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SUMMARY This paper presents a practical side-channel attack that
identifies the social web service account of a visitor to an attacker’s website.
Our attack leverages the widely adopted user-blocking mechanism, abusing
its inherent property that certain pages return different web content depend-
ing on whether a user is blocked from another user. Our key insight is that
an account prepared by an attacker can hold an attacker-controllable binary
state of blocking/non-blocking with respect to an arbitrary user on the same
service; provided that the user is logged in to the service, this state can be
retrieved as one-bit data through the conventional cross-site timing attack
when a user visits the attacker’s website. We generalize and refer to such
a property as visibility control, which we consider as the fundamental as-
sumption of our attack. Building on this primitive, we show that an attacker
with a set of controlled accounts can gain a complete and flexible control
over the data leaked through the side channel. Using this mechanism, we
show that it is possible to design and implement a robust, large-scale user
identification attack on a wide variety of social web services. To verify the
feasibility of our attack, we perform an extensive empirical study using 16
popular social web services and demonstrate that at least 12 of these are
vulnerable to our attack. Vulnerable services include not only popular so-
cial networking sites such as Twitter and Facebook, but also other types of
web services that provide social features, e.g., eBay and Xbox Live. We
also demonstrate that the attack can achieve nearly 100% accuracy and can
finish within a sufficiently short time in a practical setting. We discuss the
fundamental principles, practical aspects, and limitations of the attack as
well as possible defenses. We have successfully addressed this attack by
collaborative working with service providers and browser vendors.
key words: web security and privacy, side channel, user identification

1. Introduction

The Social web has become ubiquitous in our daily lives. It
includes not only popular social networking services such as
Facebook and Twitter but also other forms of web services
with social features, e.g., online services for video games
such as XBox Live and online auction/shopping sites such
as eBay. Social web services facilitate interactions between
people with similar interests. The widespread adoption of
social webs has increased not only the number of users per
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service but also the number of services used by each user.
Mander [2] reports that Internet users have an average of al-
most seven social accounts.

Like many other web services, social webs have secu-
rity and privacy concerns. What distinguishes social webs
from other web services is that they have an intrinsic pri-
vacy risk; users are encouraged to share large amounts of
personal/sensitive information on these services, e.g., per-
sonal photos, health information, home addresses, employ-
ment status, and sexual preferences. An attacker can collate
various data from social web services to infer individuals’
personal information. For example, as Minkus et al. [3] re-
vealed, an attacker can recover a target’s purchase history if
s/he knows the target’s eBay account. The purchases may
include potentially sensitive items, e.g., gun-related items
or medical tests. To protect privacy, an eBay user may use
a pseudonym for his/her account name; even in such a case,
however, an attacker who can link an eBay account with an
account on Facebook, which encourages users to disclose
their real name, can infer the identity of the actual person
who purchased the sensitive items on eBay.

In this study, we introduce a side-channel attack that
identifies the social account(s) of a website visitor. The key
idea behind our approach is to leverage user blocking, which
is an indispensable mechanism to thwart various types of
harassment in social webs, e.g., trolling, unwanted sexual
solicitation, or cyber bullying. Because user blocking is a
generic function commonly adopted by a wide range of so-
cial web services, an attacker can target various social web
services. In fact, our attack is applicable to at least the fol-
lowing various social web services: Ashley Madison, eBay,
Facebook, Google+, Instagram, Medium, Pornhub, Roblox,
Tumblr, Twitter, Xbox Live, and Xvideos. Because hav-
ing an account with some of the services included on this
list could involve privacy-sensitive information, any account
identification can directly lead to privacy risks.

Our attack leverages the user-blocking mechanism as a
means of generating the leaking signals used for the side-
channel attack∗∗. More specifically, we leverage the mech-
anism’s inherent property that certain pages return different
web content depending on whether or not a user is blocked
from another user. Our key insight is that an account pre-
pared by an attacker can hold an attacker-controllable bi-

∗∗More precisely, our side-channel attack is classified as a
cross-site timing attack that will be described in Sect. 3.1.
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nary state of blocking/non-blocking, with respect to an ar-
bitrary user on the service, and this state can be retrieved as
one-bit data through cross-site request forgery and a timing
side channel when a user visits the attacker’s website. We
specifically refer to the property that enables this key action
as visibility control, as an attacker is forcing another user to
change how they see certain things in the system. Building
on this primitive, we show that an attacker can use a set of
controlled accounts to construct a controllable side channel,
i.e, leaked data is completely under the attacker’s control.
Using this mechanism, we show that it is possible to design
and implement a robust, large-scale user identification at-
tack mechanism on a wide variety of social web services.
We note that the number of accounts required has a theo-
retically logarithmic relation to the number of users to be
targeted, e.g., 20 attacker-prepared accounts are needed to
cover 1 million users. The novelty of our attack is discussed
further in Sect. 3.3.

We note that disabling our side channel, i.e., user
blocking, requires careful assessment as it is a crucial func-
tion that is widely used on social webs. In Sect. 2.2, we dis-
cuss our analysis of the data for measuring the blocking be-
havior of more than 200,000 Twitter users [4] and revealed
that 3,770 users have blocked more than 1,000 accounts.
Our online survey also revealed that 52.3%/41.4% of Twit-
ter/Facebook users have responded they have used the
blocking mechanism before, and 92.4%/93.9% responded
there should not be a limit on the number of blocks. These
results suggest that neither disabling blocking nor posing a
limit on it, is desirable from the viewpoints of the actual us-
age of the service and users’ expectations. Furthermore, as
we show in Sect. 5.3, limiting the number of user blocks per
account would not be an effective countermeasure owing to
our additional technique, user-space partitioning.

To verify the feasibility of our attack, we performed
extensive empirical studies using 16 existing social web ser-
vices. We found that 12 of these services are vulnerable to
the attack. Using 20 actual accounts, we found that the at-
tack succeeds with nearly 100% accuracy under a practical
setting.

Our contributions can be summarized as follows:
• We demonstrate that the user-blocking mechanism,

which is an indispensable function widely adopted in
various social web services, can be exploited as the
leaking signals for a side-channel attack that identifies
user accounts.
• In addition to the side-channel attack, we develop sev-

eral techniques to accurately identify users’ accounts.
We also reveal that this attack is applicable to many
currently existing services. The attack has a high suc-
cess rate of nearly 100%, and is high-speed, taking as
short as 4–8 seconds in a preferable setting, or 20–
98 seconds even in a crude environment with a large
amount of delay.
• We discuss the principles, the practical aspects, and

the limitations of this study, as well as some defenses
against the attack.

• We have successfully addressed this attack by collab-
orative working with service providers and browser
vendors.

2. Background: User Blocking

In this section, we first provide a technical overview of user
blocking, which serves as a side channel used for the user
identification attack. Next, we demonstrate that simply dis-
abling/limiting this side channel is not a desirable solution
against the attack from the viewpoints of actual usage and
user expectations.

2.1 Technical Overview

User blocking is a means of blocking communication be-
tween two users. Note that some “blocking” mechanisms
adopted by social web services are not user blocking per se
but message blocking, e.g., “muting” or “ignoring”. While
user blocking rejects a person access to your account, mes-
sage blocking filters out all the messages (or notifications)
originating from that person. Even if a person is blocked
with message blocking, this does not necessarily mean that
they do not have access to your online activities. In this pa-
per, we will not focus on message blocking unless otherwise
noted.

Social web services with user-blocking mechanisms
have intrinsic web pages that change content depending on
the status of the visitor, i.e., whether or not a visitor is
blocked from another person. A typical example is a user
profile data page, which provides information on a person
such as a photograph (icon), a self-introduction, affiliation,
recent posts/updates, etc. Figure 1 shows screenshots of
some Facebook profile pages. In the non-blocked state, the
user profile information is fully available; in the blocked
state, these pieces of information are hidden. In addition to
a user profile page, some social web services provide pages
that reflect similar differences. A summary of such tech-
niques is presented in Sect. 4.

To execute user blocking, a user typically clicks the
“block” button set on the profile page of the person to be
blocked or enters the account ID of the person in a text box
shown on a dedicated page for user blocking. Even though
official application programming interfaces (APIs) for per-
forming user blocking are not necessarily provided on all
social web services, to the best of our knowledge no services

Fig. 1 The differences of appearance between non-blocking (left) and
blocking (right) pages on Facebook.
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Fig. 2 Log-log CCDF of the number of user blocks per account on
Twitter. Y-axis shows the fractions of accounts who are blocking n (X-
axis) or more users. Mean value of the number of user blocks is 154.21.

adopt a special mechanism, such as CAPTCHA, to prevent
automated user-blocking requests. Therefore, it is currently
easy to perform the large-scale user blocking necessary to
implement our user identification attack by using a script
that emulates authentic requests or a headless browser.

2.2 Usage and Expectations

In this subsection, we discuss how many accounts do people
block on social web services and why they do so. To answer
the “how many” question, we first present statistics derived
from the data collected at “Blocked By Me” [4], a web ser-
vice that displays a list of users a person has blocked on
Twitter†. The data, comprising the number of blocked users
for 223,487 unique accounts, were collected from March
2011 to August 2017. As an individual may have used
the web service for several times during the measurement
period, we adopt the maximum value of the numbers of
blocked users measured for each person. Figure 2 shows
the log-log complementary cumulative distribution function
(CCDF) of the number of blocked users per account. It
is seen that the distribution is heavy-tailed, indicating that,
although the majority of users blocked a small number of
other accounts (median = 15), a non-negligible number of
users had to block a large number of other accounts. For
instance, 3,770 users blocked more than 1,000 accounts.
Note that the rate-limit of access to Twitter API truncates
the number of blocked users at 75,000; thus, users indicated
in the figure as having blocked 75,000 users are likely to
have actually blocked more. Besides this upper bound, there
were several groups of accounts having the same large num-
ber of blocked accounts. They may be using a shared block
list to evade various harassments. As checking the content
of such lists is not feasible, some users may have simply cu-
mulatively added new accounts to their block lists. These in-
sights account for the reason why several users have a large
number of blocked users.

Next, to answer the “why” question we recruited par-

†The dataset was provided courtesy of Gerry Mulvenna on Au-
gust 14, 2017. Thus, there are negligible differences from the fig-
ures listed on his webpage archived on August 20 [4]. Note that
the entire set was anonymized to protect user privacy.

Table 1 Demography of the expectations survey.

# respondents Gender Age (Years)
10–29 / 30–49 / 50–

Facebook 198 F:54 M:46 (%) 31 / 60 / 9 (%)
Twitter 170 F:56 M:44 (%) 41 / 51 / 8 (%)

ticipants to take an online survey. As summarized in Table 1,
the demography of the respondents shows that responses
represent a diverse, cross-section of respondents. Key find-
ings derived from the closed-ended questions are as follows:
(1) 52.3%/41.4% of Twitter/Facebook users responded that
they have used the blocking mechanism; (2) 92.4%/93.9%
of Twitter/Facebook users responded that social web service
should not limit the number of accounts a person can block
on the service. This result indicates that users do not ex-
pect to have limitations on the number of blockable users.
We also included the open-ended questions: “why do you
block other users?” and “why do you think that there should
be no limitation on the number of blocked users?” Typical
answers to the first question include “do not want to read
the unwanted messages/posts” and “not to be tracked by
strangers/trolls/ex-friends/coworkers, etc.” Typical answers
to the second question include “there are a huge number of
spam/bogus accounts” and “just adding unwanted users to
the blocklist is easy to maintain.”

The observations derived from the web service log
analysis and the online survey imply that simply disabling
our side channel, user-blocking, is not a desirable counter-
measure against the threat from the viewpoints of actual us-
age of a service and users’ expectations.

3. Attack Overview

In this section, we give a brief overview of the attack. We
present the threat model and the attack flow with a concrete
example. We also elaborate on the novelty of the attack and
how it compares to some of the existing works in this area.

3.1 Threat Model

In this attack, the attacker’s goal is to determine the social
account of the visitors to her/his website. We present two
possible attack scenarios under this goal. In the first, the at-
tacker targets unspecified mass users in order to determine
who visited the attacker’s website, for the purpose of, e.g.,
marketing. In the second scenario the attacker targets a lim-
ited number of users with already known identities, such
as their names or email addresses, and wants to determine
their anonymous accounts which cannot be searched for us-
ing such identities. In both scenarios, the visitor’s privacy is
obviously breached, as the identity of the user or their pri-
vate activity is revealed to the attacker without their consent.
We further discuss the feasibility of building a target list in
Sect. 7.

Our attack employs a cross-site timing attack, which is
an attack that combines cross-site request forgery (CSRF)
and a timing attack [5]. Cross-site timing attacks bypass the



242
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

same-origin policy and enable an attacker to obtain informa-
tion using the target’s view of another site, i.e., in our con-
text, the attacker can know whether or not the target user is
blocked by the attacker-prepared signaling accounts. As we
detail in Sect. 4, the status of blocked/non-blocked can be
estimated from the time a web server of a social web takes
to load a web content, or the round-trip time (RTT), of the
profile page of a signaling account. As such, we make the
following assumptions, which we will discuss in additional
detail in Sect. 7.

Attack Trigger. We assume that the attacker can somehow
induce their target to visit a malicious website. For exam-
ple, the attacker uses malvertising techniques [6] or simply
sends out email messages, in which case they can also link
e-mail addresses to social accounts. Further details on this
are discussed in Sect. 7.

Log-in Status. We assume that a target person has logged
into the social web services, i.e., that cookies are enabled
on the person’s web browser. This assumption plays a vital
role in the success of the attack because the logged-in status
triggers the difference between views of profiles of blocking
and non-blocking accounts. Because the majority of web
services, e.g., Facebook, have an automatic sign-in option,
we consider this assumption to be reasonable.

User Device. We assume that the target person uses a PC
when accessing the malicious website. This premise covers
more than 70% of social web service users [7]. Users of mo-
bile platforms typically access social web services through
dedicated mobile apps instead of the web interface provided
for mobile browsers. Therefore, we cannot easily apply the
attack to a mobile device.

3.2 Attack Flow and Example

As illustrated in Fig. 3, our attack has two separate phases:
the side-channel control phase and the side-channel retrieval
phase. Below, we describe the steps in each phase with a
concrete example. Note that some details are omitted for
simplicity but will be described in later sections.

I. Side-Channel Control Phase

The purpose of the side-channel control phase is to
construct user-identifiable side-channel data through user
blocking. This phase is required just once before performing
the attack.

Step 1. Target Enumeration: For a social web service of
interest, the attacker first enumerates the users who will be
the target of the attack. Let N be the number of targets.
The attacker can target either mass (randomly sampled or
even all) user accounts or a limited set of selected users
(e.g., celebrities, high-level corporate officers) according to
the attacker’s purpose. Note that because this attack lever-
ages CSRF, whether the account is closed (e.g., private, pro-
tected) is not a concern as long as the account is blockable.
In the example, the attacker lists a small set of N = 8 users
who will be the target of the attack. If the attack succeeds,

the attacker will be able to identify the accounts of these
eight users whenever they visit the attacker’s website while
logged onto the social web services.
Step 2. Bit Assignment: The attacker prepares m accounts
on the social web service where m is a number satisfying
2m ≥ N; these accounts are referred to as “signaling ac-
counts” and denoted as Si, i = 1 . . .m. The attacker encodes
a set of target users into bit arrays with length m, with the
value of the i-th bit of each array corresponding to “block”
(1) or “do not block” (0) by account Si. The attacker can ex-
press a maximum of 2m distinct target users, but at the cost
of increase in m, the attacker can further add redundant bits
to produce an error-correcting code.
In the example, the attacker prepares m = 3 signaling ac-
counts, S1, S2, and S3, with each target user is mapped into
distinct bit arrays of length m, as shown in the table. All
possible bit patterns are mapped to the users and there are
no redundant bits.
Step 3. Target Blocking: The attacker controls the signal-
ing accounts to block each target user according to the bit
array. Note that the number of blocking that must be per-
formed per signaling account is approximately half of the
total number of targets, as shown in the figure. It is not dif-
ficult to see that this requirement can be controlled at the
cost of adding more redundant signaling accounts, i.e., the
block/non-block table in the figure will become more sparse.
In the example, S1 is configured to block Erin, Frank, Grace,
and Heidi, with the remaining four users left non-blocked
(default). S2 and S3 are configured in a similar manner.

II. Side-Channel Retrieval Phase

The purpose of the side-channel retrieval phase is to
identify the user utilizing the data retrieved through the tim-
ing side channel. This phase is executed every time a user
accesses the attacker’s website.
Step 1. User’s Visit: When a user visits the web server
under the control of the attacker, JavaScript code is down-
loaded and is executed on the user’s browser.
Step 2. RTT Measurement: The JavaScript code (as de-
tailed in Bortz [5]) measures the time taken to load the pro-
file of the signaling accounts by sending HTTP requests to
each of these accounts. Note that, as this is a CSRF, the re-
quest is issued on behalf of the user’s account. Special RTT
measurements are also performed to determine the threshold
value used in the next step, but we omit the details here.
In the example, the script issues HTTP requests to the profile
page of each of the signaling accounts — S1, S2, and S3 —
and receives the measurements of 214, 128, and 223 ms,
respectively.
Step 3. User Identification: The attacker then tries to iden-
tify the user from the measurements acquired in the preced-
ing step. Because the time needed to load the profile of a
blocking account exhibits a statistical difference from that
needed to load the profile of a non-blocking account, the se-
quence of measured time samples can be used to build a bit
array of “blocked” and “non-blocked” states. Once the bit



WATANABE et al.: IDENTIFYING THE SOCIAL ACCOUNT OF WEBSITE VISITORS
243

Fig. 3 Attack overview

array is recovered, the attacker does a lookup on the bit array
map and identifies the user.
In the example, the measurements, 214, 128, 223 ms are
compared against a threshold value of, say, 150 ms, and are
determined to be non-blocked, blocked, and non-blocked,
respectively. This result is represented as a bit array {010},
enabling the attacker to infer from the table that the user who
visited the malicious site is Carol†.

3.3 Novelty of the Attack

While our attack is certainly novel overall, its conceptual
novelty lies primarily in the side-channel control phase
rather than in the side-channel retrieval phase, which can
be implemented using many different existing approaches
in addition to that adopted in our implementation [5]. The
side-channel control phase is made particularly novel by its
use of the underlying concept of visibility control, which
allows for the encoding and retrieving of arbitrary bits of
data independent of what the side channel is. This flexibility
inherently enables the attack to achieve account identifica-
tion in a generic manner. By contrast, most similar meth-
ods that exploit browser side channels focus on stealing the
content of a specific resource, limiting the acquirable data
to that related to the targeted resource. Rather than study-
ing such resource-specific side-channel acquisition method-
ologies, we questioned and exploited the design of general
systems equipped with visibility-control features, e.g., user
blocking. To the best of our knowledge, this concept has not
been previously discussed in the literature despite its signifi-
cant potential impact on nearly all major social web services
currently operating.

We now compare our work to two of the major recent
studies in this area. The goal of the first study was to retrieve
various user data (e.g., age, contacts, search history) through
several browser side-channel techniques [8]. The major
difference between this work and ours is that it was some-
what focused on the development of individual techniques
to acquire resource-specific side channels. Although this

†As we will detail in Sect. 5, when {000} is observed, it is still
possible to distinguish Alice from non-target users by using two
special accounts that do/don’t block all the target users.

makes their methodology more powerful in the sense that
it can even reveal a user’s private information (e.g., search
history), their methodology and goals were more service-
and resource-specific. By contrast, the purpose of our work
is to find user accounts and then link these with all available
public information to which they are tied independent of the
target resource used for sending side-channel data. Another
similar study involved an attack based on browser history
stealing [9], which, in the authors’ words, shared a goal sim-
ilar to ours of user identification or de-anonymization. This
approach exploited the (now eliminated) mechanism allow-
ing an attacker to infer a user’s browser history to determine
if the user belongs to certain groups based on the presence
of access history to certain pages. Methodology-wise, the
concept of repetitively identifying the groups to which a tar-
get user belongs, until to the point where the target can be
uniquely identified, is conceptually similar to our approach.
The main difference, however, is that our method allows for
the construction of such groups in advance in an arbitrary
manner. Thus, while our approach requires some initial
setup effort, it has the advantage of being much more re-
liable in assuring identification (i.e., no ambiguity remains
due to a lack of groups) as long as the side channel can be
correctly retrieved.

4. User-Blocking Side Channel

This section aims to demonstrate that the differences be-
tween the time to load profile pages of blocked and non-
blocked users can be used to perform a timing attack. In the
following, we first look at the characteristics of the RTTs
measured for blocked and non-blocked accounts. Next, we
present several techniques that can increase the distinguisha-
bility of RTTs. Finally, after applying the RTT expansion
techniques, we test whether the RTTs are statistically dis-
tinguishable using various social web services, which in-
clude popular social media such as Twitter and Facebook
and other web services such as eBay and XBox Live.

4.1 Characteristics of RTTs

Here, we briefly describe the setup for our experiments. We
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Fig. 4 Distributions of RTTs for blocking and non-blocking accounts.

executed a simple JavaScript code on a browser logged-in
to a service with account A. The JavaScript issues GET re-
quests to a page associated with an account which blocks
A, and another page associated with an account that does
not block A. Our objective is to see whether we can see the
differences in the RTT measurements associated with these
two types of accounts: blocking and non-blocking.

In the following, we characterize the measured RTTs
using three social web services, Facebook, Twitter, and
Tumblr as the representative examples. We study other ser-
vices in the next subsection. Figure 4 shows the distribu-
tions of the measured RTTs†. For Facebook, there is a clear
gap between the RTT distributions for blocking and non-
blocking accounts. For Tumblr, even though two distribu-
tions are closer, we see the difference between the distribu-
tions. We study whether or not this slight differences can be
used as the timing side channel in Sect. 6. For Twitter, the
distributions suggest that there is no sufficient difference to
distinguish their RTT difference. Nevertheless, we have dis-
covered that it is possible to intentionally amplify their RTT
difference by posting more content to the profile page. More
details on this will be described in the next subsection.

Note that, while we see longer RTTs for non-blocking
accounts on Tumblr, we see longer RTTs for blocking ac-
counts on Facebook. It is natural that the profile pages of
blocking accounts are loaded quickly because the content of
these pages may be lighter than those of the profile pages
of non-blocking accounts. While not conclusive, we conjec-
ture that this could be because Facebook does not utilize its
server-side on-memory cache at all when generating content

†The results of this section were measured in early 2017. As
we will explain later in Sect. 8.3, this attack is no longer work for
the services that have adopted countermeasures through coopera-
tion with us.

Fig. 5 Distributions of RTTs for blocking and non-blocking accounts,
after filling the Twitter user profile page with content

for the case of blocked. In either case, we can distinguish
between the blocked and non-blocked states using the RTT
measurements.

4.2 Improving RTT Distinguishability

We present three techniques that can make the differences in
the RTTs more prominent, i.e., these are the ways to make
the timing attack more successful.

Change of content size. The first technique is to place as
much information as possible on the user profile pages of
the signaling accounts. This technique can increase the time
to load the profile page when the signaling account of the
page is visible to the target, i.e., the signaling account does
not block the target. We performed a simple experiment us-
ing Twitter. We prepared two Twitter accounts, one with
the default setting and another with the maximum amount
of content (texts and URL links) that appears on the pro-
file page. Figure 5 shows the RTT distributions after filling
the profile page with large amounts of content. Comparing
this with Fig. 4 (b) which shows the RTT distributions be-
fore adding the content, we now have a clear difference be-
tween blocked and non-blocked RTTs, suggesting that this
technique can dramatically improve their distinguishability.

Use of different pages. Another technique is to make use
of various pages other than the user profile page. In many
cases, the page subject to blocking is the user profile page,
which displays the user’s basic information or recent posts.
However, depending on the service or their implementation,
there are cases where observable differences do not appear
on the profile page but do appear on other pages. For ex-
ample, on eBay, a user cannot prohibit another user from
accessing their profile page; however, a user can prohibit
another user from bidding on the items they list. In other
words, the content on the item page would yield a differ-
ence depending on whether the viewing user is blocked by
the owner of the item. Leveraging this fact, by preparing an
item beforehand and making the victim send requests to the
item page instead of the profile page, the attacker would be
able to observe the RTT difference required for the attack.

Similarly, Flickr does not prohibit a blocked user from
viewing the blocker’s profile page, but it does prohibit the
blocked user from sending a message to the blocker. More
specifically, there is a page for sending a messages to other
users and, if the sender is not blocked from the receiver,
a text area and a submit button are displayed on the page;
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however, if blocked, these objects are not shown and a warn-
ing message is displayed. Such a difference may also yield
the RTT difference necessary for our attack.

In addition, some pages with AJAX-based implemen-
tation have a structure where after requesting and rendering
the initial HTML content, they request additional content,
e.g., a JSON content, from another URL using JavaScript’s
XMLHttpRequest. In some services, the blocked/non-
blocked difference is only present in the JSON data that
is acquired afterwards, instead of in the HTML content ac-
quired first. The problem with this situation is that the RTT
measurement script used for cross-site timing attacks does
not actually render the acquired page content; therefore, the
RTT of the content acquired afterward from JavaScript can-
not be measured. In such cases, the attacker must directly
send requests to the URL for the JSON data. In our in-
vestigation, we found that Tumblr and Xbox.com had this
structure, but we were able to make the attack feasible by
switching the request destination to the JSON URL instead
of the HTML URL.

4.3 Distinguishability of RTTs

We tested whether the RTTs for blocking and non-blocking
accounts were statistically distinguishable. To this end, we
leveraged the Mann-Whitney U test, which is a nonpara-
metric statistical test used to compare differences between
two independent samples; it tests whether a randomly se-
lected value from one sample is less than or greater than a
randomly selected value from another sample. For our ex-
periments, we picked 16 popular social web services. For
each service, we measured the RTTs between blocking/non-
blocking accounts and the blocked account. We applied
the Mann-Whitney U test and computed the p-values. The
results are summarized in Table 2. The results show that
all services have low p-values and imply that the distribu-
tions are distinguishable in 12 out of 16 services when the
significance level is 0.01.

Table 2 Social web services with user-blocking mechanism. Δ0.05
shows the difference in 5-percent tile values for blocked/non-blocked RTT
measurements. Dist. is the distinguishablity showing Y when the p-value
less than 0.01. # of users are from various web resources as of May 2017

Service Category # users Δ0.05 p-value Dist.

Facebook Social 1.96B 212 ms <0.0001 Y
Instagram Photo 700M 29 ms <0.0001 Y
Tumblr Microblog 550M 43 ms <0.0001 Y
Google+ Social 540M 1,080 ms <0.0001 Y
Twitter Microblog 328M 312 ms <0.0001 Y
eBay Shopping 167M 589 ms <0.0001 Y
PornHub Porn 75M 9 ms 0.0034 Y
Medium Forum 60M 332 ms <0.0001 Y
Xbox Live Game 52M 110 ms <0.0001 Y
Ashley Madison Dating 52M 8 ms 0.0097 Y
Roblox Game 48M 98 ms <0.0001 Y
Xvideos Porn 47M 16 ms <0.0001 Y
Quora Forum 190M 5 ms 0.4561 N
Flickr Photo 122M 1 ms 0.2678 N
DeviantArt Art 65M 11 ms 0.0674 N
Meetup Social 30M 9 ms 0.3878 N

5. User Identification Attack

In this section, we first formulate the user identification at-
tack, which works on the basis of the two building blocks,
user-blocking and cross-site timing attack. The attack in-
troduces two functions, encoding and decoding, which are
the functions an attacker can arbitrarily set to map target
users and leaking information (RTTs). Next, we describe
the techniques we developed for the timing attack. Finally,
we present two extensions of the attack. These extensions
aim to make the attack more successful.

5.1 Formulation

Let m and N denote the numbers of the signaling and tar-
get accounts, respectively. We configure m as the minimum
integer value that satisfies 2m ≥ N. If an attacker wants to
target one million of accounts, m is configured to m = 20.

In the setup phase, an attacker creates a table that maps
target user accounts to bit arrays with a length of m. Let
Ui (i = 1, . . . ,N) be the target user accounts. For each
Ui, the table has a bit array entry, Bi = {b1b2 . . . bm}, where
b j ∈ {0, 1} corresponds to a bit. We refer to the rule that
maps Ui into Bi as encoding, i.e.,

Bi = encode(Ui).

Next, we configure the signaling accounts, S j ( j =
1, . . . ,m) as follows. Let θi j ∈ {0, 1} (i = 1, . . . ,N, j =
1, . . . ,m) be an indicator function that satisfies

θi j =

⎧⎪⎪⎨⎪⎪⎩
1 if bi j = 1 ,

0 else,

where bi j is the j-th bit of the bit array Bi. Then, for each
signaling account, Sj, the account is configured to block
the user Ui if θi j = 1. Because each bit takes the value
bi j = 1 with a probability of 0.5, each signaling account
needs to block approximately N/2 target accounts. One
may instantly come up with a defense that poses a limit on
the number of user-blocks an account can have. To thwart
such a countermeasure, we propose a technique described in
Sect. 5.3.

In the attack phase, the attacker sets up a malicious
website and lets target users access it, following our threat
model. As described in the previous section, using the tim-
ing attack, the website can secretly measure RTTs for the m
of signaling accounts. Note that measurements can be par-
allelized to speed up the process. Let R j = {R1,R2, . . .} be
the sequence of RTT measurements obtained for the signal-
ing account Sj. Using the techniques that will be described
in the next subsection, we estimate whether or not the target
user is blocked by S j. Let b̂ j ∈ {0, 1} denote the estimate of
the blocked/non-blocked (1/0) from the RTT measurements,
i.e.,

b̂ j = est(R j).
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Using the entire estimates, we have the estimate of B as
B̂ = {b̂1 . . . b̂m}. Finally, we identify the target user using
the table created in the setup phase; i.e.,

Û = decode(B̂).

In the next subsection, the estimation, b̂ j = est(R j), is
described in detail.

5.2 Estimating Blocked/Non-Blocked Status

Prior to the actual attack, we determine whether or not a
visitor of the website has been included in the target list,
i.e., we employ a membership test. To this end, we pre-
pare the following two reference accounts: a closed account,
which blocks all users included in the list of target users,
and an open account, which does not block any users at all.
We first measure the RTTs for each of the closed and open
accounts. The measurements consist of k0 trials for each
account, where we use multiple trials because the decision
based on a one-shot measurement may have errors due to jit-
ter in the RTTs. The idea is to compare the measured RTTs
for closed/open accounts to see if they are significantly dif-
ferent. If we observe a significant difference, we can con-
clude that the visitor has been listed and continue the attack;
otherwise, the visitor has not been listed and the attack pro-
cedure is terminated.

To determine if the measured RTTs are for the closed
or open accounts, we again leverage the Mann-Whitney U
test. Because the computation of the U test is simple and
lightweight, the membership test can be completed immedi-
ately after we collect the RTTs. In this study, we adopted a
significance level of α = 0.01. We also need to configure the
parameter k0. As shown in the next section, we empirically
derived a conservative value of k0 as k0 = 30, which worked
for various social web services.

After the attacker determines that the visitor is likely
listed, the attacker moves to the next step. Let C0.05 and
O0.05 be the 5th-percentiles of the RTT values measured for
the closed and open accounts, respectively. We adopt the
5th-percentile as the threshold to eliminate outliers. Note
that, even though we could use the minimum values for the
RTTs as does the pathchar algorithm does [10], we observed
that the RTTs could include small outliers, which could be
caused by server-side mechanisms such as data caching or
load balancing. These values are used as the thresholds to
estimate the blocked / non-blocked state, i.e., for a measured
RTT sequence for a signaling account Sj, we compute the
5th-percentile of R j as R0.05 j. We do not necessarily make
k, the number of trials Sj, equal to k0. An attacker can adjust
the k according to the his/her requirements for the trade-offs
between accuracy and speed. If the obtained R0.05 j is closer
to C0.05, the attacker estimates the visitor has been blocked
by the signaling account S j. Otherwise, s/he estimates the
visitor has not been blocked by the signaling account; i.e.,

b̂ j =

⎧⎪⎪⎨⎪⎪⎩
1 if |R0.05 j −C0.05| < |R0.05 j − O0.05|,
0 else.

By continuing this process for all j ∈ {1, . . . ,m}, the
attacker can estimate the bit array of the visitor as B̂ =
{b̂1 . . . b̂m}. Finally, the bit array can be decoded into a user
ID, Û = decode(B̂), using the procedure we have shown in
the previous subsection. Despite the simplicity of the pro-
cedure shown above, as we show later, it can estimate the
closed/open states very accurately.

5.3 Extensions

Here, we introduce two extensions of the attack, error-
correction coding and user-space partitioning, which aim
to further improve the accuracy in noisy environments and
to enhance the size of the target when the number of blocks
per account is limited, respectively.

Error-correction Coding. Under a stable environment, ac-
curately classifying a bit is not difficult since sufficient sig-
nificant difference between blocked/non-blocked is present.
This will also be shown later in Sect. 6. On the other hand,
abnormal RTTs due to some irregular factors such as tempo-
rary server overload may lead to a bit-error. Needless to say,
the infrastructures used in services such as those listed in Ta-
ble 2 which host 30 million to 2 billion users tend to be quite
resilient against such failures; nevertheless, we can still ap-
ply error-correction algorithm in order to eliminate even the
slight possibility of identification failure due to noise.

In this paper, we adopt a Reed-Solomon code, which
has a high error-correction capability and is relatively easy
to implement. In fact, as we will demonstrate later, the
use of the Reed-Solomon algorithm actually contributes to
improving the estimation accuracy in a noisy environment.
Note that other error-correction algorithms could be used
for this purpose. To select the most suitable error-correction
algorithm, one must take into account several factors such
as the error probability distribution, the error characteristics
such as bursts, and the requirements of the available com-
puting resources. In this paper, we are focused on the proof
of concept; therefore, we consider choosing the best error-
correction algorithm to be out of the scope of this study.

The Reed-Solomon algorithm can correct up to K/2
symbol errors, where K is the number of redundant sym-
bols and r (bits) is the size of the symbol. Because the num-
ber of bits initially allocated to each user is m, the number
of signaling accounts that needs to be prepared by the at-
tacker is m + rK, i.e., the attacker needs to prepare an addi-
tional rK extra signaling accounts. In the setup phase, the
attacker first encodes the bit arrays allocated to each user us-
ing a Reed-Solomon encoder, and then blocks the accounts
from the signaling accounts according to the bit values of
the newly encoded bit array. In the attack phase, by decod-
ing the bit arrays obtained via the cross-site timing attack
using the Reed-Solomon decoder, the attacker can obtain an
error-corrected bit array.

User-space Partitioning.
As described in Sect. 2.2, simply enforcing a limit on

the number of blocks would violate a user’s right to block
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and may result in a serious degradation of the service qual-
ity. For services that still enforce a limit despite this negative
impact, the technique shown below would be effective. Let-
ting this limit to be L, the number of candidate target users
covered for identification is also limited to L when using the
procedures we have introduced up to this point. To lift this
limitation, we can employ a technique we call user-space
partitioning, which in this case splits candidate users into S
user spaces each containing L users, allowing us to cover up
to LS users in total.

In the setup phase, for each user space j ∈ {1, . . . , S },
an attacker prepares a reference account that blocks all users
belonging to the j-th user space and the �log2 L� of signal-
ing accounts that are used to map the targets in the space.
We also prepare the two reference accounts, the closed and
open accounts, which are used as the basis of the RTT-based
blocking/non-blocking estimation. In total, the number of
signaling/reference accounts required is S �log2 L� and S +1,
respectively.

In the attack phase, the attacker (1) identifies which
user space the target user belongs to and then (2) identifies
the target in the user space. In step (1), as in the procedures
described in the previous subsection, for each of reference
account, k requests are launched to determine the user space
to which the target belongs. Note that the RTT values ob-
tained here can be reused as the training data in step (2). In
step (2), for each of the L users in the user space found in
step (1), the same identification process is performed as ex-
plained earlier. Note that, because we use a different set of
signaling accounts for each user space, the request URL for
the cross-site timing attack must be changed depending on
the outcome of step (1); however, this can be handled with
conditional branches in the JavaScript code.

6. Field Experiments

In this section, we perform the field experiments. We first
evaluate the key success factor of the attack – RTT measure-
ment, which plays a vital role in classifying blocked/non-
blocked status using the cross-site timing attack (Sect. 6.1).
Next, we evaluate the feasibility of our user identification
attack; namely, we study the identification success rate
(Sect. 6.2) and time to complete the attack (Sect. 6.3).

6.1 Accuracy of Bit Array Estimation

Due to space and time constraints, we evaluated the ac-
curacy using RTT values experimentally measured for the
following three services: Facebook, Twitter, and Tumblr.
As shown in Table 2, these services have the top number
of users and, at the same time, had no limitations such
as the limit on the number of blockable users at the time
of the experiment. In addition, as mentioned in Sect. 4,
each of these three services had different characteristics in
the blocked/non-blocked RTT difference: relatively large,
medium, and small, respectively.

The experiment was conducted by executing the

JavaScript on a consumer laptop PC and measuring the RTT.
We argue that the user’s environment, i.e., network condi-
tions and web browser engines, does not affect the success or
failure of our attack. More precisely, our attack implemen-
tation absorbs the differences in the processing time caused
by network jitters or the performance of the rendering en-
gines. To demonstrate the assumption, we used the follow-
ing three different network environments: wired LAN, Wi-
Fi, and tethering. The wired LAN and Wi-Fi were connected
to a commercial Internet service provider, and we assumed
that this is the environment of PC users who are the main
targets of our attack. To prove that our attack is feasible
even in crude environmental conditions, we also used a teth-
ering network hosted on an Android device connected to a
4G network provided by a mobile network carrier. In ad-
dition, we installed three of the most used browsers in the
world, Google Chrome (v58), Mozilla Firefox (v53), and
Microsoft Internet Explorer (v11). Note that trying all com-
binations was difficult due to space limitations. Unless oth-
erwise noted, we used Google Chrome with a wired LAN.

Membership Test. We first tested the accuracy of the mem-
bership test. We measured the RTT for each of the closed
and open accounts. As mentioned earlier, the measured
RTT values are used for (1) the membership test and (2)
deriving the thresholds for the bit classification, which will
be described later. Note that an attacker needs to calibrate
the thresholds before launching the attack because the RTT
values depend on the geographical location and network
environment.

We repeated the following experiment 100 times.
While logged on to a target and non-target account, we
launched k0 trials for each account and decided whether or
not the account was included on the list by applying the
Mann-Whitney U test. We refer to the true positive rate
(TPR) as the ratio of correctly deciding that the target was
included in the target, and the true negative rate (TNR) as the
ratio of correctly deciding that the target was not included on
the target list.

Figure 6 shows the relationship between k0 and
TPR/TNR. When k0 is small, we have a small number of
samples to estimate the states. Nevertheless, thanks to the
strong distinguishability of the RTT distributions, TNR was
0.97 for all k0, i.e., there were very few false negatives,
which are events where the target account was estimated
as not being listed. Second, for TPR, we saw degradation
in the accuracy when k0 was small, especially for Tumblr.
As k0 increases, however, the TPR approaches 1.0. When
choosing the value of k0, it is preferable that the accuracy is
consistent and that we see a sufficient difference in the sam-
ples. If k0 is large, the accuracy will increase but the number
of trials will also increase and the time needed for an attack
would become too long. In this experiment, we empirically
chose k0 = 30, which achieved perfect estimations for all the
services. We will use the values of C0.05 and O0.05 calculated
from this k0 as the thresholds used in the next step.

The measured RTT values can be affected by vari-
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Fig. 6 Relationship between the number of trials (k0), and TPR/TNR.

Table 3 TPR and TNR for under various conditions.

Facebook Twitter Tumblr
TPR TNR TPR TNR TPR TNR

Chrome/Wired 1.00 0.99 1.00 0.98 1.00 0.99
Wireless 1.00 0.98 1.00 0.98 1.00 0.99
Tethering 1.00 0.98 1.00 0.97 1.00 1.00
Firefox 1.00 0.98 1.00 1.00 1.00 1.00
IE 1.00 0.98 1.00 0.98 1.00 1.00

ous external factors such as network latencies or the type
of browser. We studied how these factors affected the
TPR/TNR. Table 3 shows the results. The number of trials
was set to k0 = 30.

Single Bit Classification. Next, we evaluated the accuracy
of classifying a single bit into blocking or non-blocking.
Again, we used three social web services, Facebook, Twit-
ter, and Tumblr. For each service, we performed k tri-
als of RTT measurements for each of two signal accounts
with blocked/non-blocked states. We continued this pro-
cess for 100 times and took the mean values of the follow-
ing metrics. We refer to the true blocking rate (TBR)/true
non-blocking rate (TNBR) as the rate of correctly detecting
the blocking/non-blocking user as a blocking/non-blocking
user, respectively. Table 4 shows the results. When k ≥ 20,
the detection becomes perfect for all the three services.
Moreover, in a stable environment such as Facebook/Wired,
the classification succeeds perfectly even with k = 3.

6.2 Attack Success Rate in the Wild

We now show the result of our experiment conducted in
an environment imitating an actual attack scenario in the
wild. We set the length of a bit array to m = 24, which
can cover over 16 million users. In addition, we applied a
Reed-Solomon code with a block length of 4 bits with eight
redundant bits, which enables it to correct one block of er-
ror. According to the above setting, we prepared 34 accounts
in total, which included 32 signaling accounts, a closed ac-
count, and an open account, with the appropriate blocking
done against the users on the target list.

Regarding the targets, we assigned a random bit array
of length 24 to each of the 10 social accounts we actually

Table 4 Accuracy of classifying a single bit for Wired (top), Wi-fi (mid-
dle), and Tethering (bottom)

Facebook Twitter Tumblr
k TBR TNBR TBR TNBR TBR TNBR

1 1.00 0.98 0.99 0.99 0.67 0.99
3 1.00 1.00 1.00 0.99 0.89 0.99
5 1.00 1.00 1.00 0.97 0.95 0.98
10 1.00 1.00 1.00 1.00 0.98 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.98 0.98 0.99 0.84 0.99
3 1.00 1.00 1.00 0.99 0.98 1.00
5 1.00 1.00 1.00 0.99 1.00 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00
1 1.00 0.97 0.98 0.99 0.68 0.99
3 1.00 0.99 1.00 0.98 0.92 0.99
5 1.00 0.98 1.00 0.97 0.98 1.00
10 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00

Table 5 Accuracy of the User Identification Attack.

Facebook/wired Twitter/WiFi Tumblr/tethering

TNR 1.00 (20/20) 1.00 (20/20) 0.95 (19/20)
TPR 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)
IDR 0.95 (19/20) 1.00 (20/20) 1.00 (20/20)
IDR/EC 1.00 (20/20) 1.00 (20/20) 1.00 (20/20)

own. We encoded these bit arrays using the Reed-Solomon
code and calculated the bit arrays assigned as the redundant
bits. We prepared 10 additional accounts which are not in-
cluded in the list. For each of the 10 accounts on the target
list and the 10 accounts on the non-target list, we logged in
to and accessed the attacker’s website and evaluated if the
account was correctly identified. We repeated the visit two
times per account, resulting in a total of 40 identification
trials.

As the parameters for the number of trials, we selected
k = 30, which we experimentally determined yielded good
accuracy. The service and network environment pairs we
chose were Facebook/Wired LAN, Twitter/Wireless LAN,
and Tumblr/Tethering. We refer to the TPR as the rate of
correctly identifying a target to be included on the list, and
the TNR as the rate of correctly identifying a non-target to
be not included on the list. As mentioned above, we con-
ducted the experiment twice with each account using 10 tar-
get accounts and 10 non-target accounts. Note that the de-
nominators of TPR and TNR are 20. In addition, of the users
who were identified as being included on the target list, we
refer to the identified rate (IDR) as the rate of correctly iden-
tifying the user without the error-correction code, and refer
to the identified rate with error correction (IDR/EC) as a
similar figure but with error correction. In Table 5, we show
the classification accuracy we obtained in this experiment.

The result shows that the experiment succeeded with
extremely high accuracy. This was expected from the good
results we obtained from the experiments in Sect. 6.1. For



WATANABE et al.: IDENTIFYING THE SOCIAL ACCOUNT OF WEBSITE VISITORS
249

Facebook/Wired, there was one failure case which identified
the target as a wrong user. Examining the network log for
this case revealed that some requests to one of the signaling
accounts had returned 502 response code due to temporary
server error. Our script measures the RTT even if an er-
ror code is returned, but since no content is returned, the
response time would not likely be the one desired. This oc-
curred with 3 of the requests over only 1 second of duration,
but the RTT value had dropped to about 1/5 of the true RTT
which was enough to cause a bit error. Nevertheless, ap-
plying the error-correction algorithm, we were successfully
able to correct this bit which resulted in the success of iden-
tification. Note that, because we adopt the 5th-percentile,
our attack is resilient to outliers which are too late, but it is
prone to those which are too early.

Another case of failure was for Tumblr/Tethering,
where a non-target user was incorrectly identified as a target.
This is a rare case where a significant difference of around
p < 0.01 happened to occur when comparing the two sets of
30 non-blocked requests. This example also benefited from
the error-correction algorithm; without error-correction this
visitor would have been identified as another user, but with
Reed-Solomon code, although the error was not correctable
due to too many errors, the error was still detectable. In such
a case, we can still prevent mis-identification by concluding
that the membership test failed and restarting the test.

6.3 Time to Complete the Attack

The shorter the time required for the attack, the more feasi-
ble the threat is. While the total number of requests can be
calculated beforehand, the time required to complete these
trials is dependent on the actual RTT; therefore, it needs to
be evaluated experimentally. Figure 7 shows the relation-
ship between the number of trials and the required time for
each service.

The “upper bound” value shown for each service as-
sumes the request with whichever has the larger of the
blocked/non-blocked RTT values, that is, it assumes the case
with the longest time needed for identification; i.e., it is the

Fig. 7 Number of requests vs. time.

worst case. Conversely, the “lower bound” value assumes
the request with whichever has smaller value of the two,
that is, it assumes the case with the shortest time needed for
identification; i.e., it is the most optimistic case. The num-
ber of trials issued in parallel was set to 6, which is the de-
fault maximum number of concurrent connections allowed
on major browsers such as Chrome, IE, and Firefox.

The total number of requests needed to make an m-bits
decision, or in other words, to identify the target within 2m

users, is mk+2×30 when k0 = 30. For example, for m = 24,
or targeting 16 million users, the total number of requests
needed is 780 when k = 30. This would require 20–50 sec-
onds for Facebook, 32–98 seconds for Twitter, and 64–68
seconds for Tumblr. According to Table 4, in the case of
Twitter, we have sufficient accuracy even with k = 10. The
number of necessary trials is 300 with this setting, and the
time required is 12–37 seconds. Moreover, we can observe
that we can achieve sufficient accuracy even with k = 3 on
Facebook. The total number of requests is 132 which only
takes 4–8 seconds.

7. Discussion

In this section, we discuss the attack’s principle, practical
aspects, known limitations, and ethical considerations.

7.1 Principle of the Attack

We argue that the most fundamental assumption of our at-
tack is the presence of the visibility control property in the
system, that is, “given a multi-user web service, there ex-
ists a way for a (rogue) user to control what other users
see, individually for each user”. To be more formal, the
part “what other users see” can be replaced with “any ob-
servable side-effect of the system caused by a certain action
taken by a user”. This assumption combined with a tim-
ing side-channel attack, which enables the attacker to steal
this information from outside the system, is our attack’s big
picture. Because closing a side channel completely is well-
known to be difficult, we believe that this visibility-control
assumption is the main principle of this attack. In the case
of our scenario, the ability to build signaling accounts using
user blocking corresponds to this principle.

We stress that other services under this assumption,
even those without user blocking but with a similar mech-
anism such as group invitations or file access permissions,
may also be subject to a similar class of attack. Still, the so-
cial web/user-blocking example that we used in this paper is
by far the most practical application. This is likely because
it satisfies several additional conditions: (1) the control can
be done without the target’s approval or notification and (2)
the control can be done at a fine granularity, i.e., the different
bits of information assignable per user is large. More specif-
ically in our case, condition (1) is almost always achieved
as an inherent nature of user blocking and condition (2) is
achieved with unlimited granularity, in theory, via the cre-
ation of an arbitrary number of signaling accounts. Even
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though we omit further discussions concerning the presence
of other such properties or the exploitability of similar sys-
tems, we believe that there is a need for further study con-
cerning this subject.

7.2 Practical Aspects

Here we describe some of the applications and characteris-
tics that extend and strengthen our attack from a practical
perspective.

Target List Building. With our attack, it is assumed that
an attacker knows the identity of a victim account in ad-
vance, implying she/he has a list of identities for the tar-
get users. Thus, building a target list is a crucial factor for
attack success. A limited set of selected accounts and un-
specified large number of accounts are both attractive tar-
get candidates for an attacker. The former will include fa-
mous people (e.g., politicians, corporate officers, celebrities,
YouTubers) or intimates of the attacker. In such cases, the
target list can be built based on the attacker’s knowledge or
the existing open list [11]. The latter† is realistic by using
automation techniques, in particular, chasing the chain of
friends’ friends [12], [13]. Ugander et al. [14] revealed that
99.91% of Facebook users belong to a single huge relation-
ship graph, and Dey et al. [12] found that 82.73% of users
publish their friend lists. Depending on the service feature,
user searches and user groups may be useful for user enu-
meration. Some services, such as Twitter, can list all ac-
counts simply by incrementing a numerical user identifier.

Identity Linking. User identification is only threatening
if the identity is linked with another piece of information
meaningful to the attacker. In the case of our attack, the
most basic form of linking can take the form of linking the
user’s identity with the fact that the user has visited the web-
site prepared for the attack. In this case, if the web content
reflects the visitor’s preference in any way, it may become a
privacy concern. This is suitable not only for advertisement
or access analyses, but also for various social engineering
attacks or for blackmailing those who have accessed sites
hosting pornographic content or illegal content such as pi-
rated software. In addition, our attack can be implemented
to reveal accounts on multiple services simultaneously and
linking these accounts together could significantly worsen
the impact of a privacy leak.

Another form of linking occurs when a person is in-
duced to access the web server via an extra hop through
another medium, resulting in a linking between the target’s
identity and the medium used. For example, on a social web
service where the target’s identity is already known, an at-
tacker can send the target a message containing the URL of
the web server. Note that this would allow the attacker to
link even the web services which our attack cannot be ap-

†Even in the latter case, it is reasonable for the attacker to cre-
ate subsets of all enumerated users according to user attributes (na-
tionality, age, school, company) and reduce the number of user
blocks. We discuss the limit of user blocking in Sect. 7.3.

plied to. Similarly, we can link non-web services, such as
email or mobile text messages, which would result in link-
ing an email address or phone number with a social account.
Further, we can also link the target’s physical identity, such
as the target’s physical presence or their residence, by plac-
ing or mailing a physical object, e.g., a poster or a flier, with
URL, QR code or NFC tags printed on them. Note that,
even though it may appear that revealing additional identi-
ties of a target when the target’s other identities are already
known is not so significant, it could lead to the identifica-
tion of a target’s anonymous account that cannot otherwise
be discovered in a straightforward way.

Group Identification. Even though we have focused on the
goal of user identification in this paper, we can easily ex-
tend this goal to group identification, that is, identifying not
the user’s exact identity but more general properties such
as gender, nationality, or interests. The attacker could map
each user to a bit array corresponding to the target attribute
collected from the structured information available on the
social web service. Note that this can be seen as a general-
ization of the user-space partitioning described previously,
where a user space corresponds to a group of users with an
arbitrary size mapped to a certain attribute. Group identifi-
cation can be used by advertisement providers to track the
visitor’s attributes without unnecessarily revealing their user
account. Note that the number of bits required for group
identification would typically be much lower than that for
user identification, making this attack significantly easier to
execute than user identification.

Authentication-backed Identification. One major strength
of our approach is that it is backed by the identity infor-
mation guaranteed by the authentication system of the ser-
vice, making it resilient against spoofing or misidentifica-
tion, both of which many other methodologies suffer from.
To give a simple example, when using an IP address for
identification or even tracking, IP spoofing or ambiguity
due to NAT or dynamic IP would interfere with this pro-
cess. Note that social web service accounts are increasingly
used as a building block in the modern web’s authentica-
tion infrastructure. It is still possible to perform spoofing
and one way is to create an account trying to mimic one’s
identity; however, scrutinizing the account content would
usually easily reveal whether it is a spoofed account. An-
other way is to use a stolen account, but in this case, the vic-
tim user should be worried about much more serious prob-
lems than privacy leakage. In addition, because authenti-
cation is independent of the environment, it enables cross-
environment (e.g., cross-device and cross-browser) identifi-
cation and tracking, which is often difficult to achieve using
other approaches.

7.3 Limitations

Login State Persistence. Our attack relies heavily on the
assumption that the target user’s service login state is alive
while the user browses other websites. This assumption
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is reliant on the web cookie mechanism; therefore, the
cookie’s expiration time or the user configuring the browser
to clear cookies on closing the browser may affect the avail-
ability of our attack. Social web services, fortunately, tend
to set a relatively long or even no expiration time, as seen in
the commonly available “keep me logged in” features [15].
This is likely due to the incentives to service providers from
a marketing perspective, e.g., tracking and advertisement,
contrary to security-critical services such as Internet bank-
ing that set a short expiration time. In addition, users would
lose the convenience of being able to access the service
without the need to login every time, which may be a disap-
pointing trade-off, especially for social web services which
often assumes constant usage. Note that, simply determin-
ing whether a user is logged in to certain services can be
accomplished in much more lightweight ways [16], which
can also be used in our attack to pre-select the services to be
targeted.

User Environment. Our results from field experiments in
Sect. 6 indicate that our attack is almost completely success-
ful with various network environments and browser engines.
However, we recognize that we could not consider all Inter-
net user conditions. Especially, a non-negligible portion of
users today access social web services from their mobile de-
vices, so whether or not the attack is feasible in this realm
is an important question to explore. For recent mobile plat-
forms such as Android and iOS, the mechanics of most web
browsers as well as the effective performance of the hard-
ware and network are not significantly different from those
of a PC; therefore, they are expected to yield sufficient RTT
differences making our attack feasible. We partially proved
this in our experiment with the tethering environment. The
primary concern instead is the unique software ecosystem
of mobile devices: many services encourage users to use a
service-dedicated app instead of a browser to access their
service. Even though some collaborative features such as
social plug-ins or single sign-on may still urge some mo-
bile users to log on via a browser, this ecosystem will surely
limit the target coverage of our attack to a certain degree.
We believe that a possible attack vector for this scenario
which may need an attention might be an exploitation of
a mobile platform-specific side channel, e.g., Android’s In-
tent and shared memory [17], to bypass the app sandbox,
analogical to how our attack exploited a browser timing side
channel to bypass the same-origin policy, but we leave fur-
ther discussions on this for a future study.

Limits on Blocking. For most services, limitations on the
total number of users allowed to be blocked or the rate at
which blocking requests can be issued from a single account
are not explicitly stated. We have experimentally confirmed
that at least ten million users on Twitter and three million
users on Facebook and Tumblr were actually blockable over
five days using a single account, and only DeviantArt and
eBay seems to have had a limit on the maximum number of
blocks per account. Also, Instagram appears to have had a
limitation on the rate, i.e, the number of accounts that can be

blocked per minute. As we have shown in Sect. 2.2, neither
disabling blocking nor posing a limit on it, is desirable from
the viewpoints of the actual usage of the service and users’
expectations. However, having limits on the total number
of users to be blocked blocking may interfere with the pro-
cess of building a high-coverage signaling account. Still,
user-space partitioning would help alleviate this limitation
and much of the effort for building signaling accounts is re-
quired just once, implying that attackers are not so exceed-
ingly time-constrained when performing this task.

Length of Visit. As shown in Sect. 6, the attack can be exe-
cuted in a realistically short time. In certain circumstances,
however, such as when the RTT is high or when there is
a need to use user-space partitioning, which increases the
number of requests, it may be difficult to keep the user on
the same webpage long enough for the JavaScipt code to
finish. Even if the attack duration is short, because the be-
havior of a user is often unpredictable, a shorter attack is
always preferable. A trivial approach to this problem is to
prepare webpage content that is sufficiently “attractive” to
cause the users to stay longer, but this is very user specific.
Another solution is to save and restore the attack state be-
tween multiple attack sessions. By having the JavaScript
code send partial results to the server as it attacks, even if the
attack terminates before finishing, the attack can be resumed
at another session from where it left off. Training data may
be reused or not depending on the “distance” between each
attack session, e.g., the time elapsed between sessions. An-
other solution is to open pop-up windows in the background
or a tab and execute the attack there, hoping that the user
would not notice or care to close it immediately.

7.4 Research Ethics

In Sect. 2.2, all the data have been collected with user con-
sent, and we followed guidelines presented by the ethics
committee of Waseda University. To evaluate the feasibility
and impact of the attack techniques on social web service
users, experimenting with attacks on actual social web ser-
vices cannot be avoided. All attacks in our experiment were
checked manually and only generated a restricted amount of
request. As a result, our experiment was carefully controlled
and only generated a restricted amount of traffic (requests),
which did not increase the workload of the sites and did not
undermine the quality of their services. Furthermore, our
experiment performed against our own accounts. Therefore,
actual users of the services we examined were not directly
involved in our attacks.

8. Defense

In this section, we discuss defensive measures that can be
taken against our attack. We also present several counter-
measures adopted by today’s popular social web services.
These countermeasures were developed with our aid.
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8.1 Server-Side Defenses

Access Validation. Token-based defenses are widely
adopted to prevent CSRF attacks in general. The server ap-
pends a one-time random string, or token, to each URL link
generated and verifies it when the link is accessed. A de-
fense mechanism that validates a referrer is also effective
because it can accept requests from the whitelisted URLs
while rejecting all other illicit requests. These prevent any
third-party from generating a valid link; therefore, the at-
tacker will not be able to receive valid responses containing
information useful for the attack as long as the access val-
idation process is applied before the block checking at the
server side. A major drawback of these defenses is that legit-
imate requests are also affected and result in consequences
such as breaking search engine results or prohibiting any
means of link sharing, including those on blog posts and
emails. Promising approaches which acquire user contents
by using JavaScript’s XMLHttpRequest with a valid token
such as placeholder [8] and double-submit cookie [18] have
been proposed, but they still require a change in the system
architecture design and also the delay caused by the extra
hop may negatively affect the user experience.

Response Time Control. The server could adjust the re-
sponse time to minimize the block/non-block RTT differ-
ence. One approach is to artificially equalize the response
times by adding delays to whichever has the shorter re-
sponse time. Another approach is to randomize the response
time by injecting delays of random lengths. However, ei-
ther approach would impose a non-negligible performance
degradation experienced by the user. In general, this type of
timing side-channel defense is difficult to perfect; the pro-
found study results in this area provide advanced attackers
with various ways to amplify such differences at the cost of
some increased effort, as we also have exemplified in this
paper. In addition, the network delay is often uncontrollable
from the service side so a perfect control is difficult to at-
tain from the server side. Note that such types of server-side
defenses are often thwarted by other timing side-channel ap-
proaches, such as those leveraging the content cache [8].

Usage Restriction. Our attack, when implemented in a
straightforward manner, may exhibit behavioral character-
istics not usually seen in the normal usage of the service.
One case of such an anomaly would occur in the prepara-
tion process of a signaling account, which requires a mas-
sive number of blocking requests to be issued within a short
time. Another is in the process of launching the attack from
a browser, which causes an abnormal number of GET re-
quests to be issued. The service can either restrict this in
the form of the rate limit, CAPTCHA, or some means of
heuristic anomaly detection. However, these defenses are
expected to function only as a mild mitigation, because ad-
vanced attackers have historically been able to circumvent
these types of defenses. The most extreme form of restric-
tion is to remove the user-blocking capability from the ser-

vice. All these types of restriction-based measures, however,
lead to an undermining of the ability to suppress those who
truly needs to be blocked, which may result in a degradation
of the service quality.

8.2 Client-Side Defenses

User. Defenses that can be taken by a user alone are limited
to quite trivial ones. One approach is to isolate the brows-
ing environment in which the web service is used, from that
used for other purposes. This can be done, for example, by
using the private browsing feature commonly available in
modern browsers, logging out of the service when not in use,
or simply using a different browser. Another approach is to
restrict the execution of JavaScript using browser plug-ins
such as NoScript [19], which would severely impair the at-
tacker’s capability to carry out such an attack. Obviously, all
of these measures greatly increase the user’s cost of not only
using the service but also web browsing in general. Further,
it would deactivate some features such as social plug-ins or
advertisements that benefit both of the user and the service
provider.

Web Browser.
SameSite is a cookie attribute that allows flexible con-

trol of sending cookies in cross-site requests. It is necessary
for a browser to adopt this feature, and the web service ex-
plicitly declares it in the HTTP header. Since browsers be-
have as if a user is not logging in when they make cross-
site requests from a third-party site to a social web ser-
vice, the difference in RTTs between blocking and non-
blocking states disappears in principle. A Web service that
adopts SameSite has two options: samesite=strict and
samesite=lax. For the strict option, browsers remove
cookies from any cross-site request, including redirects and
link clicks. As with access validation, legitimate page tran-
sitions may be disturbed as well. For the lax option, how-
ever, browsers do not prevent the sending of cookies for
cross-site requests with top-level navigation. Thus, the lax
option can be used to defend against various CSRFs in-
cluding timing attacks while not sacrificing user experience.
However, samesite=lax still interferes with the function-
ality of some social plug-ins that leverage cookies from the
social web such as Facebook Comments.

Equalizing the response times, for example, by inject-
ing delays to the processing time, is also a possible mea-
sure that can be taken on the browser side. Further, the de-
tection of anomalies such as frequent errors resulting from
failed rendering may be another option. However, these ap-
proaches are often only viable for a certain class of timing
side channels; they tend to be thwarted eventually by other
newly developed timing attacks using different approaches,
as exemplified by the attack using the browser cache men-
tioned in another study [8]. Cao et al. [20] proposed Deter-
ministic Browser, which prevents JavaScript program from
accessing the physical clock when a secret event is running
at the same time. Instead, they provide an auxiliary clock
that indicates virtual time to make timing attacks impossi-
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ble. This approach works against our attack, but it can hin-
der the browser rendering for some websites.

8.3 Responsible Disclosure

Even though the attack technique in this paper does not arise
from a specific social web service, according to the principle
of responsible disclosure, we have reported the details of our
attacks and the experimental results to the relevant social
web service providers and browser vendors to mitigate the
attacks and improve future security design of social web.

Through these activities, Twitter has been able to pre-
vent the threat of account identification by changing their
specifications [21] to improve their security mechanism.
Their primary defense approach is using the SameSite at-
tribute. This is currently working for most users, as we
and Twitter encourage major browser vendors (including
Microsoft and Mozilla) to adopt SameSite. For older
browser versions, Twitter’s other mitigation still prevents
our attack. It is referrer-based access validation, but a user
with invalid referrers is not simply denied. Instead, such a
user is redirected to a stepping-stone page with no difference
in RTT with only minimal JavaScript code then redirected
again to the destination page via JavaScript. This works as
a defense because the time taken to redirect via JavaScript
cannot be measured under the constraints of the same-origin
policy. While this approach slightly increases the number of
requests, users coming from external links reach the desired
content on the social web. However, the user cannot use
browsers (or browser extensions) that remove the referrer
for privacy.

Although we refrain from disclosing the brand names,
several other service providers and browser vendors have
already finished implementing defenses and some are in the
process.

9. Related Work

We present previous studies concerning timing attacks,
which is the fundamental technique of our method uses to
compromise user’s privacy. In addition, we introduce other
side-channel leaks based on the browser functionality and
methods to identify and track users.

9.1 Web-Based Timing Attacks

A timing attack is one type of side-channel attack that has
been studied primarily in cryptography for more than two
decades. It typically exploits the execution time or power
consumption of a cryptosystem to infer secret key and pri-
vate information [22], [23]. Studies of timing attacks have
expanded to web-based systems regardless of the cryptosys-
tem that exploits the communication time and size of the
web content. Bortz et al. presented a pioneer work on web-
based timing attacks; they classified web-based timing at-
tacks into direct timing and cross-site timing [5]. Our pro-
posed method is classified as a web-based cross-site timing

attack.
A direct timing attack directly measures the response

times from a system, e.g., a website, to extract private in-
formation from a system. Bortz et al. proposed a method to
expose valid user names and the number of private photos
from a website by measuring the response time of HTTP [5].

Cross-site timing attacks indirectly measure the re-
sponse times or content size of web on a browser to extract
private information from a browser or website. It enables
a malicious website to obtain information about the tar-
get browser’s view of another website using cross-site con-
tent that often violates the same-origin policy [24]. Meth-
ods to break the same-origin policy and their countermea-
sures have been presented since 2000 [25]–[28]; however,
the many of cross-origin techniques are still effective on
modern web browsers. Liang et al. leveraged several CSS
features to indirectly monitor the rendering of a target re-
source [29]. Goethem et al. proposed a cache-based timing
attack using HTML5 functionalities, which can bypass the
same-origin policy, to estimate the size of a cross-origin re-
source [8]. Gelernter et al. presented a cross-site search at-
tack on well-known web services to distinguish between the
loading time of empty and full responses, which enables an
attacker to distinguish sensitive data of target users in the
records of the web services [30]. Jia et al. demonstrated a
geo-location inference attack on well-known web services,
by using the load time of location-sensitive resources left
by geography-specific websites (e.g., Google’s local do-
main) [31]. Our method is not new in the context of cross-
site attacks; however, the idea is unique in that user block-
ing, which is a fundamental functionality of social webs, can
be used to distinguish between the blocked and non-blocked
states, consequently, to identify their social accounts.

9.2 Side-Channel Leaks on Browsers

A side-channel attack on a browser without timing features
is another class of privacy attack. To infer the status of
a cross-origin resource, Lee et al. developed a URL sta-
tus identification attack using ApplicationCache that ex-
ploits cross-origin resource caching [16] and they suggested
advanced privacy threats using this attack, e.g., login status
determination and internal web server probing. A history-
stealing attack is a typical attack that extracts the browsing
history of URLs [9], [32]. This attack depends on the fact
that a web browser handles CSS properties of URL hyper-
links differently depending on whether the URL was pre-
viously accessed by the web browser [33], which leads to
allowing a client-side script to access such properties. To
fix this, Baron proposed a solution that blocks scripts from
accessing the CSS properties of hyperlinks, and all popu-
lar browsers (e.g., Firefox, Chrome, Safari, and IE) have
adopted this solution. As a result, this type of history steal-
ing attack no longer works in the latest versions of these
browsers [34], [35].
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9.3 Social Account Identification

While various methods have been proposed to effectively
track browsers on the Internet (e.g., cookies, browser cache,
and browser fingerprints [36]–[38]), these tracking methods
focus on identifying distinct browsers rather than the user of
the browsers. The goal of our proposed method is to iden-
tify the user (i.e., the social account) which differs from the
above browser tracking methods. Many of the studies in-
troduced in Sects. 9.1 and 9.2 mentioned that their proposed
methods could be used for inferring the status of social ac-
count or identifying social account [5], [9], [16]. The differ-
ence of response time of login page was used for inferring
account validity [5]. With a similar motivation, conditional
redirections of the HTTP URLs was used for distinguishing
whether a victim web browser is logged in to the web ser-
vice [16]. The combination of group membership informa-
tion, e.g., group ID or group directory in browser’s access
history, was used for identifying a social account [9]. These
differences are extracted from previously provided pages,
e.g., login pages and group membership pages. In con-
trast, our method is unique in that an attacker can fully con-
trol the visibility of pages in order to create discriminable
differences.

10. Conclusion

This work presents a practical side-channel attack that iden-
tifies the social account of a user visiting the attacker’s web-
site. It exploits the user-blocking mechanism, or the visi-
bility control property, commonly available in most social
web services today to create a controllable side channel that
provides the attacker with complete and flexible control over
the leaked information, be it informative enough to uniquely
identify the user or be it highly resilient to noise. With ex-
periments, we demonstrated that our attack is in fact appli-
cable to current mainstream social web services today and
we argued that defending against this threat would not be
easy without imposing a negative impact on the relevant
services. It is ironic that the blocking feature designed to
suppress harmful users can now be turned against harmless
users; some form of mitigation is urgent and a reworking
of the design of this feature is suggested and major services
and browsers adopted new security features.
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