is without RCI checking and conducted
the same experiment. The results suggested that its FNR
was 0 and its FPR was 0.09. Since the FPR of ROPminer
with RCI checking was 0.03, RCI checking decreased the
FPR by 0.06 points. Therefore, RCI checking contributes to
reduce false positives.

5.3 Performance

For answering RQ4, we also evaluated the performance of
ROPminer while conducting the experiments. During the
experiments, ROPminer inspected files at 0.96 s/file on av-
erage, and its throughput was around 0.83 Mbps/CPU. Fig-
ure 8 plots the relationship between file size and inspection
time. The data were fitted by linear regression and the cor-
relation coefficients were 0.96. Thus, the relation between
the file size and the processing time is fairly correlated, and

Fig. 8 Plot of relationship between file size and inspection time

Fig. 9 Plot of relationship between file size and average memory con-
sumption

ROPminer can scale linearly in the processing speed. The
theoretical analysis of the computational complexity is dis-
cussed in Sect. 6.3.

In addition, for answering RQ5, we evaluated the mem-
ory consumption of ROPminer while conducting the exper-
iments. The continuous memory consumption of the ex-
periment is measured using top command, and the mem-
ory consumption per file is measured using a performance
profiler. The average memory consumption throughout the
experiments is 347.2 MiB/file. Figure 9 plots the relation-
ship between file size and average memory consumption. In
the figure, we can see that the relationship between file size
and memory consumption is linear. The data were fitted
by linear regression, and the correlation coefficients were
0.96. Thus, it is experimentally proved that the relationship
between file size and memory consumption is linear in the
inspection by ROPminer. Moreover, since the regression co-
efficient was 803, ROPminer consumes 803 times as much
memory as the file size it inspects. However, we found that
this is a problem of our current implementation. Some part
of ROPminer is implemented in Python and does not explic-
itly free the memory; therefore it uses four times as much re-

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1485

Fig. 10 Plot of continuous observation of memory consumption during
experiments

Fig. 11 Cumulative distribution function of size of files in datasets

dundant memory as an efficient implementation. The mem-
ory consumption is theoretically analyzed in Sect. 6.4. Ac-
cording to the analysis, the efficient implementation can
inspect in memory about 200 times the size of the file
ROPminer inspects.

Figure 10 plots the continuous observation of the mem-
ory consumption during the experiments. Although it has
two spikes, the memory consumption during most of the ex-
periments is limited to at most 1 GiB. Therefore, parallel
execution is possible, considering the amount of equipped
memory on recent machines. In addition, more concurrency
will possible if the current implementation problem is fixed.

We investigated the size of files transferred on the net-
work of an organization as realistic datasets. Figure 11 gives
the cumulative distribution function (CDF) of the file size of
the datasets. In the figure, “realistic” indicates the file sizes
on the network of the organization. The function shows that
there is little difference in the file size distribution between
realistic and govdocs. In addition, about 90% of files in both
data sets were not more than 1 MB. Since ROPminer can
quickly inspect files that are below 1 MB in < 10 seconds,
its detection is quick enough to deploy it in real networks.

Table 3 Duration of Gadget Exploration

Size of Code Exploration The number of
DLL Name Section (KiB) Duration ROP gadgets

MSVCR71.DLL 690 18 h 32 m 50 s 13,721
MSCOMCTL.OCX 233 8 h 3 m 12 s 31,629

Table 4 Duration of Model Learning

Category Sum of Learned Size (KiB) Learning Duration

Malicious 19,984 15.2 s
Benign 18,508 1.90 s

Lastly for answering RQ6, we measured the overhead
of gadget exploration and model learning by ROPminer. Ta-
ble 3 shows the duration of gadget exploration for two com-
monly used libraries. For each exploration, hours of exe-
cution duration is required. Since each of a symbolic ex-
ecution begins from every byte of the code section of a li-
brary, the duration of gadget exploration mainly depends on
the size of the code section. Table 4 depicts the duration
of model learning. Each model takes only a few seconds
to learn. Benign files are much faster to learn than mali-
cious files since the benign files have just one type of label
(i.e., data) and much simpler probabilistic calculation than
malicious files. Overall, gadget exploration has a certain
overhead whereas model learning requires only a few sec-
onds. However, their overhead is not a major problem for
ROPminer because both gadget exploration and model
learning are performed separately from runtime detection.

6. Discussion

6.1 Comparison to Prior Work

We compare ROPminer with prior work which detects ROP
attacks on the basis of static analysis. Table 5 shows
the fundamental comparisons of the approaches between
ROPminer and the methods proposed by existing research.
Overall, most of the existing methods rely on predefined
heuristic rules with the explicit or implicit assumptions of
the form of ROP chains, whereas ROPminer adopts a rather
systematic approach based on statistical machine learn-
ing without strong assumptions. The rest of this section
(Sect. 6.1) discusses the differences between ROPminer and
the other methods in detail.

6.1.1 Check My Profile

Check My Profile [5] quickly takes a memory snapshot
(Minidump) of the target process by using a virtual machine
and a shared memory driver. Then, it statically analyzes the
snapshot and profiles the gadget candidate and ROP chain
candidate based on predefined rules. Check My Profile is
different from ROPminer in the assumption of the detection
environment. Check My Profile requires the virtual machine
and driver installation to take memory snapshots of the tar-
get process, whereas ROPminer needs no modification to
end hosts. In addition, Check My Profile takes the time

1486
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Table 5 Comparison between ROPminer and prior work of ROP detec-
tion by static analysis

Method name Approach Fully static

ROPminer Statistical learning ✓

Check My Profile [5] Predefined rule ✗

eavesROP [9] Pattern matching ✓

n-ROPdetector [7] Pattern matching, Predefined rule ✓

STROP [8] Predefined rule ✓

to open the target file for acquiring the memory snapshots,
whereas ROPminer does not take much time. Because of
these differences, Check My Profile can detect even client-
side JIT-ROP, while ROPminer can be easily deployed and
quickly detect static ROP.

6.1.2 eavesROP

eavesROP [9] detects a ROP chain based on matching the
patterns of gadget addresses. It first collect the all possible
gadget addresses from libraries, then, finds the gadget ad-
dresses in the target data by efficiently matching using fast
Fourier transform (FFT). Unlike ROPminer, eavesROP only
employs gadget addresses and does not utilize constant val-
ues and junk data for detection. The way to reduce false pos-
itives is also different from each other. eavesROP removes
blocks that include UTF-8 strings which sometimes look
like ROP chains, whereas ROPminer verifies RCI. Compari-
son between eavesROP and ROPminer in their detection ac-
curacy may be difficult since only the simulation is done in
the paper of eavesROP and experiments on real-world ex-
ploits are not conducted.

6.1.3 n-ROPdetector

n-ROPdetector [7] is a detection method which uses pattern
matching based rules. The method consists of two parts, one
is the pattern matching of known ROP gadget addresses;
the other is the predefined rule-based verification. Since
the method begins with finding the gadget addresses of API
calls related to the memory permission, its focus is a stager
ROP. Unlike ROPminer, n-ROPdetector uses just gadget ad-
dresses that appear in the exploits of Metasploit Frame-
work, and does not consider the constant values and junk
data. Also, n-ROPdetector differs in detection characteris-
tics from ROPminer. That is, n-ROPdetector reports 16%
of undetected ROP chains in their experiments, whereas
ROPminer does not so far. Note that the FPR of n-
ROPdetector is not evaluated in the paper, so we could not
compare with that of ROPminer.

6.1.4 STROP

STROP [8] uses several predefined rules and parameters for
detecting ROP chains. There are two major differences
between STROP and ROPminer. First, STROP uses sev-
eral assumptions in the form of ROP chains and requires
seven heuristic parameters. In contrast, ROPminer does not

require them. Second, STROP detects ROP payloads at
low FPR (about 0.013) and comparatively high FNR (about
0.25) whereas ROPminer has higher FPR (about 0.03) and
lower FNR (0.00) than STROP.

6.2 Limitation

The first limitation is that since ROPminer is based on the
likelihood of ROP chains, ROP attacks that use quite a few
gadgets, such as the return-into-libc attack [17], are diffi-
cult to detect. However, this is not a serious problem for
ROPminer when considering the situation of recent attacks.
The least amount of behavior that the attackers have to
achieve through ROP attacks is as follows.

1. Allocate memory and locate a shellcode on it.
2. Enable execute permission on the memory to bypass

DEP.
3. Jump to the shellcode for execution.

These steps are difficult to do by return-into-libc or a ROP
chain with a few gadgets since they require a certain number
of instructions and several API calls. Using return-into-libc
or a short ROP chain to directly execute a shell instead of
executing shellcode may be another option. This is done by
invoking an API such as WinExec with the argument of a
pointer to the command line string which attackers intend to
execute. However, this is also difficult because the pointer
to the command line string is ambiguous for attackers in
the recent ASLR-enabled environments, unless the attacker
exploits a memory disclosure vulnerability beforehand. To
achieve this attack without exploiting a memory disclosure
vulnerability, two ways are considered. One is using strings
in the non-ASLR data regions of the target process mem-
ory as a command line string. In this case, whether the at-
tacker can achieve the intention or not depends on the con-
tent of the data region, so it decreases the reliability of the
exploit. The other is applying a pusha instruction as Stancill
et al. [5] described; however, they also argued that a ROP
chain that has at least five gadgets is required to accomplish
it. Thus, we do not have to consider return-into-libc and
short ROP chains, so the limitation is not a significant prob-
lem for ROPminer.

The second limitation is that during RCI checking, the
gadgets that caused an ambiguous stack offset, e.g., gadgets
that ended with jmp [eax] without setting the eax register
in it, were excluded in this research. That is, we do not
evaluate RCI on such gadgets while RCI checking. Because
RCI is evaluated for eliminating false positives when CV
occurs by imposing a penalty on the likelihood as a ROP
chain, attackers cannot abuse the gadgets of the ambiguous
stack offset for evasion. Therefore, it is not a problem for
ROPminer.

6.3 Computational Complexity

Here, we theoretically analyze the computational complex-
ity of inspection by ROPminer. The main computation of

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1487

Fig. 12 Probability tables

the inspection involves calculating the likelihood ratio Z.
Since ROPminer inspects data on the basis of the forward-
backward algorithm of an HMM, it needs the table of for-
ward probabilities and backward probabilities for calcula-
tion. Figure 12 describes the construction of probability
tables. Both the forward probability table and backward
probability table are in the same form as this. The prob-
ability table consists of |Z| horizontal rows (the number of
hidden states) and N = |X| vertical columns (the length of
the observed sequence in a data), where each cell contains
the forward or backward probabilities. Because the HMMs
of ROPminer have a constant number of hidden states, i.e.,
11 states as shown in Sect. 3.3.2, the order of computation
is O(N), Thus, the inspection of ROPminer scales linearly
with the size of inspected data.

6.4 Memory Consumption

We also theoretically estimated the memory consumption
during ROPminer inspection. The main consumption of
memory by ROPminer is the table of the forward probabili-
ties and backward probabilities. As described in Fig. 12, the
table that ROPminer uses consists of cells that each have a
double variable. Assuming that a double variable is 8 bytes,
the number of hidden states is 11 (as argued in Sect. 3.3.2),
and the data inspected by ROPminer is N bytes, the memory
consumption of a table is calculated as 88N bytes (8∗11∗N).
This table is required for both forward probability and back-
ward probability, so two tables are used for the likelihood
calculation. Hence, 176N bytes (88N ∗ 2) are required to in-
spect data of N bytes for calculating the likelihood of one
HMM. ROPminer uses two HMMs for inspection, a ma-
licious one and a benign one. Therefore, if it is naively
implemented, its memory consumption will be 352N bytes
(176N ∗ 2) for an inspection. However, if the likelihood is
calculated in a sequential manner (e.g., first it calculates the
malicious likelihood with the table of the malicious HMM,
freeing its memory, then calculates the benign one), the
memory consumption for inspection will be suppressed to
176N.

6.5 Number of Required Models

The number of models required for ROPminer is an impor-
tant concern because it affects the inspection times. For
learning, ROPminer has to generate one model for each li-
brary and each file format. Because some libraries have mul-

Table 6 Number of Versions and Mean Update Interval of DLL

DLL Name Number of Versions Mean Update Interval

MSVCR71.DLL 1 -
MSVCRT.DLL 4 1 year 1 month

MSCOMCTL.OCX 5 1 year 8 months

tiple versions, a library sometimes requires multiple models.
Therefore, the number of models to be generated is calcu-
lated by the product of the number of libraries, the num-
ber of versions for each library, and the number of handled
protocol/file formats. For detection, since ROPminer iden-
tifies the protocol/file format of the target data, it can deter-
mine which model to use from the viewpoint of data format.
Also, ROPminer can identify a gadget library when it in-
spects some data formats as shown in Sect. 3.4.3. It can also
determine from the viewpoint of the gadget library. Thus,
only the number of versions affects the inspection times.

We estimated the number of libraries and versions that
ROPminer requires. Since the libraries that attackers can
adopt depend on the target application, we assume that the
exploit target is 32-bit MS Office 2007, 2010, and 2013,
which are major applications as targets. First, we searched
the libraries commonly used for ROP chains on the target
applications. Second, we investigated the number of differ-
ent versions for each library. Then we collected all of them
from the National Software Reference Library (NSRL) [18]
and third-party file-sharing services, for obtaining the mean
update intervals. The NSRL is a project which collects soft-
ware from various sources and gathers file profiles com-
puted from the software.

Table 6 shows the number of versions and the
mean update intervals of the well-used libraries. We
searched and collected all versions of the three libraries:
MSVCR71.DLL, MSVCRT.DLL, and MSCOMCTL.OCX.
MSVCR71.DLL has only one version because the target ap-
plications use the same one located in C:\Program Files\
Microsoft Office\Office1X\ADDINS. MSVCRT.DLL
and MSCOMCTL.OCX have several versions for each in
the target applications. However, due to the update interval
(e.g., several libraries are updated immediately after the pre-
vious update), we found that the versions one has to focus
on are two or three for each of them. In addition, if one
knows the period in which the updates are already done on
the systems to defend, the libraries may be more limited.

6.6 Concept Drift and Update Interval of Model

We also discuss the concept drift of the models of ROPminer
and the required intervals of updates. The concept drift of
the ROP chain detection occurs depending on the update of
the library used for the ROP gadgets; therefore, the model
update is required regarding it. As shown in Table 6, library
updates are rarely done (less than once a year) on the three
libraries that are used for ROP chains. Also, a model update
may be required when the structure of the ROP chains used
in the wild is changed drastically, e.g., the appearance of
ROP chains with a large amount of junk code. However,

1488
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

we did not observe such a ROP chain while we conduct the
experiments. Hence, the model-update frequency is not so
high with ROPminer.

6.7 Applicability to Other Code Re-use Attacks

We discuss the applicability of ROPminer to other code
re-use attacks, jump-oriented programming (JOP) [19]
and call-oriented programming (COP) [20]. Although
ROPminer mainly focuses on ROP in this paper, it is also
effective against JOP and COP depending on its implemen-
tation. JOP has a characteristic region named a “dispatch
table”, which contains a number of JOP gadget addresses
used for the JOP attack. Since the table includes the consec-
utive characteristic byte sequence of ROP gadget addresses,
i.e., addr[1-4], ROPminer can detect the existence of the ta-
ble. COP chains have a similar architecture except for the
absence of the dispatcher gadget. Due to the existence of
a region in which COP gadgets are stored (“COP gadget
table”), ROPminer can detect the COP chains embedded
in the data. Note that a ROPminer operator has to collect
the JOP/COP gadgets that end with indirect jump/call in-
structions for creating a JOP/COP gadget dictionary, instead
of gathering ROP gadgets. We also note that our method
should learn models of ROP, JOP, and COP separately for
better detection because transition probabilities of them may
slightly differ from each other.

6.8 Robustness against Evasion

Here, we first consider the possible evasion methods against
general byte-level static detection of ROP chains. Then,
we discuss the robustness of ROPminer against the evasive
attacks.

6.8.1 Evasion Method

Since static ROP detection is generally based on the byte
pattern in the ROP components and the sequence pattern
of the ROP components, two evasion methods that change
these patterns are possible.

Three possible evasion methods that change the byte
pattern are considered as follows. The first is that attackers
use other ROP gadget addresses, e.g., addresses that are not
seen in existing ROP chains in the wild. The second is to
change constant values within a range that does not harm
the intended behavior. The third is to change the junk code
to arbitrary values.

We considered two evasion methods that change the
sequence pattern. The first is to dynamically change the
alignment of ROP chains. ROP chains in 32-bit envi-
ronments generally have 4-byte alignment; therefore cor-
rupting the alignment is sometimes evasive against several
static ROP detection methods that assume that the chains
are aligned. Figure 13 describes an example of align-
ment corruption. In the figure, attack gadgets indicate that
the gadgets are for executing arbitrary code of attackers,

Fig. 13 Alignment corruption attacks

whereas evasive gadgets are used for corrupting the align-
ment. As you can see in the figure, the gadget of the RET
0x0001 instruction can cause a one-byte increase in the
stack pointer, which shifts and corrupts the alignment. This
evasion method can bypass several existing detection meth-
ods such as n-ROPdetector [7] and STROP [8]. The second
is to change the sparseness of the ROP gadget addresses in
a ROP chain. Since ROP chains used in the wild generally
contain the minimum amount of required junk code, ROP
gadget addresses are located densely. If attackers leverage
the gadgets of RET 0xXXXX (big two-byte value) and pack
much junk code into the generated space, the ROP chains
contain much sparser ROP gadget addresses. This method
can also evade several detection methods.

6.8.2 Robustness of ROPminer

ROPminer is robust against the evasion methods that change
the byte pattern of ROP addresses because it takes account
of all the byte patterns available for ROP gadget addresses as
described in Sect. 3.3.2. The evasion that changes the junk
code to arbitrary code is considered to be almost ineffective
against ROPminer. Since our method assumes that the junk
code contains random bytes and has few characteristics by
nature, changing it does not significantly harm the detection
accuracy.

The evasion by changing the constant values is possibly
effective; however, there is a limitation in that a certain num-
ber of constants cannot be changed. This is because plenty
of static symbol constants have been defined by Windows
APIs. For example, if one wants to enable write and exe-
cute access to a memory region with the VirtualProtect API,
0x00000040 (PAGE EXECUTE READWRITE) is neces-
sary for the argument. Moreover, several constants that are
important for ROP attacks cannot take fully arbitrary values
dependent on OSes. For instance, address values taken by
memory allocation and memory protection APIs on Linux
have to be a multiple of the page size (the size is typically
0x1000); therefore, the values will be 0xXXXXX000. Due
to these limitations, evading detection by ROPminer on the
basis of byte pattern changing is difficult.

The method of corrupting the alignment is ineffec-
tive against ROPminer since ROPminer uses byte-wise

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1489

HMMs and does not assume aligned ROP chains. That is,
ROPminer can comprehend ROP components even if the
alignment is corrupted; thus, it is robust against align-
ment corruption attacks. The only method that might evade
ROPminer is changing the sparseness of the ROP gadget ad-
dresses. Since ROPminer is based on the transition probabil-
ity between ROP components, much sparser ROP gadget ad-
dresses have different transition probabilities from learned
malicious data in the wild. This may cause false negatives.
However, detection is possible if ROPminer can learn the
transition probabilities of the sparser ROP chains because
a false negative is just a problem caused by inappropriate
transition probabilities. Moreover, sparse ROP chains are
difficult to construct due to the limitation of vulnerabilities.
Locating sparse ROP chains requires a vulnerability that al-
lows attackers to use a large buffer. As such vulnerabilities
are rarely seen in the wild, this attack may be negligible.

6.9 Labeling of Training Data

Since ROPminer requires labeled data for training, an op-
erator of ROPminer has to attach labels to malicious data
(which are usually collected in the wild). We provide
three ways to do this: manual labeling, dynamic detection-
assisted labeling, and taint-based automatic labeling. Al-
though manually making labeled data requires some efforts
of a ROPminer operator, one may decrease the cost by using
this system.

6.9.1 Manual Labeling

Manual labeling is done by pattern matching of known ROP
gadget addresses. Therefore, we first collect all valid gad-
get addresses from non-ASLR libraries frequently used by
attackers by utilizing gadget exploration. Then, the regions
that include the gadget addresses are extracted from a mali-
cious file. If the instruction sequence corresponding to the
gadget addresses is also valid as attack code, the gadget ad-
dress label is attached to the gadget addresses. In addition,
the constant value label is attached to the data used in the
instruction sequence and junk code label to the rest in the
region.

6.9.2 Dynamic Detection-Assisted Labeling

Dynamic detection-assisted labeling uses existing
dynamic-based ROP attack detection systems such as
ROPdefender [21] and EMET [22], which raise an excep-
tion when the ROP attack is detected, as well as a debug-
ger. We first prepare the environment which is vulnerable
to the malicious files for training. This may require several
environments because which OSs and applications are vul-
nerable to the exploitation are sometimes ambiguous. Then
attach the application to the debugger and open the mali-
cious file. Since the debugger catches an exception caused
by the detection system, the debugger stops around the be-
ginning of the ROP chain. Thus, an operator can use the

information to analyze the ROP chain.

6.9.3 Taint-Based Automatic Labeling

Taint-based automated labeling is designed by using a dy-
namic taint analysis system. In the system, taint tags are
attached to the target file (e.g., document file or pcap file)
using a disk taint mechanism. While opening the file with
a corresponding application, the taint tags are propagated
even when the ROP chains embedded in the file are exe-
cuted. Based on the taint tags, we label the file with the
following rules:

• If the data with taint tags are contained in the instruc-
tion pointer register, the source of the data is labeled as
gadget addresses.
• If the data with taint tags are used as arguments of an

API, the source of the data is labeled as constant values.
• If the data between the first and last gadget addresses

do not have any label after labeling by the above rules,
the data are labeled as junk code.
• If the data have no taint tag and no label, the data are

labeled as data.

Note that a vulnerable environment to the malicious input is
required because the system is based on dynamic analysis
and needs successful ROP attacks for labeling. By using the
taint-based automatic labeling system, we believe operators
can decrease their efforts in terms of labeling if they have
files that are already known as malicious.

6.10 Practical Applicability

As shown in Sect. 5, ROPminer has a 0.03 FPR which seems
relatively high for realistic deployment, despite its high
TPR. Therefore, we assume that ROPminer is used as a filter
on networks to make use of these characteristics. The filter
we suppose is located before dynamic analysis sandboxes
and narrows down the files which are input to the sand-
boxes. Only the files detected as malicious by the filter are
input to the sandboxes. Since analysis by generic sandboxes
consumes much more time than that by ROPminer, the pre-
filtering of ROPminer can accelerate the whole analysis pro-
cess. Moreover, sandboxes can re-inspect false positives of
ROPminer; therefore this application style can compensate
for the shortcoming (false positives) of ROPminer.

7. Other Related Work

7.1 ROP Detection by Dynamic Analysis

Since Shacham et al. proposed ROP [1], [6], a number
of studies that dynamically detect ROP have been made.
ROPdefender [21] and ROP Monitor [23] are proposed
methods that adopt control-flow integrity (CFI). DROP [24]
employs rule-based detection based on the size of exe-
cuted gadgets. However, Göktaş et al. [25] proved that

1490
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

attackers can succeed with ROP attacks even under size-
based detection. Several randomization based measures are
also proposed. Shuffler [26] proposes a method of contin-
uously randomizing the memory space in a short interval
to make JIT-ROP ineffective. Code shredding [27] extends
ASLR to the byte granularity randomization of program
code location. Return address protection (RAP) [28] pro-
vides defense by encrypting the return addresses on a stack.
ROPMEMU [29] offers a method for analyzing sophisti-
cated ROP chains on memory by leveraging multi-path exe-
cution. EigenROP [30] is similar to ROPminer in that it uses
statistical learning for detection. The difference is that it is
based on microarchitecture-independent run-time features.

Since these methods are mostly dynamic-based and
host-based countermeasures, they are not suitable for the se-
curity measures at the entrance of an organization’s network,
which requires detection methods with high throughput.

7.2 Other Attack Code Detection

Gu et al. [31] provided a system which first takes a virtual
memory snapshot of the target process, followed by detect-
ing the shellcode in it based on emulation and malicious sys-
tem call identification. Polychronakis et al. [32] proposed
a method that detects shellcode based on emulation and
runtime heuristics such as kernel32.dll resolution, process
memory scanning, and SEH-based GetPC. SHELLOS [33]
is a system that leverages hardware virtualization to effi-
ciently and accurately detect shellcode by directly execut-
ing instruction sequences on the CPU. Iwamoto et al. [34]
proposed a method for detecting shellcode in malicious
documents based on entropy calculation and emulation.
OfficeMalScanner [35] is a major tool that can detect shell-
code by checking for the existence of the well-known
heuristics that shellcode employs.

These methods are similar to ours in that they inspect
data files or data streams for extracting embedded attack
code. However, since there are a lot of differences between
ROP chains and shellcode, their scopes and approaches are
different from ours.

7.3 Byte-Level Malicious File Detection

Static-based byte-level ROP chain detection in files is a sub-
set of byte-level malicious file detection. Therefore, we pro-
vide several studies below.

Tabish et al. [36] proposed a method that can detect
malware without signatures. The method divides the byte-
level contents of the target file into 1KB blocks. Then, it ex-
tracts a set of statistical features computed on the N-gram of
each block and classifies them as malicious or benign using
a decision tree with boosting. If the portion of blocks classi-
fied as malicious exceeds a threshold, the file is also classi-
fied as malicious. Since the main purpose of this method is
not detecting ROP-based malicious files but detecting mal-
ware, it is not designed to be aware of ROP chains. Be-
cause general ROP chains are less than 1KB, just one or

two blocks of the target file turns to malicious by the exis-
tence of a ROP chain with this method. Therefore, detect-
ing ROP-based malicious files by the method is sometimes
difficult because the portion of malicious blocks does not
increase much. Note that some ROP-based malicious files
using heap spraying has much larger ROP chains; thus, they
can be detected by the method.

Smutz et al. [37] proposed a method of randomizing
contents and encodings in a file, which is inspired by ASLR.
This can prevent a certain rate of exploits from execution.
This approach is quite different from ROPminer in that it
does not focus on detecting attack code; therefore it should
be used together.

8. Conclusion

In this paper, we proposed a method that statically de-
tects return-oriented programming (ROP) chains in mali-
cious data. Our method generates two hidden Markov mod-
els (HMMs) and detects the ROP chains by conducting a
likelihood ratio test considering the ROP Chain Integrity
(RCI). We implemented a system called ROPminer which
is based on our method for evaluating its accuracy and per-
formance. Experimental results suggest that our method can
detect ROP-based malicious data with no false negatives and
few false positives at high throughput. Improving the learn-
ing method may be our possible future work.

References

[1] H. Shacham, “The geometry of innocent flesh on the bone: Re-
turn-into-libc without function calls (on the x86),” Proc. 14th ACM
Conference on Computer and Communications Security (CCS ’07),
pp.552–561, ACM, 2007.

[2] Sophos, “Office exploit generators.” https://www.sophos.com/en-
us/medialibrary/PDFs/technical%20papers/sophos-office-exploit-
generators-szappanos.pdf. (accessed: 2020-01-07).

[3] McAfee, “Threadkit exploit kit.” https://www.mcafee.com/
enterprise/ja-jp/threat-center/threat-landscape-dashboard/exploit-
kits-details.threadkit-exploit-kit.html. (accessed: 2020-01-07).

[4] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E.P. Markatos,
“Combining static and dynamic analysis for the detection of mali-
cious documents,” Proc. Fourth European Workshop on System Se-
curity (EUROSEC ’11), pp.1–6, ACM, 2011.

[5] B. Stancill, K.Z. Snow, N. Otterness, F. Monrose, L. Davi, and A.-R.
Sadeghi, “Check my profile: Leveraging static analysis for fast and
accurate detection of rop gadgets,” Lecture Notes in Computer Sci-
ence, vol.8145 (Proc. 16th International Symposium on Research in
Attacks, Intrusions, and Defenses (RAID ’13)), pp.62–81, Springer,
2013.

[6] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-ori-
ented programming: Systems, languages, and applications,” ACM
Transactions on Information and System Security (TISSEC), vol.15,
no.1, pp.1–34, 2012.

[7] Y. Tanaka and A. Goto, “n-ropdetector: Proposal of a method
to detect the rop attack code on the network,” Proc. 2014 Work-
shop on Cyber Security Analytics, Intelligence and Automation
(SafeConfig ’14), pp.33–36, ACM, 2014.

[8] C. YoungHan and L. DongHoon, “Strop: Static approach for de-
tection of return-oriented programming attack in network,” IEICE
Trans. Commun., vol.E98-B, no.1, pp.242–251, 2015.

[9] C. Jämthagen, L. Karlsson, P. Stankovski, and M. Hell, “eavesrop:

http://dx.doi.org/10.1145/1315245.1315313
http://dx.doi.org/10.1145/1972551.1972555
http://dx.doi.org/10.1007/978-3-642-41284-4_4
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1145/2665936.2665937
http://dx.doi.org/10.1587/transcom.e98.b.242
http://dx.doi.org/10.1007/978-3-319-13257-0_25

USUI et al.: ROPMINER: LEARNING-BASED STATIC DETECTION OF ROP CHAIN CONSIDERING LINKABILITY OF ROP GADGETS
1491

Listening for rop payloads in data streams,” Lecture Notes in Com-
puter Science, vol.8783 (Proc. 17th International Conference on In-
formation Security (ISC ’14)), pp.413–424, Springer, 2014.

[10] K.Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization,” Proc. 2013 IEEE
Symposium on Security and Privacy (SP ’13), pp.574–588, IEEE,
2013.

[11] Microsoft, “Vmmap.” https://docs.microsoft.com/en-us/
sysinternals/downloads/vmmap. (accessed: 2019-11-19).

[12] L.R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. IEEE, vol.77, no.2,
pp.257–286, IEEE, 1989.

[13] H. Li and B. Sun, “Attacking interoperability: An ole edition,”
Blackhat USA briefings 2015, https://www.blackhat.com/docs/us-
15/materials/us-15-Li-Attacking-Interoperability-An-OLE-Edition.
pdf. (accessed: 2017-03-21).

[14] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing sci-
ence to digital forensics with standardized forensic corpora,” digital
investigation, vol.6, pp.S2–S11, Elsevier, 2009.

[15] Microsoft Azure, “Bing search apis.” https://azure.microsoft.com/
en-us/services/cognitive-services/search/. (accessed: 2017-03-28).

[16] VirusTotal, “Virustotal.” https://www.virustotal.com/. (accessed:
2017-03-09).

[17] Solar-Designer, “ “Return-to-libc” attack.” Bugtraq. Aug. 1997.
[18] National Institute of Standards and Technology, “National software

reference library.” https://www.nist.gov/software-quality-group/
national-software-reference-library-nsrl. (accessed: 2017-08-09).

[19] T. Bletsch, X. Jiang, V.W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: a new class of code-reuse attack,” Proc. 6th ACM Sym-
posium on Information, Computer and Communications Security
(ASIACCS ’11), pp.30–40, ACM, 2011.

[20] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking mod-
ern defenses,” Proc. 23rd USENIX Security Symposium (USENIX
Security ’14), pp.385–399, USENIX Association, 2014.

[21] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detec-
tion tool to defend against return-oriented programming attacks,”
Proc. 6th ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS ’11), pp.40–51, ACM, 2011.

[22] Microsoft, “Emet.” https://support.microsoft.com/en-us/help/
2458544/the-enhanced-mitigation-experience-toolkit. (accessed:
2019-08-29).

[23] P. Chen, X. Xing, H. Han, B. Mao, and L. Xie, “Efficient detection of
the return-oriented programming malicious code,” Lecture Notes in
Computer Science, vol.6503 (Proc. 6th International Conference on
Information Systems Security (ICISS ’10)), pp.140–155, Springer,
2010.

[24] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “Drop:
Detecting return-oriented programming malicious code,” Lecture
Notes in Computer Science, vol.5905 (Proc. 5th International Con-
ference on Information Systems Security (ICISS ’09)), pp.163–177,
Springer, 2009.

[25] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G.
Portokalidis, “Size does matter: Why using gadget-chain length to
prevent code-reuse attacks is hard,” Proc. 23rd USENIX Security
Symposium (USENIX Security ’14), pp.417–432, USENIX Associ-
ation, 2014.

[26] D. Williams-King, G. Gobieski, K. Williams-King, J.P. Blake, X.
Yuan, P. Colp, M. Zheng, V.P. Kemerlis, J. Yang, and W. Aiello,
“Shuffler: Fast and deployable continuous code re-randomization,”
Proc. 12th USENIX conference on Operating Systems Design and
Implementation (OSDI ’16), pp.367–382, USENIX Association,
2016.

[27] E. Shioji, Y. Kawakoya, M. Iwamura, and T. Hariu, “Code shred-
ding: byte-granular randomization of program layout for detect-
ing code-reuse attacks,” Proc. 28th Annual Computer Security
Applications Conference (ACSAC ’12), pp.309–318, ACM, 2012.

[28] PaX Team, “Rap: Rip rop,” Hacker to Hacker Conference (H2HC)
12th Edition, https://pax.grsecurity.net/docs/PaXTeam-H2HC15-
RAP-RIP-ROP.pdf. (accessed: 2017-03-21).

[29] M. Graziano, D. Balzarotti, and A. Zidouemba, “Ropmemu: A
framework for the analysis of complex code-reuse attacks,” Proc.
11th ACM Asia Conference on Computer and Communications Se-
curity (ASIACCS ’16), pp.47–58, ACM, 2016.

[30] M. Elsabagh, D. Barbará, D. Fleck, and A. Stavrou, “Detecting rop
with statistical learning of program characteristics,” Proc. Seventh
ACM Conference on Data and Application Security and Privacy
(CODA ’17), pp.219–226, ACM, 2017.

[31] B. Gu, X. Bai, Z. Yang, A.C. Champion, and D. Xuan, “Mali-
cious shellcode detection with virtual memory snapshots,” Proc.
29th IEEE Conference on Computer Communications (INFOCOM
’10), pp.974–982, IEEE, 2010.

[32] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos, “Com-
prehensive shellcode detection using runtime heuristics,” Proc. 26th
Annual Computer Security Applications Conference (ACSAC ’10),
pp.287–296, ACM, 2010.

[33] K.Z. Snow, S. Krishnan, F. Monrose, and N. Provos, “Shellos: En-
abling fast detection and forensic analysis of code injection attacks,”
Proc. 21st USENIX Security Symposium (USENIX Security ’11),
pp.183–200, USENIX Association, 2011.

[34] K. Iwamoto and K. Wasaki, “A method for shellcode extraction-
from malicious document files using entropy and emulation,” In-
ternational Journal of Engineering and Technology, vol.8, no.2,
pp.101–106, 2016.

[35] F. Boldewin, “Analyzing msoffice malware with officemalscan-
ner.” http://www.reconstructer.org/code/OfficeMalScanner.zip. (ac-
cessed: 2016-01-15).

[36] S.M. Tabish, M.Z. Shafiq, and M. Farooq, “Malware detection using
statistical analysis of byte-level file content,” Proc. ACM SIGKDD
Workshop on CyberSecurity and Intelligence Informatics (CSI-KPD
’09), pp.23–31, ACM, 2009.

[37] C. Smutz and A. Stavrou, “Preventing exploits in microsoft office
documents through content randomization,” Lecture Notes in Com-
puter Science, vol.9404 (18th International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID ’15)), pp.225–246,
Springer, 2015.

Toshinori Usui received his B.A. degree in
environment and information studies from Keio
University and M.S. degree in information sci-
ence and technology from The University of
Tokyo, Japan in 2012 and 2015, respectively.
He is currently a Ph.D. student in the Depart-
ment of Information and Communication Engi-
neering, The University of Tokyo. Since join-
ing the Nippon Telegraph and Telephone Cor-
poration (NTT) in 2015, he has been engaged in
research and development on malware analysis

and detection. He is currently with NTT Secure Platform Laboratories,
where he is engaged in the Cyber Security Project.

http://dx.doi.org/10.1007/978-3-319-13257-0_25
http://dx.doi.org/10.1109/sp.2013.45
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1016/j.diin.2009.06.016
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/1966913.1966920
http://dx.doi.org/10.1007/978-3-642-17714-9_11
http://dx.doi.org/10.1007/978-3-642-10772-6_13
http://dx.doi.org/10.1145/2420950.2420996
http://dx.doi.org/10.1145/2897845.2897894
http://dx.doi.org/10.1145/3029806.3029812
http://dx.doi.org/10.1109/infcom.2010.5461950
http://dx.doi.org/10.1145/1920261.1920305
http://dx.doi.org/10.7763/ijet.2016.v6.866
http://dx.doi.org/10.1145/1599272.1599278
http://dx.doi.org/10.1007/978-3-319-26362-5_11

1492
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Tomonori Ikuse received his M.E. from
Nara Institute of Science and Technology in
2012. He joined NTT in 2012. He has been en-
gaged in research and development of malware
analysis technologies. From 2016 to 2019, he
was engaged in security log analysis at the Secu-
rity Operation Center of NTT Security (Japan)
KK.

Yuto Otsuki received his B.E. degree
from College of Information Science and En-
gineering, Ritsumeikan University in 2011, and
his M.E. degree from Graduate School of Sci-
ence and Engineering, Ritsumeikan University
in 2013. He also received his D.Eng. de-
gree from Graduate School of Information Sci-
ence and Engineering, Ritsumeikan University
in 2016. From 2016 to 2019, he was engaged in
research of malware analysis and digital foren-
sics at NTT Secure Platform Laboratories. He is

now with NTT Security (Japan) KK.

Yuhei Kawakoya received his B.E. and
M.S. in science and engineering from Waseda
University in 2003 and 2005, respectively. He
has been engaged in R&D since 2005 on com-
puter security. From 2013 to 2016, he was en-
gaged in R&D of NTT Innovation Institute, Inc.
as a software engineer. He is a member of IPSJ
and IEICE.

Makoto Iwamura received his B.E., M.E.,
and D.Eng. in science and engineering from
Waseda University, Tokyo, in 2000, 2002, and
2012, respectively. He joined NTT in 2002. He
is currently with NTT Secure Platform Labora-
tories, where he is engaged in the Cyber Secu-
rity Project. His research interests include re-
verse engineering, vulnerability discovery, and
malware analysis.

Jun Miyoshi received his B.E. and M.E. de-
grees in system science from Kyoto University
in 1993 and 1995, respectively. Since joining
NTT in 1995, he has been researching and de-
veloping network security technologies. From
2011 to 2016, he was engaged in R&D strategy
management of NTT Secure Platform Laborato-
ries. Now he is a research group leader of the
Cyber Security Project in the Laboratories. He
is a member of IEICE.

Kanta Matsuura received his Ph.D.
degree in electronics from the University of
Tokyo in 1997. He is currently a Professor
of Institute of Industrial Science at the Univer-
sity of Tokyo. From March 2000 to March
2001, he was a visiting scholar at University of
Cambridge. His research interests include cryp-
tography, computer/network security, and secu-
rity management such as security economics.
He was an Associated Editor of IPSJ Journal
(2001–2005) and IEICE Transactions on Com-

munications (2005–2008). He was Editor-in-Chief of Security Manage-
ment (2008–2012), and is an Editorial-Board member of Design, Codes,
and Cryptography (2010-present). He is a fellow of IPSJ, and a senior
member of IEEE, ACM, and IEICE. He is a Vice President of JSSM (Japan
Society of Security Management) (2016-present).

