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SUMMARY The outcome of document clustering depends on the
scheme used to assign a weight to each term in a document. While recent
works have tried to use distributions related to class to enhance the discrim-
ination ability. It is worth exploring whether a deviation approach or an
entropy approach is more effective. This paper presents a comparison be-
tween deviation-based distribution and entropy-based distribution as con-
straints in term weighting. In addition, their potential combinations are in-
vestigated to find optimal solutions in guiding the clustering process. In the
experiments, the seeded k-means method is used for clustering, and the per-
formances of deviation-based, entropy-based, and hybrid approaches, are
analyzed using two English and one Thai text datasets. The result showed
that the deviation-based distribution outperformed the entropy-based dis-
tribution, and a suitable combination of these distributions increases the
clustering accuracy by 10%.
key words: term weighting, deviation-based weight, entropy-based weight,
in-collection intra-class and inter-class information, k-means document
clustering

1. Introduction

Term weighting is a potential tool to guide/control a process
and to improve classification (supervised learning) [1], [2]
or clustering performance (unsupervised learning) [3], by
assigning higher weights to more important terms. In the
vector space model, term weighting can help to select in-
formative terms/words and exclude common terms/words in
order to construct a vector for a document. The traditional
term weighting depends only on term frequency in the doc-
ument and the inverse number of training documents that
contain this term [4]. Instead of blind grouping, cluster-
ing can be extended to exploit constraints during the clus-
tering process. Previously, the concept of controlled unsu-
pervised learning has been studied by several works as a
more specific task called constrained clustering [5]–[8]. In
constrained clustering, the background knowledge or con-
straint can be in the form of either the labeled data (di-
rect usage of class labels) [8], the instance-level constraint
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(must-link or cannot-link sets) [5], [9], or the cluster-level
constraint (cluster size, lower/upper bounds on the radii,
etc.) [10], [11]. However, most existing constrained meth-
ods ignore the effect of attributes (features) on the represen-
tation of each datum on the space (vector space model). As
an exploration of attribute-level (feature-level) constraints
in the clustering process, Schmidt et al. [12] proposed to use
specific attribute values to control whether instances may or
may not be assigned to the same group. The concept of the
approach is to induce clusters of binary instances that sat-
isfy constraints on the attribute level. They also showed
how the well-established instance-level constraints, must-
link and cannot-link, can be adapted to the attribute level. In
this approach, rather than using instance-level constraints,
they used information encoded in the form of characteristics
of attributes that such instances hold. Although, this work
seems an early work on attribute-level constraints, it handles
only binary attributes.

In the past, for the classification task, some work used
learning to weight for classification [33] and some applied
the attribute-level constraints which are non-binary to im-
prove classification performance. These works used differ-
ent class-related statistics for weighting terms, such as chi-
square, information gain, and gain ratio. Statistical confi-
dence intervals can be used to guide clustering with such
prior knowledge in the form of statistics. Two statistical
approaches; namely the deviation approach [13], [14] and
the entropy approach [15], were used to enhance discrim-
ination with class information. For the former, Lertnatee
and Theeramunkong [13] reported that using a term distri-
bution (SD, CSD, and ICSD) in term weighting helped im-
prove the accuracy of centroid-based categorization. The
latter is to utilize probability, rather than distribution, to
strengthen discrimination. Recently, Chai et al. (2016) [16]
have applied the weighting coefficients, namely RELIEF, I-
RELIEF, and B-LM2FW, to describe the relevant character-
istics of different term/features. However, most works on
these approaches focused on classification, not clustering.
Some researchers suggested a combined term weighting to
avoid bias from a single source of information [17]. While
most works on term weighting focused on classification, it
is still an open question on which statistical approaches are
suitable for unsupervised learning, like the clustering task.

Based on the above background, this paper presents a
method to improve the seeded k-means clustering by uti-
lizing distribution term weighting as constraints for con-
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trolling/guiding the process of clustering documents. Three
types of the statistics, that is, in-collection, intra-class, and
inter-class distributions, are used as term weighing, to ex-
press the behavioral of categories. Two schemes; alterna-
tively deviation and entropy, are used to assign an appropri-
ate weight to each term. Their performances are compared
and analyzed. Even our previous work [18] first proposed
utilization of deviation and entropy as term weighting for
seeded k-means clustering, the investigation was done in a
small scale and only preliminary experiments are conducted.
In this paper, we further study the effect of deviation- and
entropy-based term weighting in the quality of seeded k-
means clustering, in terms of geo-mean of accuracy and
f -measure, using three text datasets, i.e., two English and
one Thai texts. The combination of deviation- and entropy-
based term weightings is also explored. The rest of this
paper is organized as follows. Section 2 describes previ-
ous works related to the distribution-based term weighting
scheme using class information. In Sect. 3, the deviation-
and entropy-based term weighting as well as their combined
model, are presented. The document clustering using the
proposed weights is given in Sect. 4. Section 5 provides the
experimented settings and the performance measurement. In
Sect. 6, the experimental results and error analysis are dis-
cussed. Finally, the discussion and conclusion are given in
Sect. 7.

2. Related Works

This section describes existing works on term weighting that
use class information, such as term distribution in a class
or among classes, to improve performance. In the past, as
the simplest approach, the inverse class frequency (ICF) was
introduced to extend the conventional TFIDF with class in-
formation for text classification. Ren and Sohrab [19] in-
troduced a so-called class-indexing-based term weighting
approach with the inverse class frequency (ICF) function
and a new inverse class space density frequency (ICSδF),
to improve classification. The ICF and ICSδF was shown to
help to emphasize or prefer words that occur only in a few
classes, while it ignores words that appear in all classes.

Besides ICF, some previous works applied other sta-
tistical methods, particularly term distribution, to use class
information for classification. Such approaches can be clas-
sified into two types: deviation- and entropy-based term
weightings [13], [14], [20]. Some weighting methods used
deviation-based distributions obtained from a set of labeled
data to reflect the importance of a term in a certain class [21].
As a fuzzy approach, Lo et al. [22] proposed an objective
weighting model based on the maximum deviation, and then
integrated the interval number and distance function into the
main structure to handle the uncertain information. Fat-
tah [23] used the term weighting based on class density to
reflect the relative importance of a certain term in a certain
class. Most methods just measured the distribution of a term
in a certain class relative to the whole documents in a class,
but Lertnattee and Theeramunkong [13] proposed an im-

provement in the term weighting method that also addresses
the deviations related to classes. They also applied the term
distribution weighting scheme to adjust the weights of the
terms that follow the collection, inter-class, and intra-class
characteristics to improve classification. This term weight-
ing technique is used to find distinguishing terms, and then
to promote a specific term and/or to demote general terms.

Besides deviation, entropy is an alternative to the use
of class information. In general, entropy is a measure of
uncertainty or randomness. The higher the entropy of an
object, the more uncertain the object’s state is. Nigam et
al. [24] proposed an approach to use the maximum entropy
to measure the importance level of a term by estimating the
constraints on the distribution of the class variable given
to the document for text classification. As an alternative
to the deviation-based approach, entropy-based weighting
schemes can be used to improve the feature selection. Be-
longing to this approach, REMI used a robust measure of
feature quality, called rank entropy, to compute the uncer-
tainty in monotonic classification [20], [25]. Similarly, FS-
JMIE applied a joint maximal information entropy method
between features and class to define a metric for the effi-
ciency of a feature subset evaluation [26]. Fragos et al. [27]
extended the maximum entropy modeling with χ2 to reduce
the dimensionality of data and improve feature weighting.
As a more recent work, Wu et al. [28] developed entropy
to measure term distribution and term bias to control over-
weighting and under-weighting. These methods presented
three regularization techniques: (1) add-one smoothing for
handling singular terms, (2) sublinear scaling and (3) bias
term for shrinking the ratios between term weights. As a
more specific topic, Lee et al. (2017) [29] showed how the
entropy of the sentiments in the review texts characterized
their influence and bias on the relationship between online
word-of-mouth (WOM) and product sales.

3. Deviation- and Entropy-Based Distribution Term
Weightings

This section describes deviation- and entropy-based dis-
tribution and their combination. To this end, the for-
mulation of term weighting is shown as follows. Let
D = {d1, d2, . . . , d|D|} be a set of |D| documents, T =

{t1, t2, . . . , t|T |} be a set of |T | terms, and a weight can
be given to each term tn in a document dm. The most
commonly-used term weighting is term frequency (tf) and
inverse document frequency (idf). Although there exist sev-
eral variants of term frequency of the term tn in the doc-
ument dm, one of the most popular settings is the norm-1
term frequency denoted by ntfmn as shown in Eq. (1).

ntfmn =
tfmn∑|T |

s=1 tfms

(1)

where tfmn is the frequency of the n-th term in the m-th doc-
ument. On the other hand, the inverse document frequency
is often used to reduce effect of common terms that occur
in most documents, such as articles or prepositions. The
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definition of the inverse document frequency of the term tn,
denoted by idfn, can be defined as follows.

idfn = log
( |D|
1 + |Dn|

)
(2)

Dn = {d|d ∈ D ∧ in(tn, d)} (3)

where in(tn, d) is the Boolean function representing the ex-
istence of the term tn in the document d, Dn is the set of
documents that include the term tn, and |Dn| is the number
of documents in Dn.

3.1 Deviation-Based Term Weighting (DTW)

The standard deviation (SD) is a statistic that measures the
dispersion of data values in a dataset, relative to its mean
and is calculated as the square root of the variance. By this
property, it is possible to use the SD in frequencies (occur-
rences) of a term occurring in a document in the document
collection, the SD in frequencies of a term occurring in a
class in the class system, and the SD in frequencies of a
term occurring in a document in the focused class, for dif-
ferentiate specific term and general terms. A term with a
high standard deviation in its occurrences may be consid-
ered as more significant. It is also possible to consider the
class-based deviation. Following the principles in [13], an
important terms, i.e. terms that should be assigned with a
high weight, tend to have the following properties.

• In-collection deviation: An important term (or word)
tends to occur in a specific group of documents and
they should not appear frequently in all documents in
the whole collection.
• Intra-class deviation: An important term (or word)

for a specific class, should occur almost equally in most
documents in that class.
• Inter-class deviation: An important term (or word)

should appear in a certain class and much fewer in other
classes.

Although such properties were used in several works related
to classification such as [13], [30], [31], it can be easily ap-
plied for clustering as follows. Let C = {c1, c2, . . . , c|C|} be
a set of |C| clusters, then Ck = {d | d is a document that

belongs to cluster ck}, where
|C|⋃
i=1

Ci = D and Ci ∩ C j = ∅.
A value F (i.e., false) is assigned to 〈di, ck〉 when document
di does not belong to cluster ck. Mathematically, the above
three properties, i.e., the in-collection, inter-class, and intra-
class distributions can be expressed by the standard devia-
tion, inter-class standard deviation, and average class stan-
dard deviation as follows.

(1) In-collection Standard Deviation (sdn):

sdn =

√√√
1
|D|

|D|∑
m=1

(
tfmn − μn

)2
(4)

μn =
1
|D|

|D|∑
m=1

tfmn (5)

The sdn represents the standard deviation of a term tn, calcu-
lated from its frequencies, denoted by tfmn, in all documents
dm in the whole collection, and μn is the average term fre-
quency of the term tn in the documents in the collection.
Note that this standard deviation is independent of a class
but it relates to frequencies of the term in documents in the
whole collection. While a term with a low sdn is supposed
to be an important term, it implies two situations: (1) when
the term rarely appears, and (2) when the occurrences of the
term are nearly equal in all documents for the whole col-
lection. In contrast, a term with a high sdn is trivial since
it appears often or its frequencies are various among docu-
ments in the collection.

(2) Average Class Standard Deviation (acsdn):

acsdn =
1
|C|

|C|∑
k

√
1
|ck |
∑

dm∈ ck

(
tfmn − μnk

)2
(6)

The acsdn represents the average standard deviation of the
occurrences of the term tn, with respect to all classes (ck ∈
C). Implicitly, the acsd is an intra-class factor. A term has
a low acsd when it is stable in its term frequencies among
documents in the class. Then it is likely to be the represen-
tative of the class. Two typical situations are (1) when the
occurrence of terms is nearly equal, and (2) when it rarely
occurs for all documents in that class.

(3) Inter-class Standard Deviation (icsdn):

icsdn =

√√√
1
|C|

|C|∑
n=1

(
μnk − μn′

)2
(7)

μn′ =
1
|C|

|C|∑
k=1

μnk (8)

μnk =
1
|ck |
∑

dm∈ ck

tfmn (9)

The icsdn is the standard deviation of the tn’s average fre-
quencies of the class μnk in Eq. (9). A term with a high icsd
implies that the term occurs with dominantly different fre-
quencies among the classes. Note that this factor, icsd, of a
term is independent of classes.

3.2 Entropy-Based Term Weighting (ETW)

In the past, several works [15], [24], [26], [32] applied the
entropy to identify important terms since the entropy is de-
rived from the logarithm of a probability distribution and it
can be used as an indicator for impurity level. Naturally an
important term will have low entropy, that is low ambiguity
in its probability to occur in a class or its probability to oc-
cur in the other classes. Similar to the above deviation-based
term weighting, an important terms that have a high weight,
should satisfy the following properties related to entropy.

• In-collection entropy: A term (or word) is consid-
ered to be prominent when there is somewhat balance
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between the number of documents which include that
term, and the number of documents which do not in-
clude that term.
• Intra-class entropy: A term (or word) is considered

to be prominent when there is somewhat imbalance be-
tween the number of documents in a class which in-
clude that term, and the number of documents in the
class which do not include that term.
• Inter-class entropy: A term (or word) is considered

to be prominent when there is somewhat imbalance be-
tween the number of documents in all classes which
include that term, and the number of documents in all
classes which do not include that term.

The formal definition of term distribution weighting is or-
ganized by entropy based on in-collection, inter-class, and
intra-class as follows:

(1) In-collection Term Entropy (en)

The in-collection entropy of a term tn, denoted by en, can be
defined based on the probability that the document includes
or does not include the term as shown below.

en = −p(Dn)(log2 p(Dn) − p(Dn)(log2 p(Dn) (10)

where Dn is the set of documents that include the term tn, Dn

is the set of documents that do not include the term tn, and
p(Dn)+ p(Dn) = 1.0. Intuitively, a term with somewhat high
value for this type of entropy can be considered an impor-
tant term. A term that either occurs in only few documents
or occurs in almost all documents, will have a low entropy
and it implies that such term is a not good representative
terms/feature for classification or clustering.

(2) Class-based Term Conditional Entropy ccen):

ccen =

|C|∑
k=1

p(ck)
(
− p(Dn|ck)log2 p(Dn|ck)

− p(Dn|ck)log2 p(Dn|ck)
)

(11)

= −
|C|∑

k=1

p(Dn, ck)log2 p(Dn|ck)

−
|C|∑

k=1

p(Dn, ck)log2 p(Dn|ck) (12)

The ccen represents the summation of the entropy of the
intra-class distribution on how likely documents in the class
k includes the term tn. That is, the summation of the en-
tropy of binary distribution of the conditional probabilities;
p(Dn|ck) and p(Dn|ck) over the cluster set (corresponding to
the class set) C. A term with a low cce value tends to be sig-
nificant since the term either occurs in only few documents
in the class, or occurs in almost all documents in the class
and it implies that such term is a good representative feature
for classification or clustering.

(3) Class-based Term Entropy (cen):

cen = −
|C|∑

k=1

p(Dn, ck)log2 p(Dn, ck)

−
|C|∑

k=1

p(Dn, ck)log2 p(Dn, ck) (13)

The cen represents the summation of the entropy of the inter-
class distribution on how likely documents in the class k in-
cludes the term tn. That is, the summation of the entropy of
distribution of the joint probabilities; p(Dn, ck) and p(Dn, ck)
over the cluster set (corresponding to the class set) C. Note
that
∑|C|

k=1(p(Dn, ck) + p(Dn, ck)) = 1. A term with a low ce
value tends to be significant since the term has high variety
in its distribution among classes.

3.3 Combined Term Weighting Scheme

This section presents the combined term weighting methods
using the element-wise multiplication (
) with two weight-
ing methods of three distributions, i.e., in-collection, inter-
class, and intra-class deviation as well as in-collection, inter-
class, and intra-class entropy. In this work, the weight of the
term tn in a document dm, denoted by twmn, is designed to
be in the form shown in Eq. (14).

twmn = ntfmn × idfn × dtwα1
n × etwα2

n (14)

dtwn = sdβ1
n × acsdβ2

n × icsdβ3
n (15)

etwn = eβ4
n × cceβ5

n × ceβ6
n (16)

where α1 and α2 are the exponents or powers (weights) for
dtw and etw; β1, β2, . . ., β6 are the exponents for sd, acsd,
icsd, e, cce, and ce, respectively. In other words, the term
weighting scheme (tw) is the multiplication of the normal-
ized term frequency (ntfmn), the inverse document frequency
(idfn), deviation-based term weights (DTW), and entropy-
based term weights (ETW), where the DTW (dtwn) and
ETW (etwn) components are weighted by α1 and α2, as
shown in Eq. (14). The dtwn are the multiplication of sd,
acsd, and icsd weighted by β1, β2, and β3, respectively. The
etwn are the multiplication of e, cce, and ce weighted by
β4, β5, and β6, respectively. Eq. (15) shows how distribution
term weighting factors, i.e., sd, acsd, and icsd, contributes
to weight a term (tn). In the same way, Eq. (16) presents
how entropy-based term weighting factors, i.e. e, cce, and
ce, affects to weight a term (tn). The weightings βi’s in the
Eq. (15)-(16) can be set to positive values, zero values, or
negative values, making the six factors (sd, acsd, icsd, e,
cce, and ce) perform as a promoter, an inert, or a demotor.

4. Seeded k-Means Clustering Using Term Weighting

This section presents our framework of seeded k-means
clustering where distribution statistics are extracted from the
small set of C-classed labeled documents and used as con-
straints for clustering the large set of unlabeled documents
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Fig. 1 The framework of seeded k-means clustering where distribution
statistics are extracted and used as constraints for clustering.

Fig. 2 Example of term distribution weighting based on class informa-
tion.

into C
′

groups, as shown in Fig. 1. Here, two types of the
distribution statistics for term weighting are those shown in
Sect. 3; i.e., deviation-based and entropy-based statistics.

In this figure, the unlabeled documents are encoded
by conventional term weighting enhanced with distribution-
based term weighting. At this stage, one can expect that ap-
propriate term weighting will guide us to obtain good clus-
ters of the unlabeled documents. In the past, commonly-
used term weightings include binary frequency (bf), term
frequency (tf), inverse document frequency (idf), and their
combinations, such as tf × idf. In this work, we propose the
term weighting scheme as constraints in the clustering pro-
cess. The weights are calculated from the relatively small
set of C-classed labeled documents The weights are of three
types; i.e., in-collection, inter-class and intra-class statistics.
The weighting are used to cluster the unlabeled data into
C
′

groups. Figure 2 shows the clustering process that con-
tains three main processes: (1) constructing a term vector
for a term in each class, (2) calculating distribution term
weighting, and (3) re-assembling the vector space model. In
the step 1, the corpus is transformed into the bag-of-words,
based on the vector space model. The vector space is mod-
eled based on tf or ntf×idf, where tf represents the frequency
of term features in each document, ntf represents normalize
term, as shown in Eq. (1), and idf represents to settle the
general words, as shown in Eq. (2). This example model
can also be used in two groups, i.e., a vector of the labeled
dataset based on term frequency tf (the upper part of the

process) and the unlabeled vector based on term frequency
with inverse document frequency (the lower part of process).
In step 2, tf is used to encode the corpus for the distribu-
tion term weighting scheme. This term weighting encoding
scheme is based on deviation-based and entropy-based ap-
proaches as mentioned in Eqs. (4)−(9) and Eqs. (10)−(13),
respectively. In step 3, tf × idf is used as the based con-
ventional term weighting for combining various distribution
term weighting schemes from step 2. Note that the distribu-
tion term weighting is used for re-weighting the vector space
model which is the formal definition of the term distribu-
tion weighting scheme. The conventional seeded k-means
method assumes spherical-shaped clusters when the cosine
similarity is applied for grouping documents.

5. Experiment Settings: Datasets and Measurements

5.1 Datasets

To evaluate the effectiveness of the proposed method three
text datasets, i.e., Amazon, WebKB, and Thai-reform, are
used for experiments, where the first two datasets are En-
glish corpora and the last one is a Thai corpus. Ama-
zon is a collection of reviews, taken from Book, DVD,
and Electronics domains from Amazon. WebKB con-
sists of HTML-based texts and 4 popular items (student,
faculty, course, and project) are selected from 7 classes,
to categorize the data followed by 5 universities. Note
that in this dataset 4161 documents from 4199 pages are
selected that do not have only the structure of a web
page. Thai-reform is the Thai comment which consists of
3,000 documents obtained from the Thai-reform webpage
(http://static.thaireform.org/). However, some comments are
in short sentences, while some are in lengthy detail, so 1,000
documents of each in the 3 largest classes are randomly se-
lected. In the initial stage, we perform a pre-process of the
two English language corpora, for example, we have trans-
formed characters in the text into the lower case and then
applied the Porter’s Stemmer to make the words change to
their root form. In practice, we omit the terms the frequency
of which are less than 0.001 percent of the total number
of words in the collection. Thes characteristics of three
datasets (corpora) are summarized in Table 1.

5.2 Measurement

Our proposed clustering method is evaluated in three crite-
ria: accuracy, f -measure, and geo-mean. Accuracy (A) is
defined as the ratio of the number of documents assigned
with their correct classes in all classes (T P1 + T P2 + . . . +
T P|C|), compared with the total number of documents (|D|),
where T Pi stands for the true positive of the class i and the
number of classes is |C|.

A =

|C|∑
k=1

T Pk

|D| (17)
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The f -measure is defined in two viewpoints, which are used
to evaluate the effectiveness of indict per-class and all-class
new-points. The average effectiveness of a classifier (Fi) is
from pre-class trials. The macro-average f -measure (F̄) is
used for measuring all-class performance, which is calcu-
lated by averaging the measurement over every class ( fk) on
a testing dataset. Furthermore, the macro-average is calcu-
lated for the performance on all classes, regardless of the
size (or length) of the class.

F̄ =

|C|∑
k=1

fk

|C| (18)

fk =
2 × rk × pk

rk + pk
(19)

Table 1 Characteristics of the experimental datasets.

Dataset Amazon WebKB Thai-reform

General Information
Language English English Thai
No. of docs 6000 4161 3000
No. of classes 3 5 3
No. doc./class 2000each 221/237/249 1000 each

/304/3150
No. of distinct terms 7614 6527 3549
redAvg. of distinct terms/doc 51.52 79.64 31.98
Avg. of distinct terms/class 6041.67 4072.20 2545.67

(6817/6933/ (3535/3380/ (2001/2835/
4375) 3204/3807/6435) 2801)

Distribution Information
No. of terms in a single class 205/312/233 16/23/10/24/936 161/384/301

No. of terms in the intersection 2722/252/243 0/3/6/366/4/3 203/863/252
of two classes 335/1/312/496

No. of terms in the intersection 3647 0/0/189/2/211/291/ 1385
of three classes 0/146/281/206

No. of terms in the intersection NA 0/169/357/267/215 NA
of four classes

No. of terms in the intersection NA 1658 NA
of five classes

Table 2 Cluster quality in the form of geo-mean (accuracy, f -measure), when seeded k-means clus-
tering with a single term distribution factor is used. (Panel I for deviation-based and Panel II for entropy-
based)

TW Amazon WebKB Thai-reform Avg.

FW 
 DW

ntf × idf - - 90.35 (90.35,90.35) 68.51 (71.27,65.84) 93.01 (92.90,93.12) 83.96 (84.84,83.10)

Panel I : Deviation-based weighting
ntf × idf / sd 90.99 (91.00,90.98) 87.30 (90.41,84.30) 93.16 (93.10,93.22) 90.48 (91.50,89.50)
ntf × idf × sd 72.44 (71.13,73.77) 31.41 (38.61,25.55) 54.04 (52.70,55.42) 52.63 (54.15,51.58)
ntf × idf / acsd 91.71 (91.72,91.70) 83.77 (86.82,80.84) 94.05 (94.00,94.10) 89.84 (90.85,88.88)
ntf × idf × acsd 71.12 (70.23,72.02) 31.42 (37.94,26.02) 50.11 (49.47,50.75) 50.88 (52.55,49.60)
ntf × idf / icsd 52.68 (53.60,51.78) 63.15 (65.31,61.06) 70.62 (71.57,69.69) 62.15 (63.49,60.84)
ntf × idf × icsd 75.12 (74.07,76.18) 67.98 (64.20,71.99) 78.05 (76.30,79.84) 73.72 (71.52,76.00)

Panel II : Entropy-based weighting
ntf × idf / e 88.09 (88.10,88.08) 79.40 (84.45,74.66) 71.37 (69.60,73.18) 79.62 (80.72,78.64)
ntf × idf × e 69.68 (69.17,70.20) 31.14 (35.21,27.54) 83.39 (82.57,84.23) 61.40 (62.32,60.66)
ntf × idf / cce 88.56 (88.57,88.55) 78.94 (81.45,76.51) 75.74 (74.13,77.39) 81.08 (81.38,80.82)
ntf × idf × cce 64.45 (64.08,64.81) 30.01 (34.00,26.49) 74.28 (72.97,75.62) 56.25 (57.02,55.64)
ntf × idf / ce 91.15 (91.15,91.14) 75.71 (77.29,74.16) 93.49 (93.40,93.58) 86.78 (87.28,86.29)
ntf × idf × ce 89.03 (89.02,89.04) 57.10 (61.25,53.23) 91.50 (91.33,91.67) 79.21 (80.53,77.98)

TW = FW
DW where TW = term weight, FW = frequency-based weight, DW = distribution-based weight.

 is an element-wise multiplication.

rk =
T Pk

T Pk + FPk
(20)

pk =
T Pk

T Pk + FNk
(21)

where rk is recall and pk is precision of the class k, calcu-
lated from T Pk (true positive of the class k) and FPk (false
positive of the class k). While the measure A is used to eval-
uate all classes as one set, F̄ assess the performance of each
class separately and then combine the performances by av-
eraging. These two measures have different evaluation prop-
erties and they can be complementary to each other. There-
fore, their geometric mean (GM) is proposed to be the uni-
fied measure.

GM =
√

A × F̄ (22)

6. Experiment Results

6.1 Effect of Single Weighting Scheme

This first experiment surveys the outcome of an individ-
ual distribution factor on clustering quality by adding a
term distribution-based weight (DW) one by one, where
the weight is a deviation-based factor (either sd, acsd, or
icsd) or an entropy-based factor (either e, cce, or ce) to the
frequency-based weight (FW) as shown in Table 2. Note
that the frequency-based weight(FW) is ntf × idf schemes,
the norm-1 of term frequency (ntf) defined by Eq. (1). The
quality of cluster evaluation is performed on seeded cluster-
ing with five-fold cross validation, where 80% of the data is
used for training of distribution term weighting calculation
and remaining 20% is used for testing. The result shows the
distribution term factor of predefined classes that are corre-
lated to the effectiveness of factors. The Avg. column shows
the average performance of three datasets. It is used to in-
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vestigate the direction of the exponent of each term. The
bold numbers in the table indicate the maximum geo-mean
of accuracy and the f -measure value for the degree of expo-
nent in each distribution term factor.

In the deviation-based model, ‘acsd’, and ‘sd’ are
likely to be a demoter (/), that is they have better perfor-
mance when they are assigned with a negative degree of ex-
ponent as shown in Table 2 (Panel I). On the other hand,
‘icsd’ tends to act as a promoter (×) since its positive de-
gree of exponent outperforms its negative version. More-
over, all entropy-based types (‘e’, ‘cce’, ‘ce’) work well as a
demotor (/) since they perform well when they are assigned
with a negative degree of exponent, as shown in Table 2
(Panel II). One more observation is that clustering quality
is quite different between demoter (/) and promoter (×) for
the deviation-based weighting. The most influential weight
is ‘acsd’, where the gap between its demotor version and
its promotor version is quite large, i.e. 20.59% for Ama-
zon, 52.35% for WebKB, and 43.94% for Thai-reform. The
second most influential weight is ‘sd’ with a big gap, i.e.,
18.54% for Amazon, 55.89% for WebKB, and 39.12% for
Thai-reform. The least influential weight is ‘icsd’, which
has a relatively smaller gap between its promotor version
and its demotor version, i.e., 22.44% for Amazon, 4.83%
for WebKB, and 7.43% for Thai-reform). The result implies
that the deviation-based weighting affects clustering qual-
ity in the order of intra-class, collection, and inter-class fac-
tors. Similar to the deviation-based weighting, the entropy-
based weighting can be used to improve clustering qual-
ity, the result shows that ‘cce’ and ‘ce’ should act as a de-
moter. Although ‘e’ seems work as a demotor but the re-
versed affect is observed for the Thai-reform dataset. Recall
Table 1, we can find that the number of class-overlapping
terms in the Thai-reform dataset is lower, compared to the
other two datasets, that is 76.16% (2,703 from 3,549 terms)
while that of Amazon is 90.15% (6,864 in 7,614), and that
of WebKB is 84.54% (5,518 in 6,527). Therefore, this dif-
ferent distribution may affect the role of the in-collection
term entropy (‘e’). Moreover, the Amazon has 2,722 two-
class overlapping words and 3,647 three-class overlapping
words (see the “Distribution Information” section in Ta-
ble 1). That is, the Amazon includes a lot of overlapping
words, compared to the other two. The result implies that
the entropy-based weighting affects clustering quality in the
order of intra-class, collection, and inter-class factors. In
other words, due to the comparison between deviation-based
and entropy-based weight, both intra-class factor and col-
lection class factors have the best effect on deviation-based
weight scheme. In contrast, the inter-class factor is preferred
on entropy-based weight more than deviation-based weight.
Although, some single term distribution factors can slightly
be better than the base-line (ntf × idf), but on average unfor-
tunately some factors can not be improved or may not show
the obvious direction. Therefore, to overcome this issue, the
cross multiple distribution factors in the same distribution
are shown in Table 3 and Table 4.

6.2 Effect of Multiple Weighting Scheme

This second experiments are explored with 5 different expo-
nents (−1.0, −0.5, 0, 0.5, 1.0) giving produce 125 patterns
for each weighting based type. The results confirm the role
of each factor (i.e., sd, acsd, icsd, e, cce, and ce) giving the
same solution of analysis for single-factor effects. More-
over, the combination pattern gives better performance than
using a single factor. There exist 24 patterns for standard
deviation-based and 13 patterns for entropy-based models in
seeded k-means clustering compared with the base-line. For
the standard deviation-based experiment (best term distri-
bution on average) the appropriate exponents are −0.5, −1,
and 0.5 for ‘sd’, ‘acsd’, and ‘icsd’, respectively. For the
entropy-based model, the appropriate exponents are 1, −1,
and −1 for ‘e’, ‘cce’, and ‘ce’, respectively. The dataset with
a short sentence (Thai-reform) tends to have a high variance
between classes. Note that the short sentence has a high
percentage between the number of terms in a single class
and the number of distinct terms in a document, as shown
in Table 1. The variance value between a class can be ar-
ranged from high to low as Thai-reform, Amazon, and We-
bKB, respectively. One more observation is that the best-10
of ranking used the high degree of the exponent to promote
or demote term in order as ‘acsd’, ‘sd’, ‘icsd’, respectively.
It follows the result of a survey in Table 2 that the class in-
formation can be represented by a weight term preferred on
acsd. It is clear that in our proposed scheme both deviation-
and entropy- based term weighting give the effect that fol-
lows the quality of a class information. The suggested com-
binations (DTW1, ETW1) are shown with a detailed perfor-
mance comparison with four combined weighting schemes
in the next following experiment.

6.3 Combined Weighting Scheme

This third experiment investigates the effect of combined
weighting that follows the same five-fold cross-validation
of the previous experiment (Table 3 and Table 4). The
two styles of distribution-based factors are attached to the
frequency-based component (FW) that is the adaptive dis-
tribution term weighting on deviation-based (DTW) and
entropy-based (ETW) models. To evaluate this combined
weighting scheme two sub-experiments are performed. The
first sub-experiment investigates the effect of both best dis-
tribution term weightings (i.e., DTW1 and ETW1) with fre-
quency term weighting (ntf×idf) on both sides of promoter
(for multiplier) and demoter (for divider). The second sub-
experiment is performed to analyze the effect of combined
six distribution weighting i.e., sd, acsd, icsd, e, cce, and ce
on different exponent of term weighting.

6.3.1 Analysis on Paired Comparative Study (DTW vs.
ETW)

The experiments explored various different exponents to
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Table 3 Analysis of adaptive distribution term based on deviation (validation (panel I) best-10 and
(panel II) worst-10), by seeded k-means with multiple distribution factors.

Method
Exponent of DW

Amazon WebKB Thai-reform Avg.
sd acsd icsd

B-DTW24 0 0 0 90.35 (90.35,90.35) 68.51 (71.27,65.84) 93.01 (92.90,93.12) 83.96 (84.84,83.10)

Panel I : Best-10
DTW1 -0.5 -1 0.5 93.63 (93.63,93.62) 91.16 (93.29,89.08) 95.56 (95.53,95.59) 93.45 (94.15,92.76)
DTW2 0.5 -1 0 93.21 (93.22,93.21) 91.49 (93.58,89.46) 95.23 (95.20,95.27) 93.31 (94.00,92.65)
DTW3 -1 -0.5 0.5 93.38 (93.38,93.38) 90.37 (92.67,88.12) 95.40 (95.37,95.43) 93.05 (93.81,92.31)
DTW4 0 -0.5 0 92.63 (92.63,92.62) 90.55 (92.91,88.25) 95.11 (95.07,95.15) 92.76 (93.54,92.01)
DTW5 0 -1 0.5 92.74 (92.73,92.74) 89.55 (91.88,87.28) 94.07 (94.00,94.13) 92.12 (92.87,91.38)
DTW6 -0.5 -0.5 0.5 92.28 (92.28,92.28) 88.98 (91.47,86.55) 93.87 (93.80,93.95) 91.71 (92.52,90.93)
DTW7 -1 0 0.5 91.88 (91.88,91.88) 88.68 (91.25,86.18) 94.00 (93.93,94.07) 91.52 (92.35,90.71)
DTW8 -1 -1 1 92.66 (92.67,92.66) 86.71 (89.33,84.17) 94.47 (94.43,94.50) 91.28 (92.14,90.44)
DTW9 -0.5 -0.5 0 91.51 (91.52,91.50) 87.96 (90.77,85.24) 93.58 (93.53,93.64) 91.02 (91.94,90.13)
DTW10 -0.5 0 0 92.06 (92.07,92.05) 85.71 (88.30,83.21) 94.55 (94.50,94.60) 90.77 (91.62,89.95)

Panel II : Worst-10
DTW116 0.5 0.5 -1 36.47 (36.57,36.37) 35.68 (43.06,29.57) 63.07 (62.07,64.08) 45.07 (47.23,43.34)
DTW117 0.5 0.5 -0.5 39.49 (40.58,38.43) 27.48 (31.72,23.81) 67.26 (67.70,66.83) 44.74 (46.67,43.02)
DTW118 0 1 -1 36.31 (35.60,37.04) 33.07 (39.52,27.67) 61.85 (60.80,62.92) 43.74 (45.31,42.54)
DTW119 0 1 -0.5 38.50 (39.58,37.45) 26.89 (31.09,23.25) 62.12 (62.70,61.54) 42.50 (44.46,40.75)
DTW120 1 0.5 -1 35.95 (34.82,37.12) 26.66 (31.49,22.57) 50.69 (51.47,49.92) 37.77 (39.26,36.54)
DTW121 1 0.5 -0.5 38.19 (38.40,37.97) 29.70 (36.91,23.90) 45.07 (45.80,44.36) 37.65 (40.37,35.41)
DTW122 0.5 1 -1 35.26 (34.93,35.58) 27.35 (31.63,23.65) 50.03 (50.83,49.25) 37.55 (39.13,36.16)
DTW123 1 1 -0.5 38.35 (38.25,38.46) 28.40 (33.69,23.94) 42.91 (43.80,42.03) 36.55 (38.58,34.81)
DTW124 0.5 1 -0.5 38.10 (38.18,38.02) 28.40 (35.17,22.94) 42.94 (43.83,42.07) 36.48 (39.06,34.34)
DTW125 1 1 -1 34.89 (34.48,35.29) 27.55 (32.70,23.21) 42.18 (41.13,43.25) 34.87 (36.10,33.92)

Table 4 Analysis of adaptive distribution term based on entropy (validation (panel I) best-10 and
(panel II) worst-10), by seeded k-means with multiple distribution factors.

Method
Exponent of DW

Amazon WebKB Thai-reform Avg.
e cce ce

B-ETW13 0 0 0 90.35 (90.35,90.35) 68.51 (71.27,65.84) 93.01 (92.90,93.12) 83.96 (84.84,83.10)

Panel I : Best-10
ETW1 1 -1 -1 91.39 (91.38,91.40) 90.84 (93.37,88.38) 93.50 (93.34,93.67) 91.91 (92.70,91.15)
ETW2 1 -1 -0.5 91.07 (91.07,91.08) 90.48 (93.13,87.90) 91.87 (91.67,92.06) 91.14 (91.96,90.35)
ETW3 0.5 -0.5 -1 91.35 (91.35,91.35) 88.17 (91.01,85.42) 93.15 (93.03,93.27) 90.89 (91.80,90.01)
ETW4 1 -1 0 90.70 (90.68,90.71) 90.26 (92.98,87.61) 91.45 (91.23,91.68) 90.80 (91.63,90.00)
ETW5 1 -1 0.5 90.15 (90.13,90.17) 87.28 (89.75,84.89) 90.82 (90.57,91.07) 89.42 (90.15,88.71)
ETW6 0.5 -0.5 -0.5 91.04 (91.03,91.04) 81.14 (83.09,79.22) 92.87 (92.73,93.01) 88.35 (88.95,87.76)
ETW7 0.5 -0.5 0 90.47 (90.47,90.48) 78.75 (80.33,77.21) 92.45 (92.30,92.60) 87.22 (87.70,86.76)
ETW8 1 -1 1 89.27 (89.23,89.31) 81.64 (83.30,80.01) 90.11 (89.80,90.43) 87.01 (87.44,86.58)
ETW9 0 0 -1 91.15 (91.15,91.14) 75.71 (77.29,74.16) 93.49 (93.40,93.58) 86.78 (87.28,86.29)
ETW10 0 0 -0.5 90.67 (90.67,90.67) 73.51 (75.19,71.85) 93.27 (93.17,93.37) 85.82 (86.34,85.30)

Panel II : Worst-10
ETW116 0.5 1 0 57.05 (56.95,57.14) 28.68 (32.11,25.62) 67.90 (66.33,69.51) 51.21 (51.80,50.76)
ETW117 1 1 -1 53.90 (53.85,53.95) 28.37 (30.95,26.00) 70.67 (69.13,72.24) 50.98 (51.31,50.73)
ETW118 1 0.5 1 55.16 (55.10,55.22) 26.26 (29.03,23.76) 67.82 (66.23,69.44) 49.75 (50.12,49.47)
ETW119 0 1 1 59.37 (59.23,59.50) 29.12 (32.20,26.34) 60.64 (59.73,61.57) 49.71 (50.39,49.14)
ETW120 1 1 -0.5 52.96 (52.95,52.98) 26.44 (29.34,23.84) 65.59 (64.13,67.07) 48.33 (48.81,47.96)
ETW121 0.5 1 0.5 55.17 (55.12,55.23) 28.06 (31.22,25.23) 57.59 (56.57,58.63) 46.94 (47.64,46.36)
ETW122 1 1 0 51.83 (51.80,51.86) 27.04 (29.58,24.71) 58.46 (57.37,59.57) 45.78 (46.25,45.38)
ETW123 0.5 1 1 53.22 (53.18,53.26) 26.29 (28.48,24.28) 53.68 (53.20,54.16) 44.40 (44.95,43.90)
ETW124 1 1 0.5 50.56 (50.53,50.58) 27.15 (29.92,24.64) 53.73 (53.23,54.23) 43.81 (44.56,43.15)
ETW125 1 1 1 46.20 (46.25,46.15) 27.43 (30.61,24.57) 50.93 (50.53,51.33) 41.52 (42.46,40.68)

combine the two types of distribution term weighting
schemes, i.e., distribution-based, and entropy-based with
frequency-based term weighting. The best weighting of
each distribution term weighting (refer to Table 3 and Ta-
ble 4; DTW1 and ETW1) are investigated in place of the
comparison combined between various exponent values.
The exponent of each parameter (i.e., dtwn=α

1, etwn = α
2)

varies between -5 to 5 with a step size of 0.5 and the to-
tal possible combinations (paired of weighting) are 441.
In Fig. 3, each sub-figure shows the performance by aver-
age geo-mean of accuracy and f -measure when the positive
number of exponent (for promoter) in both of distribution
terms are affected for clustering quality. In the contrast, the
negative number of exponent (for demoter) in both of distri-
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Fig. 3 Effects of component size (α1, α2 by Eq. (14)) where paired
comparative studied (best deviation-based (DTW1) vs. best entropy-
based (ETW1) weighting), in term of average geo-mean of accuracy and
f−measure: (a) amazon, (b) webkb, (c) Thai-reform, and (d) all average.

bution terms are indicated for low clustering quality. How-
ever, Amazon and Thai-reform have slightly high clustering
performance, although ETW exponents are in negative side
and DTW exponents are in positive side. This means the

deviation-based distribution outperforms the entropy-based
distribution. For all datasets, the most best exponent is the
number one (α1 = 1, α2 =1) (i.e., 93.6% GM for all av-
erage, 93.65% GM for Amazon, 92.18% GM for WebKB,
and 93.50% GM for Thai-reform). Specially for Amazon,
there exist 8 patterns which have higher GM values more
than the overview of best exponent (α1 = 1, α2 = 1), when
DTW is in the range of 0.5-1 and the exponent of ETW is
in the range of 2-5. Here, the highest clustering quality is
93.89% GM, when α1 = 0.5 for DTW, and α2 = 3 for ETW.
Figure 3 (d) shows as the baseline to declare that both DTW
and ETW factors have best effect on promoting side. Es-
pecially, DTW can enhance the performance of clustering
process than ETW.

6.3.2 Analysis of All Combinations of Six Factors

While the results of the first and the second experiment sur-
vey the promoting/demoting role of six factors in DTW (re-
fer to Table 3) and ETW (refer to Table 4), respectively.
In the last experiment, the overall performance of a com-
bination of six factors is examined to investigate the optimal
combination of factors for discovering the threshold of com-
bined distribution term weighting. The exponent of each pa-
rameter (i.e., ‘sd’ = β1), ‘acsd’ = β2, ‘icsd’ = β3, ‘e’ = β4,
‘cce’ = β5, and ‘ce’ = β6) are varied between -1 and 1 where
step size of 0.5. The total combination is 15625. Table 5
shows the geo-mean of accuracy and f -measure values of
quality seeded k-means on the combination of six factors
of weighting; including, ‘sd’, ‘acsd’, and ‘icsd’ for DTW,
and ‘e’, ‘cce’, and ‘ce’ for ETW. Based on the average GM
on three datasets, Panel I shows the best-10 combination
(weighting) and Panel II shows the worst-10 combination
(weighting). The results implies that for six factors ‘acsd’,
‘cce’, and ‘ce’ work well as demoter due to most of best-10
weighting have negative exponent for them. In the contrast,
‘icsd’ and ‘e’ act as demoter since most of the combinations
have positive exponents and all of combination in the case
of ‘icsd’ have negative exponents. On the other hand, sd
works rather well on not promoting/demoting. Further, we
can conclude 2297 from 15625 combinations (weighting)
are superior to the baseline for the seeded k-means algo-
rithm. Finally, the best weighting to baseline is with a gap
of 10.35% GM (vary on 3.48 % GM for Amazon, 25.30%
GM for WebKB, and 2.20% GM for Thai-reform).

7. Discussion and Conclusion

This paper presented a method to improve seeded k-means
clustering using deviation- and entropy-based schemes on
term weightings. Both schemes utilized in-collection, intra-
class, and inter-class distribution as constraints to guide
clustering towards user intention. As the preliminary ex-
periments, we have investigated our method on three text
datasets, i.e., two English and one Thai texts. As the experi-
mental result on the deviation-based factors, we find out that
‘sd’ and ‘acsd’ are negative factors in term weighting (i.e.,
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Table 5 Analysis of adaptive distribution term based on deviation-based and entropy-based (valida-
tion (panel I) best-10 and (panel II) worst-10), by seeded k-means with multiple distribution factors.

Method
Exponent of DW

Amazon WebKB Thai-reform Avg.
sd acsd icsd e cce ce

B-TW2297 0 0 0 0 0 0 90.35 (90.35,90.35) 68.51 (71.27,65.84) 93.01 (92.90,93.12) 83.96 (84.84,83.10)

Panel I : Best-10
TW1 0.5 -1 0 1 -1 -0.5 93.83 (93.83,93.83) 93.81 (95.51,92.14) 95.30 (95.27,95.34) 94.31 (94.87,93.77)
TW2 0.5 -1 0 1 -1 -1 93.76 (93.77,93.76) 93.66 (95.39,91.97) 95.50 (95.47,95.53) 94.31 (94.88,93.75)
TW3 0.5 -1 0 0.5 -0.5 -0.5 93.58 (93.58,93.57) 93.12 (94.97,91.30) 95.60 (95.57,95.63) 94.10 (94.71,93.50)
TW4 0.5 -1 0 1 -1 0 93.65 (93.65,93.64) 93.44 (95.19,91.73) 95.20 (95.17,95.24) 94.10 (94.67,93.54)
TW5 0 -1 0.5 0.5 -1 -1 93.30 (93.30,93.29) 92.91 (94.83,91.02) 96.06 (96.03,96.08) 94.09 (94.72,93.46)
TW6 0 -1 0.5 0.5 -1 -0.5 93.46 (93.47,93.46) 92.88 (94.81,90.99) 95.92 (95.90,95.95) 94.09 (94.73,93.47)
TW7 0 -1 0.5 0.5 -1 0 93.53 (93.53,93.53) 92.84 (94.76,90.95) 95.89 (95.87,95.92) 94.09 (94.72,93.47)
TW8 0 -1 0.5 0.5 -1 0.5 93.68 (93.68,93.68) 92.61 (94.57,90.69) 95.83 (95.80,95.85) 94.04 (94.68,93.41)
TW9 0.5 -1 0 0.5 -0.5 -1 93.53 (93.53,93.52) 92.85 (94.76,90.98) 95.70 (95.67,95.72) 94.03 (94.65,93.41)
TW10 0 -1 0.5 0.5 -1 1 93.78 (93.78,93.78) 92.47 (94.45,90.54) 95.56 (95.53,95.59) 93.94 (94.59,93.30)

TW247 -0.5 -1 1 -0.5 0 -1 94.08 (94.08,94.08) 87.8 (90.31,85.37) 95.26 (95.23,95.29) 92.38 (93.21,91.58)

Panel II : Worst-10
TW15616 0.5 0.5 -1 1 1 -0.5 35.90 (35.83,36.11) 23.79 (25.65,22.06) 38.85 (39.63,38.08) 32.85 (33.70,32.08)
TW15617 0.5 0.5 -1 1 1 1 35.86 (35.55,36.82) 24.13 (25.79,22.59) 38.53 (39.30,37.78) 32.84 (33.55,32.40)
TW15618 0 1 -1 1 0 0 35.07 (34.88,35.64) 25.89 (28.77,23.30) 37.48 (38.00,36.97) 32.81 (33.88,31.97)
TW15619 1 0 -1 1 1 -0.5 35.44 (35.35,35.73) 23.94 (25.69,22.32) 39.06 (39.83,38.30) 32.81 (33.62,32.12)
TW15620 1 0.5 -1 0.5 0.5 1 35.05 (34.93,35.39) 25.02 (27.97,22.38) 38.33 (39.23,37.46) 32.80 (34.04,31.74)
TW15621 0.5 0.5 -1 1 0.5 1 35.42 (35.35,35.65) 24.08 (26.27,22.07) 38.87 (39.67,38.09) 32.79 (33.76,31.94)
TW15622 0 0.5 -1 1 1 -1 35.55 (35.35,36.17) 25.50 (28.65,22.69) 37.24 (38.10,36.39) 32.76 (34.03,31.75)
TW15623 -0.5 1 -1 1 1 -1 35.79 (35.58,36.41) 25.97 (28.60,23.57) 36.38 (37.47,35.33) 32.71 (33.88,31.77)
TW15624 0.5 0 -1 1 1 -1 35.76 (35.55,36.39) 24.81 (26.78,22.98) 37.31 (38.23,36.42) 32.63 (33.52,31.93)
TW15625 1 -0.5 -1 1 1 -1 35.32 (35.13,35.88) 24.53 (26.42,22.78) 37.72 (38.60,36.87) 32.52 (33.38,31.84)

demotor) but ‘icsd’ is a positive factor in term weighting
(i.e., promoter). As an alternative for the entropy-based fac-
tors, we find out that ‘e’ is negative factors in term weighting
(i.e., demotor) for using as single factor but ‘e’ is positive
factor (i.e., promoter) when combined with others. Morover,
‘cce’, and ‘ce’ are all negative factors in term weighting (i.e.,
demotor). The result shows that the deviation-based dis-
tribution outperformed the entropy-based distribution, and
a suitable combination of all distribution weights increases
the clustering accuracy by 10% (2.20% to 25.30%), com-
pared to the baseline, i.e., the pure frequency factor (FW:
ntf × idf). With the deviation- and entropy-based term
weighting, the reconstructed new vector has the potential to
control/guide the document clustering process towards ex-
pected results with consideration of term distribution and
ambiguity among classes. As our future work, we plan to
examine the proposed method on various text datasets to
check its validity in general context. Moreover, it is worth
incorporating dimensionality reduction into the framework
and investigating other clustering algorithms (such as hierar-
chical clustering, density-based clustering, grid-based clus-
tering, etc.) to examine the effectiveness of the deviation-
and entropy-based term weighting on clustering quality. We
also aim to apply the proposed term weighting on the deep
learning framework, which is a recent popular method.
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