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SUMMARY This work develops a system called CLAP that detects and
classifies “potentially unwanted applications” (PUAs) such as adware or
remote monitoring tools. Our approach leverages DNS queries made by
apps. Using a large sample of Android apps from third-party marketplaces,
we first reveal that DNS queries can provide useful information for detec-
tion and classification of PUAs. We then show that existing DNS blacklists
are limited when performing these tasks. Finally, we demonstrate that the
CLAP system performs with high accuracy.
key words: PUA, PUP, potentially unwanted, DNS query, classification

1. Introduction

Smartphone users are exposed to threats from “potentially
unwanted applications” (PUAs) [1]. Typically, PUA con-
ceals adware, browser toolbars, hacking tools, or remote
monitoring tools. Although these may offer certain bene-
fits to the user, they may also trigger “unwanted” behavior
such as location tracking. In contrast to malware, PUAs are
sometimes installed with the consent of the user, making it
challenging to determine whether a PUA should be removed
or whether the network access of the software should be
blocked. Little attention has been paid to the detection or
classification of PUAs, and they have generally been con-
sidered a subgroup of bad software.

Recently, however, the number of PUAs that trigger
alerts in network security systems has increased to a point
where their analysis overwhelms the capacity of incident re-
sponse teams. Since the team must focus on the malware
that presents more critical threats, there is a growing demand
for systems that can systematically distinguish PUAs from
malware and benign applications.

This study had two goals: firstly, it aims to develop a
method for distinguishing between PUAs and malware or
benign apps; secondly, it aims to develop a system for clas-
sifying different varieties of PUAs on the basis of their be-
havior. We focused on the Android platform as it allows the
user to install apps from third-party sources, making it vul-
nerable to a wider range of attacks than Apple iOS. Our ap-
proach leverages the Domain Name System (DNS) queries
that are used by apps. This approach has two advantages.
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Firstly, as DNS queries can be extracted using symbolic ex-
ecution or static/dynamic analysis, they are relatively easy
to analyze. DNS information is also more robust than other
features such as system calls. Secondly, as DNS can be used
to control network access, for example by DNS blocking,
the extracted information can also be used as a countermea-
sure against the threats presented by PUAs.

To develop the PUA classification system named CLAP
and evaluate its performance, we collected a large number
of Android apps from third-party marketplaces and built a
labeled dataset.

We first investigated the effectiveness of using DNS
queries in detecting and classifying PUAs. We used the
queries to classify apps into four categories: PUAs, mal-
ware, benign apps aimed at the Android, and PUAs aimed
at Windows. We also demonstrated the ineffectiveness of
existing DNS blacklists for this task. Our methodology was
shown to be capable of detecting and classifying PUAs with
high levels of accuracy.

Our key contributions are as follows:

• We built the first definitive labeled dataset that we
would share with the research community. The dataset
includes 5,340 PUAs that account for 237 of distinct
varieties. The dataset also includes 5,340 malware and
benign apps.
• We reveal that DNS queries are useful metrics for the

detection and classification of PUAs and for distin-
guishing between Android PUAs and Windows PUAs.
• We show that the existing DNS blacklists are limited in

detecting or classifying PUAs.
• We present a methodology for using DNS queries to

detect and classify PUAs and demonstrate that CLAP
performs with high levels of accuracy.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the dataset and the method-
ologies used for measurement and classification. In Sect. 3,
we present the measurement and classification results. Sec-
tion 4 discusses the limitations of the study and makes sug-
gestions for future work. Section 5 summarizes the related
studies. Our conclusions are given in Sect. 6.

2. Dataset and Methodology

In this section, we introduce our methodology for distin-
guishing PUAs, malware, and benign apps, and for classify-
ing PUAs into different varieties. Figure 1 shows the high-
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Fig. 1 Overview of CLAP and its evaluation flow.

Table 1 Dataset overview.

# of Android apps 453,687
collection period Jun. - Aug. 2016
# of PUA samples (varieties) 5,640 (237)
# of malware samples (varieties) 5,640 (393)
# of benign samples 5,640

# of Windows PUA samples (varieties) 5,640 (511)
collection period Jun. 2016

level overview of CLAP and the evaluation flow of classi-
fication; apps collection, measurement of similarity of ex-
tracted DNS queries and effectiveness of the existing black-
lists, and the classification method with the evaluation pro-
cess.

2.1 Dataset

Table 1 describes the dataset used in the study. 453,687 apps
were retrieved from a number of third-party Android mar-
ketplaces†, which were part of the dataset used in Ref. [2],
and were checked using VirusTotal [3]. These marketplaces
have huge user bases, and all of the collected apps were
free. The focus was placed on third-party marketplaces as
they have been shown to harbor approximately 10 times
more malicious apps than the official Google Play site [4].
Next, PUAs were identified by searching for certain key-
words (“pua”, “pup”, “adware”, “unwanted”, “ ad”, and
“/ad”), using VirusTotal. Here, “pup” stands for “potentially
unwanted program.” Even with the same detection name,
there are samples that perform different behaviors, so it is
necessary to prepare multiple samples with the same detec-
tion name to improve reliability. In this work, we counted
the distinct varieties that had samples larger than 10 in each
Anti Virus software (AV) of VirusTotal. As a result, the
ESET-NOD32 with the highest number of PUA varieties was
selected for the detection name of PUA and malware in this
paper. By randomly selecting 5% in each variety to pro-
vide at least 10 samples, we obtained 5,640 samples of 237
varieties. If PUAs, malware, and benign apps can be dis-
tinguished, they can be detected in smartphone communica-
tion. For this purpose, equivalent samples of malware and
benign apps were selected randomly.

We define “malware” as any software that has been
flagged by AV but did not contain the PUA keywords
and a “benign app” as any software that has not been
flagged by any AV. To enable other researchers to perform
the replication/extension of our study on Android PUA,

we will release the dataset to the research community at
https://nsl.cs.waseda.ac.jp/projects/clap/ with verifying user
identity. Additional 5,640 Windows PUAs were randomly
selected from public malware repositories†† by searching
PUA keywords. They were used to compare Windows PUAs
with Android PUAs.

2.2 DNS Query Extraction

To extract the fully qualified domain names (FQDNs) that
an Android app may access, a commercial tool was used.
This tool uses symbolic execution, giving a broader code
coverage, and static analysis of Dalvik byte-code to trace
the way in which data are propagated from function to func-
tion. From these analyses, we were able to obtain URLs and
extract FQDNs from them. In the case of Windows PUAs,
packet traces were collected through dynamic analysis us-
ing the Cuckoo sandbox [5], and DNS queries were then ex-
tracted from the packet traces using tshark, a command-line
tool of Wireshark.

2.3 Common FQDN Removal

Next, we built a list of domain-specific stopwords based
on benign apps, which we used this to remove common
FQDNs, by applying the document frequency (DF) ap-
proach that is widely used in the field of information re-
trieval. FQDNs with a higher DF were removed from the
apps, leaving FQDNs unique to the DNS queries generated
by the app. Lists were constructed for each R that identified
a portion of all apps, determined by the formula:

R =
DF(t)

N
,

where t is a candidate common FQDN, DF(t) represents the
number of apps with an observed DNS query for t, and N
represents the total number of apps. In the case of Windows
PUA, we eliminated common domains by matching with the
top 10k domains in Alexa [6], which ranks web traffic by

†https://www.alandroidnet.com/, http://appvn.com/android,
https://www.aptoide.com/, http://shouji.baidu.com/,
http://www.blackmart.us/, https://cafebazaar.ir/,
http://www.entumovil.cu/downloads/apps, http://www.getjar.com/,
http://www.mobogenie.com/, http://www.mobomarket.net/,
https://www.uptodown.com/android/, https://m.store.yandex.com/
††https://malwr.com/, http://malshare.com/, https://virusshare.

com/
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2.4 Measurement

DNS blacklisting is widely applied to detect or block com-
munication by malware. To measure the effectiveness of ex-
iting blacklists, we gathered publcly available blacklists and
matched the extracted FQDNs from Section 2.2 with them.
Note that the condition of the match is an exact match of
FQDN.

The set of domain names used to control applications
such as advertisement distribution will be characterized by
each PUA. We computed the similarity between the DNS
queries of two apps using the Jaccard similarity coefficient.
There are several other metrics that can measure the sim-
ilarity between two finite sets, e.g., Sørensen-Dice coeffi-
cient and Szymkiewicz-Simpson coefficient. Compared to
these metrics, the Jaccard coefficient is more suitable for
our objectives because it captures not only the number of
common elements but also the difference in the number of
elements,which is essential to our application. Given two
sets of DNS queries made by an app, X and Y , the Jaccard
similarity coefficient was derived as follows.

J(X,Y) =
| X ∩ Y |
| X ∪ Y | =

| X ∩ Y |
| X | + | Y | − | X ∩ Y |

0 ≤ J(X,Y) ≤ 1

If no common FQDNs were found, J(X,Y) was zero. If all
FQDNs were common to the two sets, J(X,Y) was one. The
Js between all combinations of PUA samples were com-
puted, and then the average value within each PUA variety
was calculated.

2.5 Classification

We randomly chose 10% of the PUAs, malware, and be-
nign apps for testing. The remaining samples were used for
training. Samples that did not query any FQDN were ex-
cluded from both the testing and training datasets, as they
fall outside the scope of CLAP. Duplicated DNS queries
within the same variety of PUA were also excluded from
the training data. The reduced sample sizes also reduced
the complexity of computing J. We then computed J for
the testing and training datasets. When the maximum value
of J had been obtained, we predicted the category and va-
riety from the training dataset for each testing item. We re-
peated these steps 10 times and used the average of each
metric to improve the reliability of evaluated results. As
a comprehensive evaluation metric, we computed the score
multiplied by the classification accuracy and the number of
test samples. Although detecting unknown PUAs is beyond
the scope of CLAP, we investigated the applicability of the
proposed method for unknown PUAs. Specifically, we ran-
domly sampled 90% of PUA varieties to use them for train-
ing as known PUAs) and used the rest of the PUA varieties
for testing as the unknown PUAs. The experiments were

performed in the same manner as described in the above
steps.

3. Experiments

We next conducted experiments to test the measurement and
classification systems introduced in Sects. 3.1 and 3.2.

3.1 Measurement Results

3.1.1 Comparative Evaluation

Table 2 shows the number of distinct FQDNs, the mean
number of queries per sample in each category, and the num-
ber of distinct FQDNs shared across categories. Android
PUAs and malware had a higher mean number of queries
per sample than the benign apps. Approximately 30% of the
distinct FQDNs were commonly found among Android cat-
egories. Only 18 common FQDNs were found between An-
droid PUAs and Windows PUAs, of which 11 were related
to Google searches, such as accounts.google.com, and seven
were related to a browser toolbar, market research, Amazon
S3, Facebook, two news websites, and example.com. In-
terestingly, queries for example.com that is reserved for use
documentation in RFC 6761 [7] were observed in 11 vari-
eties of Android PUA and one variety of Windows PUA.
We assumed that this FQDN was used to check accessibility
to the Internet or to debug a code in the app.

Table 2 also shows the efficacy of detection in each
category by matching the number of FQDNs with those on
publicly available blacklists. EasyList [8], one of the most
popular ad blockers, lists advertising-related keywords and
FQDNs, and ad server [9] lists only FQDNs. The malware
domain blacklist [10] is a project that attempts to prevent
malware and spyware from installing. Our results suggest
that these blacklists have only limited ability to detect An-
droid PUAs and Windows PUAs, or Android malware. Even
when a PUA or malware is detected by using these black-
lists, it is not an easy task for the incident response team
to attach appropriate priority to the infection, because only
very limited information is available from detection, for ex-
ample attackpage, malware, and phishing in the list of dns-
bh. Note that the 5,124 FQDNs of Android PUAs and 5,259
FQDNs of Android malware contain benign FQDNs, and
these benign FQDNs should not be blocked. Of the 96
FQDNs for (3) matched with EasyList, 32 were also found
in both (1) and (2), and these were probably false positives,
for example representing youtube.com, www.msn.com, or
similar sites.

3.1.2 Similarity of DNS Queries

Next, we investigated the similarity of DNS queries in each
variety of Android PUA. The results presented here are lim-
ited to the case in which R = 0.0020 as it achieved the
highest score multiplied by the classification accuracy and
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Table 2 DNS queries in each category and match with blacklists.

category mean # of queries # of distinct (1) (2) (3) (4) EasyList ad server dns-bh
per sample FQDN (of 13,620) (of 2,377) (of 33,302)

(1) Android PUA 34.4 5,124 n/a 1,780 1,563 18 79 10 0
(2) Android malware 37.2 5,259 1,780 n/a 1,498 21 65 7 0
(3) Android benign 23.7 9,502 1,563 1,498 n/a 22 96 10 0
(4) Windows PUA 5.3 635 18 21 22 n/a 5 1 9

Fig. 2 CDF of J within the same variety and between different varieties.
The horizontal axis shows the range of J and n/a indicates that no DNS
query was extracted from both target apps.

the number of test samples between varieties of PUA. Fig-
ure 2 shows the relationship between the range of com-
puted Js and the cumulative relative frequency. Note that
there were a total of 237 combinations for the same va-
riety and 27,966 for different varieties. As can be seen,
66.8% of the combinations of different varieties of Android
PUAs showed similarity of 0.0, and 97.3% showed sim-
ilarity less than 0.1. In terms of the similarity between
the same varieties, only 6.3% of the Android PUA vari-
eties demonstrated similarity of 0.0, 34.2% showed simi-
larity less than 0.1, and 65.8% showed similarity greater
than or equal to 0.1. The maximum J value for dif-
ferent varieties was 0.823. There were four varieties
for which the computed J for same varieties was greater
than 0.823: AdDisplay.Fictus.F, AdDisplay.Fictus.B, Ad-
Display.AirPush.H, and AdDisplay.Fictus.E. These varieties
are completely distinguished from different varieties, and
DNS queries are generally useful as metrics for classifying
each variety of PUAs.

3.2 Classification Results

3.2.1 Classification of PUAs, Malware, and Benign Apps

Figure 3 gives an example of the FQDNs and the effect of
common FQDN removal. Note that the top 100 examples of
common FQDNs to be used widely in Android apps when
R = 0.0020 are listed in Table 3. These were extracted in
a variant of Android/Adware.Viser.B, which is one of the
PUA varieties with the highest classification accuracy. In
Fig. 3, three FQDNs remain after common FQDN removal.
These FQDNs are common to vserv.mobi as the second level
domain. The domain is observed in 131 PUA samples, 15

Fig. 3 Example of FQDN extraction: a variant of Android/Adware.
Viser.B, and common FQDN removal.

malware samples, and six benign samples. Among these
152 samples, 105 samples are detected as the Viser family
of PUA. However, since the removed FQDNs such as ad-
mob.com and flurry.com are related to the mobile advertis-
ing company, there is a possibility that the common FQDN
may include an FQDN that represents the characteristic of a
specific PUA. We will discuss the issue of common FQDN
removal in Sect. 4. We also provide several examples of
FQDNs generated by each variety of PUA after removing
common FQDN in Table 4. The examples presented here
are limited to the varieties in which ACC is 100%, and the
number of samples is greater than 13. Due to space limita-
tion, we omitted “a variant of Android/” from the name of
PUA.

Table 5 shows the accuracy of the classification of
PUAs, malware, and benign apps. As expected, PUAs were
classified with 92.9% accuracy. Malware and benign apps
were also accurately classified (91.7% and 96.0%, respec-
tively). By choosing R for common FQDN removal and the
sample reduction procedures (Sect. 2.5), the mean number
of samples in each category decreased. For example, the
mean number of testing samples in PUAs was decreased
from 564 to 518.8, which means that 92 % of the testing
data remained for evaluation. Figure 4 shows the classifica-
tion accuracy, the rate of the mean number of testing sam-
ples, and the score for PUAs and malware with changes of R.
The rate of the mean number of testing samples is the rate of
the mean number of testing samples divided by 564, which
is 10% of each dataset. As with the results shown in 3.2.2,
we found the same tendency, i.e., a decreasing value of R
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Table 3 Top 100 examples of Common FQDNs (R = 0.0020).

schemas.android.com plus.google.com www.google.com googleads.g.doubleclick.net media.admob.com
www.google-analytics.com ssl.google-analytics.com www.googleapis.com play.google.com www.googletagmanager.com

www.facebook.com e.admob.com twitter.com market.android.com www.gstatic.com
graph.facebook.com csi.gstatic.com m.facebook.com badad.googleplex.com schema.org
accounts.google.com www.paypal.com api.facebook.com www.linkedin.com login.live.com

login.yahoo.com data.flurry.com facebook.com xmlpull.org www.w3.org
api.twitter.com www.youtube.com www.amazon.com a.admob.com app-measurement.com

maps.google.com settings.crashlytics.com e.crashlytics.com androidsdk.ads.mp.mydas.mobi cvt.mydas.mobi
ads.mp.mydas.mobi millennialmedia.com api.parse.com google.com www.startappexchange.com

i.w.inmobi.com d1byvlfiet2h9q.cloudfront.net www.dummy.com stream.twitter.com docs.google.com
twitter4j.org userstream.twitter.com maps.googleapis.com images.millennialmedia.com sitestream.twitter.com

git-wip-us.apache.org ad.flurry.com s3.amazonaws.com gdata.youtube.com xml.org
sites.google.com purl.org goo.gl ads.flurry.com adlog.flurry.com

pagead2.googlesyndication.com m.google.com schemas.xmlsoap.org cafebazaar.ir spreadsheets.google.com
alog.umeng.com alog.umeng.co ws.tapjoyads.com www.googleadservices.com www.example.com
www.umeng.com search.twitter.com my.mobfox.com www.andromo.com www.umeng.co

sdk-b.apptornado.com applift-b.apptornado.com applift-a.apptornado.com oc.umeng.com oc.umeng.co
xml.apache.org c.admob.com amazon-adsystem.com lp.mydas.mobi java.sun.com
ads.mopub.com sb-ssl.google.com r.admob.com mm.admob.com crashlytics.com

Table 4 Examples of FQDNs for Android PUAs (R = 0.0020).

PUA FQDN
AdDisplay.Dianru.A potentially unwanted ads.wapx.cn www.dianru.com mob.guohead.com

app.wapx.cn www.xabaoyi.com www.adview.cn
data.gfan.com www.guohead.com sns.whalecloud.com
api.dianru.com static.dianru.com show.lsense.cn
ads.lmmob.com cdn1.down.apk.gfan.com apitest.dianru.com
m.sc.hiapk.com

Leadbolt.C potentially unwanted wx3.lirr.org shadow01.yumenetworks.com lirrgcm.jelastic.servint.net
www.you lirrmessages.appspot.com api.sndcdn.com

cdn1.smartadserver.com android.bcfads.com thx.swelen.com
www.mix.dj gcp-test.appspot.com android.mix.dj

lh5.ggpht.com www.rateguitar.com nealo.se
ads.huntmad.com ad.leadboltapps.net ad.leadbolt.net

www.hulkshare.com gaurav-gupta.zzl.org en.dilandau.eu
www.mta.info top10songs.com www.soundcat.ch

adc.medibaad.com mobile.smartadserver.com r.tapit.com
lirr42.mta.info

AdDisplay.AppOffer.A potentially unwanted android.waptw.com developer.android.com mnav.fetion.com.cn
wap.monternet.com az.damiapk.com mobile.video.qq.com

m.appchina.com mw.app.qq.com id.godiy8.com
wap.mpwap.cn wap.etwap.com waptw.cn
client.azrj.cn m.sc.hiapk.com www.awapk.com

az.damiapk.jsp etwap.com hdss1ftb.fetion.com.cn
apkyx.com apkrj.com wap.baidu.com

sc.hiapk.com www.google.com.hk m.xzapk.com
v.qq.com mobwin.android.com etwap.cn

tgwap.com sns.video.qq.com update.apksj.com
a.wap.myapp.com ring.xgapk.cn wap.easou.com
www.damiapk.com m.baidu.com down.gfan.com

az.azrj.cn az.apksj.cn m.anzhi.com
vv.video.qq.com

AdDisplay.Fictus.F potentially unwanted app-stats.net2share.com stats.inappertising.org serve.vdopia.com
cfg.inappertising.org s.net2share.com

AdDisplay.Viser.A potentially unwanted apkservice.com sns.vserv.mobi cdn1.androidhomebase.com
api.hungama.com bucket.homebase-apps.com winjit.in

delivery.hungama.com rq.vserv.mobi s.vserv.mobi
a.vserv.mobi www.apkservice.com in.sb.vserv.mobi

exception.homebase-apps.com
AdDisplay.Viser.C potentially unwanted i.xx.openx.com sns.vserv.mobi smaato-android-sdk.s3.amazonaws.com

c.vserv.mobi ads.buzzcity.net custom.com
inneractive-assets.s3.amazonaws.com www.mobimonsterit.com raw.github.com

cdn2.inner-active.mobi www.gameneeti.com a.vserv.mobi
www.xercestechnologies.com www.smaato.com in.sb.vserv.mobi

a variant of Android/AdDisplay.ADpooh.A wiyun.com shun.sinaapp.com test.adpooh.com
ad.zhidian3g.cn d.wiyun.com www.soso.com
api.mopay.com mopaystaging.mindmatics.com www.google.hk
n.wiyun.com wap.miidi.net com.saubcy.LegoBoxes.Layout

decreases the number of valid testing samples; neverthe-
less, classification accuracy increases. When the prediction
yields the same highest J value with multiple categories,
we classified the resulting samples into “PUA or malware,”
“PUA or benign,” “malware or benign,” or “PUA, malware,
or benign.” The predicted rate of “PUA or malware” for
both PUA and malware was slightly larger than that of oth-
ers. However, in this case, this is useful for determining

whether a detailed investigation should be conducted with
priority over a PUA. In the case of malware, “unclassified”
means that the example could not be placed into any cate-
gory. Although in these cases FQDNs were completely dif-
ferent from those in the training data, we can reduce them
by choosing several samples for each variety of malware, as
described in Sect. 2.1 for the case of PUAs.

Table 7 gives a breakdown of the top five pairs of PUA
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Table 5 Confusion matrix: Classification accuracy of PUAs, malware, and benign apps (R = 0.0020).

category PUA PUA malware PUA, malware
(# of training samples : # of testing samples) PUA malware benign or malware or benign or benign or benign unclassified

PUA (7991.1 : 518.8) 0.9291 0.0318 0.0066 0.0249 0.0040 0.0015 0.0021 0.0000
malware (7978.6 : 462.4) 0.0368 0.9170 0.0095 0.0182 0.0032 0.0052 0.0013 0.0089
benign (7981.6 : 309.4) 0.0129 0.0168 0.9602 0.0016 0.0039 0.0045 0.0000 0.0000

Fig. 4 Classification accuracy between categories, rate of mean number of test, and score. The hori-
zontal axis shows the range of R.

that were misclassified as malware in Table 5. The Domob
family was shown to be a frequent cause of misclassifica-
tion. Domob††† is a mobile advertising network based in
China that contains a software development kit for incor-
poration in an app. We detected 1,748 samples of the Do-
mob family from both PUAs and malware, 99% of which
had been downloaded from the Baidu app store, which is
one of the main third-party marketplaces in China. The
subtle difference in the naming convention was also con-
firmed by some of the pairs, for example a variant of An-
droid/Domob.G potentially unwanted and probably a vari-
ant of Android/Domob.G. In the pairs where malware was
misclassified as a PUA, we observed a similar trend. This
is further discussed in Sect. 4. Table 8 provides a break-
down of the top five PUAs that were misclassified as be-
nign in Table 5. The total number of this misclassification
was 34, and common FQDNs were observed in each pair,
of which 10 were identified as AirPush†††† family, which is
a US-based mobile advertising service. Not only the mis-
classification but also these benign samples could possibly
remain undetected by AVs because we found that Symantec
Mobile Insight detects a sample as “AppRisk:Generisk” and
Alibaba detects another sample as “A.W.Rog.RevMob.C”
from VirusTotal (as of August 2017). These cases imply
that the signatures of AVs were added later, so these were
new varieties at the time of data collection.

Table 6 presents the classification accuracy for un-
known PUAs. In this analysis, 147 (10%) varieties of un-
known PUAs were randomly sampled 10 times. Compared
to the results shown in Table 5, the classification accuracy of

these unknown PUAs decreased (55.7%). However, we note
that the relaxed classification results that include correct an-
swers (“PUA or malware,” “PUA or benign,” or “PUA, mal-
ware, or benign”) are more useful for prioritizing an incident
relative to PUAs than benign apps. In that case, accuracy
can be considered to be 83.2% according to the calculation
result of 0.5565 + 0.1999 + 0.0308 + 0.0443 = 0.8315.

3.2.2 Classification of the Varieties of PUAs

Figure 5 shows the classification accuracy, the rate of the
mean number of test samples, and the score for each variety
of PUA and malware with changes of R. Table 9 shows the
details of the results. It can be seen that the removal of com-
mon FQDNs, as described in Sect. 2.3, effectively improved
the classification of PUAs. At an R of 0.0020, the accuracy
increased by 9.3% over the case without common FQDN
removal, achieving the highest accuracy of 85.3%. Note
that both the training data and testing data decreased as R
decreased. It is evident that decreasing the amount of train-
ing data reduces the complexity of classification per sample.
Since accuracy is calculated only when a training sample
with the highest similarity to the test data is uniquely deter-
mined to be the correct answer, it is judged as an error when
there are two or more candidates with the equal highest sim-
ilarity. The term “con. rate” indicates the rate that includes
the correct answer in the candidates with same highest sim-

†††http://www.domob.cn/
††††http://www.airpush.com/
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Table 6 Classification accuracy of unknown PUAs (R = 0.0020).

PUA PUA malware PUA, malware
(# of training samples : # of testing samples) PUA malware benign or malware or benign or benign or benign unclassified

unknown PUA (8184.2 : 539.4) 0.5565 0.1144 0.0289 0.1999 0.0308 0.0044 0.0443 0.0208

Table 7 Top 5 examples of PUAs misclassified as malware.

# of misclassification misclassified PUA in testing data predicted malware in training data
8 a variant of Android/Domob.G potentially unwanted probably a variant of Android/Domob.G
8 a variant of Android/AdDisplay.AdsWo.A potentially unwanted a variant of Android/Domob.F
5 a variant of Android/AdMogo.A potentially unwanted probably a variant of Android/Domob.G
5 a variant of Android/AdDisplay.AdsWo.A potentially unwanted probably a variant of Android/Domob.G
4 probably a variant of Android/Adware.Youmi.B probably a variant of Android/Domob.B

Table 8 Top 5 examples of PUAs misclassified as benign.

# of misclassification misclassified PUA in testing data
3 a variant of Android/AdDisplay.AirPush.P potentially unwanted
3 a variant of Android/AdDisplay.AirPush.I potentially unwanted
2 a variant of Android/Kalfere.A potentially unwanted
2 a variant of Android/Adware.Wooboo.D
2 a variant of Android/Adload.B potentially unwanted

ilarity. The value of “con. rate” is less than 2.5%; thus the
samples with this “con. rate” mostly constituted different
DNS queries and practically caused misclassification. From
the 237 varieties of PUA, 234 were selected as testing data
after the random sampling and sample reduction described
in Sect. 2.5. The accuracy was also computed for each vari-
ety of PUA. Of the 234 varieties, 169 (72.2%) had an ACC
greater than or equal to 0.7, and seven (3.0%) had ACC val-
ues lower than 0.3. We were able to classify a sample within
0.034 s using Python 2.7 over Ubuntu 14.04.5 LTS running
on a Dell PowerEdge R210 II (CPU: 2.3 GHz Intel Xeon
E3-1220Lv2, Memory: 32 GB 1333 MHz UDIMM).

When the highest score was 0.799, the accuracy of
86.9% was achieved at R = 0.0205 for 261 of the 393 vari-
eties of malware covered by the testing data. Compared to
PUA, ACC is high irrespective of R. There may be multiple
FQDNs specific to malware. CLAP showed the possibility
that Android malware can also be classified accurately using
the same methodology.

4. Discussion

In this section, we discuss several limitations and applica-
tions of our study and suggest future research directions.

4.1 Limitations

App platform: This study focused only on the Android plat-
form, with a partial analysis of Windows. Other platforms,
including Apple iOS and Windows Mobile, were not consid-
ered. To extend the coverage, apps will need to be collected
from a full range of stores and analyzed to extract the DNS
queries specific to each platform. We believe that the ap-
proach presented in this paper can be applied to these other
platforms.
PUA selection: In this study, we selected PUA varieties

based on keywords in the name that could be detected by
AV. This is clearly vendor-specific. AVClass [11] is a tech-
nique that allows a common name to be assigned by summa-
rizing the names detected by multiple AVs. As the accuracy
of classification entirely depends on the use of appropriate
labels, this technique may be used to improve the methods
presented in this paper.
FQDN extraction: As described in Sect. 2.2, we extracted
FQDNs from all possible URLs accessed by the app. How-
ever, the app will not necessarily access all of these URLs
in user operation or background execution. If only those
FQDNs actually accessed by an app through dynamic anal-
ysis are considered, the accuracy of classification may de-
crease. This is also a challenge in dynamic analysis with an
automated user operation. Even if FQDNs can be extracted
properly, the proposed method can be evaded by a PUA us-
ing a domain generation algorithm (DGA). Since various
types of DGAs are involved, it is difficult to correctly deter-
mine an FQDN generated by a DGA. When checking all ex-
tracted FQDNs from Android PUAs and malware with two
feeds [12], [13] that typically cover DGA families, DGA do-
mains did not exist. If DGA domains are used by Android
PUAs or malware, classification accuracy will be affected.
By replacing a part of a domain generated by a DGA with
static characters (e.g., from vqugxwskcupgevv.example.com
to 15length-dga.example.com), an improvement in accuracy
may be expected.
Common FQDN removal: Since the number of test apps
will decrease as R decreases, there is a trade-off between
PUA coverage and classification accuracy (between PUA
and others, and among varieties of PUA). As discussed in
Sect. 3.2, common FQDN removal may eliminate FQDNs
that are specific to particular varieties of PUA. To classify
PUAs or malware more accurately, building a list of com-
mon FQDNs that use more benign apps, including apps
on the official Google Play, may be needed. We used DF
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Fig. 5 Classification accuracy between varieties, rate of mean number of test, and score. The hori-
zontal axis shows the range of R.

Table 9 Detail of classification accuracy between varieties.

(a) PUA
R (# of removal FQDN) ACC mean J max. J min. J med. J std. J con. rate mean # of train mean # of test mean time [s] score

0.0010 (685) 0.851 0.635 0.968 0.076 0.662 0.182 0.024 7606.4 514.3 0.032 0.776
0.0020 (373) 0.853 0.639 0.970 0.070 0.654 0.180 0.025 7991.1 518.8 0.034 0.785
0.0030 (266) 0.828 0.640 0.969 0.093 0.657 0.179 0.015 8151.8 521.5 0.035 0.766
0.0040 (210) 0.835 0.648 0.972 0.088 0.667 0.182 0.014 8245.2 521.1 0.037 0.771
0.0050 (175) 0.819 0.650 0.970 0.109 0.667 0.180 0.019 8292.6 526.1 0.037 0.764
0.0060 (155) 0.819 0.644 0.969 0.098 0.664 0.182 0.015 8339.3 522.8 0.038 0.759
0.0070 (139) 0.814 0.655 0.972 0.077 0.667 0.179 0.023 8435.2 525.7 0.039 0.759
0.0080 (115) 0.824 0.656 0.973 0.109 0.667 0.178 0.024 8543.5 529.4 0.039 0.773
0.0090 (102) 0.820 0.654 0.972 0.108 0.667 0.183 0.019 8587.0 527.2 0.040 0.766
0.0100 (91) 0.823 0.658 0.973 0.085 0.667 0.186 0.018 8631.2 530.6 0.040 0.774
0.0150 (62) 0.789 0.671 0.972 0.116 0.667 0.184 0.015 8806.6 527.0 0.044 0.737
0.0200 (53) 0.794 0.666 0.972 0.088 0.674 0.187 0.018 8861.7 534.9 0.043 0.753
0.0205 (52) 0.791 0.669 0.972 0.093 0.674 0.184 0.014 8902.8 535.0 0.043 0.750
0.0250 (42) 0.785 0.680 0.973 0.106 0.687 0.183 0.012 9004.1 538.9 0.046 0.750
0.0300 (38) 0.793 0.679 0.973 0.107 0.691 0.184 0.008 9018.0 537.6 0.045 0.756

w/o removal (0) 0.760 0.735 0.975 0.155 0.757 0.169 0.004 9978.6 545.2 0.060 0.735

(b) malware
R (# of removal FQDN) ACC mean J max. J min. J med. J std. J con. rate mean # of train mean # of test mean time [s] score

0.0010 (685) 0.892 0.669 0.966 0.080 0.698 0.185 0.015 7597.5 449.2 0.031 0.710
0.0020 (373) 0.873 0.674 0.967 0.055 0.703 0.185 0.023 7978.6 462.4 0.033 0.716
0.0030 (266) 0.883 0.684 0.965 0.073 0.713 0.180 0.020 8126.0 469.7 0.034 0.735
0.0040 (210) 0.867 0.683 0.968 0.064 0.705 0.179 0.008 8219.7 469.6 0.036 0.722
0.0050 (175) 0.858 0.692 0.967 0.069 0.714 0.182 0.014 8279.5 468.3 0.036 0.712
0.0060 (155) 0.876 0.683 0.967 0.070 0.700 0.180 0.006 8356.1 496.8 0.037 0.772
0.0070 (139) 0.864 0.690 0.969 0.086 0.714 0.178 0.010 8442.4 496.0 0.038 0.760
0.0080 (115) 0.870 0.710 0.970 0.077 0.750 0.166 0.007 8527.4 507.7 0.039 0.783
0.0090 (102) 0.872 0.718 0.968 0.085 0.742 0.156 0.005 8588.3 506.0 0.039 0.782
0.0100 (91) 0.862 0.722 0.970 0.053 0.750 0.161 0.007 8636.7 507.0 0.040 0.775
0.0150 (62) 0.870 0.730 0.970 0.107 0.769 0.158 0.001 8829.1 514.2 0.043 0.793
0.0200 (53) 0.860 0.727 0.969 0.074 0.766 0.163 0.007 8899.0 515.1 0.043 0.785
0.0205 (52) 0.869 0.727 0.969 0.075 0.772 0.165 0.005 8900.7 518.4 0.042 0.799
0.0250 (42) 0.866 0.740 0.968 0.083 0.778 0.158 0.005 8964.5 515.3 0.044 0.791
0.0300 (38) 0.860 0.737 0.971 0.066 0.771 0.160 0.004 9007.3 517.5 0.044 0.789

w/o removal (0) 0.854 0.798 0.973 0.118 0.840 0.151 0.001 9934.0 522.5 0.061 0.791

to build a list of common FQDNs. However, other algo-
rithms can also be used to build an appropriate list of com-
mon FQDNs. In addition, Google URL shortener goo.gl is
listed in Table 3. This FQDN in the dataset is utilized by
12 samples in 11 PUA varieties. When such services are
widely used, this type of FQDN will be added to common
FQDNs, which makes it impossible to calculate the similar-
ity between apps. In such a case, the original FQDN can be

extracted by accessing a shortened URL via dynamic analy-
sis.

4.2 Applications

To detect PUA infection via network monitoring with CLAP,
it is necessary to separate each host based on the source IP
address of DNS queries. We can then apply CLAP to a set
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of DNS queries that are divided in a certain period of time.
Although DNS queries are generated by benign apps, mal-
ware, PUA, and the browser used by the user, CLAP can
provide a list of candidates, indicating that the host may be
infected. DNS analysis techniques for detecting malicious
domains [14] and detecting C&C domains [15] have previ-
ously been studied. CLAP focused only on the similarity of
FQDNs accessed by apps to distinguish Android PUAs from
others and classify varieties of Android PUAs. Identifying
malicious domains is outside the scope of this study. How-
ever, we may leverage these approaches and features used in
previous studies to be applicable for detecting PUA infec-
tions. As another use case, when the incident response team
faces an alert such as “malicious DNS query.” from the net-
work security system, the corresponding FQDN described
in the alert details can be inquired into CLAP to identify
malware or PUA. If it is PUA, the team can prioritize other
alerts, and the team can efficiently triage incidents. Collect-
ing and analyzing apps and accumulating data continuously
are crucial for maintaining the performance of CLAP. Com-
pared to the Windows malware that is hidden so as not to be
removed from the compromised server, Android apps can
be downloaded from marketplaces so collecting apps is not
a serious barrier.

5. Related Studies

The attention given to PUAs has increased over recent years.
Previous studies have focused on detection [16], [17] or
classification [18]–[21] of Android malware and recently
addressed the analysis of PUAs [22]–[27]. Although it is
difficult to simply compare these studies, our research fo-
cuses on Android PUAs and is the first one that aims to mea-
sure and classify using a larger dataset than previous stud-
ies. Furthermore, compared to previous studies using vari-
ous features, we achieve the almost same level of classifica-
tion accuracy by using only DNS queries that are a feature
easy to monitor and control network access of compromised
hosts. Here, we review some recent studies of Android mal-
ware and PUAs.
Detection of Android malware: MADAM [16] proposed a
host-based Android malware detection system that utilized
different levels of features, including app metadata, user ac-
tivity, SMS transmission, and system calls. Seven malicious
behavioral patterns were defined, including those of PUAs,
and correlations were made between patterns and features.
More than 96% of malicious apps were detected from 2,800
apps, with a low false positive rate. CREDROID [17] was
designed to detect Android malware using VirusTotal to
score apk files against the reputation of the URL being ac-
cessed by the app, the data being sent out, and the commu-
nication protocol. The reputation of the URL was derived
from the Web of Trust (https://www.mywot.com/). By ob-
serving 1,260 samples from 49 families, it was found that
approximately 63% of apps generated network traffic.
Classification of Android malware: DroidScribe [18] de-
veloped a framework for the multi-class classification of

runtime behavior of Android malware. Feature sets were
categorized into network access, file access, binder meth-
ods, and file execution. With their new approach to refine
SVM classification using Conformal Prediction, the authors
of DroidScribe achieved 94% classification accuracy using
5,246 Android malware samples. Chen et al. [19] inves-
tigated the robustness of several malware classifiers using
different machine learning methods. L1-Regularized Lin-
ear Regression was the most robust method, and semantics-
based features such as “reachables,” “happen-befores,” and
“unwanted behaviors,” improved the robustness of malware
classifiers. DroidSieve [20] was a fast, scalable, and accu-
rate system for Android malware detection and family iden-
tification. A novel set of features for static detection com-
prises embedded assets and native code. For both malware
detection and family identification, an accuracy of over 99%
was achieved in this research. Monet [21] was a lightweight
in-device malware detection system for Android devices. A
signature for malware detection was implemented to repre-
sent logic structures and runtime behaviors of an applica-
tion. A total of 3,723 malware samples with 500 benign
apps were used in the evaluation. The results indicated that
an accuracy of around 99% was achieved in detecting mal-
ware varieties, with approximately 7% performance over-
head and approximately 3% battery overhead.
Taxonomy of PUAs: Zhou et al. [22] systematically charac-
terized the same dataset used in [17] and showed that 86%
were repackaged legitimate apps, while 93% exhibited the
same capabilities as a bot. They reported a detection rate by
four AVs of 79.6% in the best case and 20.2% in the worst
case. This 2012 study identified the need for better AVs
for mobile apps. Svajcer et al. [23] introduced a structured
PUA taxonomy for mobile apps that defined the PUA clas-
sification criteria to be used by security vendors and testing
organizations.
Distribution of PUAs: Kotzias et al. [24] analyzed the
large-scale distribution of PUAs through pay-per-install
(PPI) services. They reported that 54% of 3.9 million hosts
had installed PUAs, that 65% of PUAs installed further
PUAs, and that 25% PUAs were distributed through 23 PPI
services. Thomas et al. [25] investigated four major PPI ser-
vices that distributed 160 software each week. Of these,
59% were identified as “unwanted” by at least one AV. Ran-
somware behavior, and the ability to evade AVs and virtual
environments were observed in these PUAs. They also re-
ported 3.5 million alerts from Google Safe Browsing when
making PPI downloads.
Analysis of PUAs: Andow et al. [26] developed lightweight
heuristics for triage of mobile grayware that leverages text
analytics and static program analysis. Nine categories of
grayware were defined on the basis of the installation and
runtime behavior. A large-scale study of grayware on
Google Play was conducted, and the effectiveness of triage
was demonstrated by reducing from 1 million apps to tens
of apps. Chen et al. [27] analyzed potentially harmful li-
braries (PhaLib) across Android and iOS platforms. These
were repackaged as legitimate libraries and propagated as
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malware. The approach was used to map, Android PhaLib
to iOS libraries, and to correlate suspicious behavior. They
identified 117 Android PhaLibs in the search of over 1.3
million Android apps, and 46 PhaLibs in 140,000 iOS apps.

6. Conclusion

In this work, we developed the CLAP system that aims to
classify PUAs based only on the use of DNS queries and
built the first labeled dataset of Android PUAs to share with
the research community. We first extracted FQDNs from
the DNS queries generated by the app and built a list of
common FQDNs based on DF. This was then applied to
the set of FQDNs extracted from a PUA as domain-specific
stopwords. A Jaccard similarity coefficient of the set of
FQDNs was computed between all PUA pairs. Significant
differences were found between the DNS queries of Android
PUAs and Windows PUAs. PUA pairs of the same variety
were found to have a much higher similarity than those of
different types. The study suggested that currently avail-
able blacklists were limited for detection and classification.
From these results, we predicted the category and variety
from the training dataset for each testing datum when the
highest similarity value had been obtained. To reduce com-
putational complexity, duplicated sets of FQDNs within the
same variety were removed. This allowed us to easily dis-
tinguish Android PUAs, malware, and benign apps with ap-
proximately over 92% accuracy. More than 230 varieties
of PUA are classified correctly with 85.3% accuracy, with a
computational time of 0.034 s per app. The study provides
evidence that Android malware can also be accurately clas-
sified using the same methodology.
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