IEICE TRANS. INF. & SYST., VOL.E103-D, NO.6 JUNE 2020

1309

| PAPER Special Section on Knowledge-Based Software Engineering |

Interactive Goal Model Construction Based on a Flow of Questions

Hiroyuki NAKAGAWA ", Member, Hironori SHIMADA, Nonmember, and Tatsuhiro TSUCHIYA', Member

SUMMARY Goal modeling is a method that describes requirements
structurally. Goal modeling mainly consists of two tasks: extraction of
goals and organization of the extracted goals. Generally, the process of the
goal modeling requires intensive manual intervention and higher model-
ing skills than the process of the usual requirements description. In order
to mitigate this problem, we propose a method that provides systematic
supports for constructing goal models. In the method, the requirement ana-
lyst answers questions and a goal model is semi-automatically constructed
based on the answers made. We develop a prototype tool that implements
the proposed method and apply it to two systems. The results demonstrate
the feasibility of the method.

key words: requirements analysis, goal models, interactive tools

1. Introduction

Requirements analysis contains requirements extraction, in
which an analyst elicits requirements of a system under de-
velopment. Since the requirements of a software system are
often vast and diverse, it is usually difficult to extract all of
the requirements and construct a model that relates the ex-
tracted requirements to each other. To support the require-
ments extraction, several requirements models are proposed.
For example, use case diagrams and goal models, such as
KAOS [1], i*[2], NFR [3], and AGORA [4], can be used to
visualize requirements in a structural manner. While the for-
mer is mainly used for addressing functions that a system
should provide, the latter is used for visualizing relation-
ships between requirements. In this paper we focus on the
latter, i.e., the goal model.

A goal model describes a set of goals and relationships
among the goals. The goal model can visualize the structure
of requirements; however, constructing a goal model is still
difficult, especially in the following two aspects:

(1) Constructing a correct goal model: Goals are decom-
posed into smaller goals in a goal model. Goal relation-
ships have to be defined among these goals so that the
relationships can correctly reflect requirements. How-
ever, determining such correct relationships is not an
easy task.

(2) Extracting requirements without omission: All re-
quirements should be extracted in the requirements

Manuscript received August 19, 2019.
Manuscript revised January 27, 2020.
Manuscript publicized March 6, 2020.
"The authors are with Graduate School of Information Science
and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: nakagawa@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.2019KBP0015

analysis phase. If the analyst fails to extract an im-
portant requirement, the omission might lead to a se-
rious problem in later development stages. However,
requirements are not always explicit and thus are often
subject to omission.

The objective of a series of our studies is to establish a
systematic goal model construction process. In our previous
work, we proposed a method of extracting goals based on
extraction rules to accomplish the second aspect [5]. The ex-
traction rules allow requirements analysts to identify some
implicit goals in requirements documents. In this paper, we
mainly focus on the first aspect. We propose a method that
supports goal extraction from requirements documents and
goal model construction. In our method, an analyst answers
to a flow of questions. Our method constructs a goal model
based on the answers. Since the questions are asked inter-
actively, the goal model is constructed semi-automatically.
We develop a prototype tool that implements the proposed
method. We evaluate our method by applying the method to
two examples of systems using the tool.

The contribution of this paper is thus the proposal and
evaluation of the goal model construction method. The
semi-automated construction provided by the method allevi-
ates many of the problems with manual construction. Man-
ual construction is inherently subject to human errors, which
may result in inaccurate or incomplete models. The auto-
matic nature of the proposed method can be useful for re-
ducing such human errors. It also reduces the fluctuation in
quality of resulting models caused by difference in skills of
analysts.

The remaining part of this paper is structured as fol-
lows: Sect.2 explains the background of our research;
Sect.3 describes our method for constructing goal mod-
els semi-automatically; Sect. 4 reports experimental results
of goal model construction; Sect. 5 discusses our approach
based on the experimental results; Sect. 6 describes poten-
tial threats to validity of the results; and finally, Sect. 7 con-
cludes this paper and describes future work.

2. Background

Some requirements models introduced in previous studies,
such as the use case diagram and the goal model, can be
used for requirements visualization. A goal model contains
goals, which represent requirements and are structured in
a directed acyclic graph (DAG). In the KAOS model, for

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

1310

IEICE TRANS. INE. & SYST., VOL.E103-D, NO.6 JUNE 2020

Interactive tool

implemented in Python

d

1.Split a requirements
description into
sentences

Document

Ask questions

(input)

2. Locate goals with
respect to the
questions flow

Answer the

4

3. Export the figure
of the goal model

questions Analyst

Goal model

(output) [

| NLTK |

| Graphviz |

Manually refined
the goal model

Fig.1 Semi-automated goal model construction process.

example, the goal located at the root node represents the
purpose of the system development and is in turn refined
into subgoals represented by child nodes of the root. The
subgoals are also refined into smaller subgoals.

Several studies address the tasks of requirements ex-
traction and goal model construction. Pimentel et al. [6] de-
veloped a web tool that supports goal modeling and state-
chart derivation from goal models. Rahimi et al. [7] pro-
posed the process of automatic extraction and visualization
of quality concerns. Our method extracts not only quality
concerns, but also functional requirements including excep-
tion handling. Nguyen et al. [8] proposed a semi-automated
goal-use case model extraction method which is based on
extraction rules. In our approach, we focus on a goal model
and its construction based on a questions flow. Franch
et al. [9] proposed a systematic method of constructing i*
strategic dependency models based on rules, criteria, ques-
tions, and patterns. Since the method is tightly tailored to
i* strategic dependency models, it is not possible to directly
apply it to goal model construction.

Several studies address analysis or evaluation of goal
models. Zee et al.[10] provided a framework for tracing
elements of goal models described in the goal-oriented re-
quirements language (GRL) to rationalize the models. Yu et
al. [11] proposed a method of mapping goal models to fea-
ture models based on mapping rules. They also proposed
an algorithm for mapping dependencies among actors to the
feature model. Santos et al.[12] proposed an alternative
concrete syntax for KAOS goal models and claimed that
the syntax improves cognitive effectiveness and increases
semantic transparency. Liaskos et al. [13] assessed user per-
ception of the meaning of the contribution link construct of a
goal modeling language. Han et al. [14] proposed the adapt-

requirement model, which integrates goal models and prob-
lem frames. They also provided UML profile to represent
the adapt-requirement model, facilitating use and manage-
ment of the adapt-requirement model. Piras et al. [15] pro-
posed the Agon framework that enables systematic accep-
tance requirements analysis. Nguyen et al. [16] proposed a
method of adapting a constrained goal model (CGM) tool
requirements changes. While most of the studies focus on
analyzing or reusing goal models, our study focuses on sup-
porting goal model construction.

3. Semi-Automated Goal Model Construction
3.1 Overview

This section presents an interactive goal model construction
method that allows an analyst to generate a goal model semi-
automatically by answering a questions flow. Figure 1 illus-
trates an overview of our goal model construction process.
The input of the process is a document written in a natural
language that contains requirements of a system; the output
is a constructed goal model. We define a set of questions
and implement a tool that interactively asks one of ques-
tions to an analyst. The tool is implemented in Python and
uses NLTK [17] for the natural language processing. The
tool first splits a document into sentences. Each sentence
may contain requirements that correspond to a goal. The
tool then asks questions based on the questions flow to the
analyst. By using the answers obtained from the analyst, the
tool decides the location of goals in a goal model. The tool
visualizes the constructed goal model using Graphviz [18],
which is an open source tool for drawing graphs specified in
the DOT language.

NAKAGAWA et al.: INTERACTIVE GOAL MODEL CONSTRUCTION BASED ON A FLOW OF QUESTIONS

1311

Table 1 A set of questions defined in this study.

| Question] Label
What is the purpose of the system? askPurpose
What is the goal description of the requirement? isGoal
What is the type of the goal? selectType
Is the goal X a subgoal of the goal Y? isSubgoal
Can these goals be aggregated? canAggregateGoals
What is the parent goal description of the child goals? askParentGoal
askPurpose | cissssusssasss ;
For each sentence | Define root goal
il
isGoal | aaeeaaas Define goal description
selectType s+arererenanas Define goal type
|
|
isSubgoal | ... Find parent (ancestor) goal
I

canAggregateGoals

=== Determine aggregate

sibling goals or not

askParentGoal

------ Define goal description

to aggregate sibling goals

Fig.2 Each question and its role in questions flow

The generated goal model may require further modifi-
cations due to some reasons, such as the incompleteness of
the input document. In this case, the analyst manually adds
or refines the generated goal model.

3.2 Questions

In order to construct a goal model, we have to define goals
and find relationships among the goals. Before defining a set
of questions, we set the following assumptions in our cur-
rent study: (1) the constructed goal model has only AND-
refinement links; (2) each sentence in the input document
contains at most one goal. Actually, these two assump-
tions are not strong because we can replace some AND-
refinement links to OR-refinement links and can decompose
the goal corresponding to a sentence after generating the
goal model. The aim of defining two assumptions is to sim-
plify the evaluation of the feasibility of our approach.

Base on the assumptions, we define six questions to
construct a goal model. Table 1 lists these questions, while
Fig. 2 shows their role in the questions flow. The first three
questions, i.e., askPurpose, isGoal, and selectType, are used
to define goals from the input requirements description.
The other questions i.e., isSubgoal, canAggregateGoals, and
askParentGoal, are used to find relationships among goals.
The details of the questions are as follows:

o askPurpose (What is the purpose of the system?):
The analyst answers the purpose of the system in a

short description. This question is intended to define
the root goal of a goal model. For example, if we de-
velop an ATM system, a possible answer to this ques-
tion is “Banking transaction automation.”

isGoal (What is the goal description of the require-
ment?): This question asks the goal description for a
sentence taken from the requirements description. As
stated, the proposed method regards each sentence of
the input requirements description as a candidate for a
goal. For the case of the ATM system, the sentence “A
customer must be able to make a cash withdrawal from
any suitable account linked to the card” can be summa-
rized as goal description “Make cash withdrawal.” If
the sentence does not represent requirements, the ana-
lyst skips the question to proceed to the next sentence.
selectType (What is the type of the goal?): The ques-
tion asks the type of an extracted goal. By doing
so, each goal is classified into one of the three types:
normal behavior, exception handling, and NFR (Non-
Functional Requirements). In requirements analysis,
exceptional case consideration is lacked because the
analyst tends to believe that the system and its envi-
ronment behave as expected [19]. Therefore, extracted
requirements in exceptional case (written in a require-
ments description) should be specified in a goal model
to remind the existence of non-extracted requirements
in an exceptional case. NFR also should be extracted
to ensure the quality of the system.

1312

IEICE TRANS. INE. & SYST., VOL.E103-D, NO.6 JUNE 2020

Algorithm 1 Overview of the question flow

Algorithm 2 rocareNB(ngoal): locating a normal behavior goal

1: // define the root goal

2: CREATE(root)

3: root.description « askPurpose.answer

4: for each sentence in a requirements description do
5 if isGoal.answer then

6: CREATE(ngoal) //define a new goal

7 ngoal.description < isGoal.answer

8 // set the type of the goal

9: ngoal.type « selectType.answer
10: switch ngoal.type do
11: case NB (=normal behavior type)
12: LocaTENB (ngoal)
13: case EH (=exception handling type)
14: LocatEEH(ngoal)
15: case NFR
16: LocaTENFR (ngoal)

e isSubgoal (Is the goal X a subgoal of the goal Y?):
The analyst answers this question by “Yes” or “No”.
If the answer is “Yes,” the goal X is located as a de-
scendant goal of the goal Y. If the answer is “No,” the
question is repeated until the parent goal is found.

e canAggregateGoals (Can these goals be aggre-
gated?): The question specifies a set of sibling goals
and asks whether these sibling goals need to be aggre-
gated. In the ATM example, sibling goals “Make cash
withdrawal” and “Make deposit”, which represent the
same transaction, can be aggregated. This question en-
ables to aggregate such goals.

¢ askParentGoal (What is the parent goal description
of the child goals?): The question concerns sibling
goals that are aggregated and is skipped if they are not
aggregated. The analyst answers the question with a
parent goal description. For the above ATM example,
the answer could be “Perform transaction.” Answering
this question yields a new goal and adds it to the goal
model as a parent of the sibling goals.

3.3 Questions Flow

We present the questions flow and the goal model construc-
tion based on it in the form of pseudo-code (Algorithms 1
and 2). Algorithms 1 represents the overview of the ques-
tion flow. The analyst first answers the askPurpose ques-
tion (“What is the purpose of the system?”). This answer
is located as the root goal in the goal model. The tool then
asks questions for each sentence in the input document. If
a sentence contains a requirement, i.e., a goal, the goal is
created and inserted in an appropriate position in the goal
model. In this case, the tool first creates a goal whose
description is the answer of the isGoal question (“What is
the goal description of the following requirement?”’). Next,
the tool finds the goal type of the goal by asking the se-
lectType question. As described in Sect. 3.2, we catego-
rize goals into three types: normal behavior (NB), exception
handling (EH), and non-functional requirements (NFR). Al-
gorithm 2 illustrates the process for locating a normal be-

1: var tmp « the most recent defined goal prior to ngoal
2: /[ask whether ngoal should be a subgoal of tmp or not
3: if isSubgoal(ngoal, tmp).answer then
4: // locate ngoal as the subgoal of tmp
5: tmp.addSubGoal(ngoal)
6: else
7: while True do
8: if tmp is the root goal then
9: FINDPARENT(ngOAl, tmp)
10: break
11: else
12: tmp < tmp.getParentGoal()
13: if isSubgoal(ngoal, tmp).answer then
14: // ask whether subgoals of tmp can be aggre-
gated
15: subs «— tmp.subGoals
16: if canAggregateGoals(subs).answer then
17: // insert a new goal to aggregate subgoals
18: CREATE(insGoal)
19: insGoal.description
20: « askParentGoal(tmp.subGoals).answer
21: insGoal.setSubGoals(tmp.subGoals)
22: tmp.releaseSubGoals(tmp.subGoals)
23: tmp.addSubGoal(ngoal)
24: else
25: FINDPARENT(ngoal, tmp)
26: break

havior goal. Other two types of goals are handled by al-
gorithms similar to Algorithm 2, implemented as the func-
tions named “LocateEH(ngoal)” and “LocateNFR(ngoal)”,
respectively. These functions have the same structure of
“LocateNB(ngoal)” (Algorithm 2) with the difference of the
goal type to be gathered.

To determine the suitable position of goals, Algo-
rithm 2 first traces upward in the goal model and then moves
downward to focus to the most suitable position. The “find-
Parent(g/, g2)” function in Algorithm 2 has the role of ex-
ecuting the latter part. The function searches for the most
suitable position, that is, the function finds the most suitable
parent goal to locating the goal gl by continuous asking the
“isSubgoal” question. The question starts from the inquiry
of the relationship between g/ and g2, i.e., whether the goal
g2 is the parent goal of g/ or not. This question is repeated
by changing the candidate parent goal. The candidate parent
goal is changed by following the breadth-first search in the
subtree whose root note is g2. The question stops when all
of the same depth goals are not the parent goal of g/. Then
the goal g/ is located to the suitable position according to
the inquiry results.

As a running example, let us consider part of a require-
ments description of an ATM system [20] as shown below.

(1) The ATM must be able to provide the following ser-
vices to the customer: (2) 1. A customer must be able to
make a cash withdrawal from any suitable account linked
to the card, in multiples of $20.00. (3) Approval must be
obtained from the bank before cash is dispensed. (4) 2. A
customer must be able to make a deposit to any account

NAKAGAWA et al.: INTERACTIVE GOAL MODEL CONSTRUCTION BASED ON A FLOW OF QUESTIONS

1313

Banking transaction

Banking transaction
automation

automation

Banking transaction
automation

(a) Q

O

Service to

Service to

customer

O customer

Q

(e) Q (f)

Service to
customer (b)

Made cash
withdrawal

Approved
from bank O

/Withdrawal/ Made deposit

(c)

: Normal behavior (NB) goal

@ : Newly generated parent goal

A

(d) Made cash
withdrawal

Approved
from bank

Fig.3 An example of a goal model construction.

linked to the card, consisting of cash and/or checks in an
envelope.

The description contains four sentences. We first an-
swer the askPurpose question so that the root goal “Banking
transaction automation” ((a) in Fig. 3) is created. The goal
“Service to customer” ((b) in Fig.3) corresponding to the
first sentence is created by asking the next question. Since
only the root goal is defined in the goal model at this time,
the goal (b) is defined as a subgoal of the root goal. The goal
“Make cash withdrawal” ((c) in Fig. 3) is then derived from
the second sentence. The isSubgoal question in Algorithm 2
is used to decide the location of the goal. In this example,
the goal is determined as a subgoal of (b); thus, it is attached
to (b). Next, the goal “Approved from bank” ((d) in Fig. 3)
is created from the third sentence and added to the model as
a subgoal of (b). After that, the goal “Make deposit” ((f) in
Fig. 3) is derived from the forth sentence. The goal is added
to the model as a child node of goal (b). Finally, (c) and (d)
are aggregated, resulting in creating their new parent goal
“Withdrawal” ((e) in Fig. 3).

4. Experiment

To evaluate our goal model construction process, we con-
structed goal models for two sample software applications,
an ATM system [20] and a meeting scheduling system [21].
We used two documents provided in [20] and [21]. This
experiment consisted of two parts. First, we constructed
goal models with two methods, i.e., manual construction
and semi-automatic construction using our process, and
then compared the two models (Exp 1). In the semi-
automatic goal model construction, we used the tool that
implements the proposed process. Next, we quantitatively
compared goal model constructions of several examinees.
The examinees constructed goal models manually and semi-
automatically (Exp 2). This section reports the results of
these experiments.

4.1 Expl

Comparing the two goal models for each of the systems, we
found that the relationships among goals are correctly de-
fined. Two goal models constructed for the ATM system are
displayed in Fig. 4. Hereafter we call the model constructed
using the proposed process the “Auto”” model and the model
constructed manually the “Manual” model. Although Re-
gions (a) to (e), surrounded by red dotted lines, are struc-
turally different between the two models, careful observa-
tion reveals that all of them represent almost the same rela-
tionships.

In regions (a) and (d), some goals appear only in the
Auto model. For example, while a goal in Region (d) of the
Auto model aggregates some goals about ATM services, this
goal does not appear in the Manual model. The difference
in goal decomposition granularity can be seen in Regions
(b), (c) and (e). One of the goal model construction guide-
lines [21] addresses that goals should be decomposed until
all of the subgoals can be achieved by individual single ac-
tors including the system to be developed. The proposed
process, however, is applied under the assumption that at
most one goal is derived from each sentence of the input
document. This assumption causes the differences of the
goal granularity.

Difference of parent-child relationships is observed in
(f). A goal in Region (f) of the Manual model is placed
in different regions in the Auto model, i.e., Regions (f-1)
and (f-2). The separation is caused by the description of
the input document. These separated goals are described in
different paragraphs of the document. In our algorithm, the
isSubgoal question, which asks whether a specified existing
goal is the parent goal of a new goal, is continuously asked
from the most recently added goal. Thus, when more than
one goal is appropriate as a parent goal of the new goal, the
new goal will be attached to one of the candidate goals that
is visited first.

Table 2 lists the quantitative evaluation results. As de-

1314

— Proposed Method: Semi-automatically constructed ATM goal model

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.6 JUNE 2020

— Manual: Manually constructed ATM goal model

_——— -

(b) =

Withdrawal

Fig.4 Comparison of goal models constructed in two methods

scribed above, the difference in the number of goals be-
tween the manually constructed and tool-assisted goal mod-
els of the ATM system was caused by the goal decompo-
sition granularity. By comparing the two goal models, we
found that the difference in the meeting scheduling system
stemmed from the same reason.

While the numbers of goals in the tool-assisted goal
models are similar between the ATM system and the meet-
ing scheduling system, the total number of questions shows
large difference. The difference stems from the structure of
the goal models. From Table 2, we can find that the number
of the isSubgoal questions is dominant. We can also observe

that the number of times of asking the isSubgoal question for
the meeting scheduling system is approximately 1.6 times
larger than that of the ATM system. Since this question is
asked repeatedly until a parent goal is found, the number
of times of asking this question depends on the goal model
structure, i.e., the structure of the document.

Table 2 also shows that while the times required for
constructing the goal model for the ATM system were sim-
ilar between the manual and tool-assisted construction, the
times for the meeting scheduler system were largely differ-
ent. The difference seems to be caused by the diversity of
the system functions, i.e., the diversity of requirements for

NAKAGAWA et al.: INTERACTIVE GOAL MODEL CONSTRUCTION BASED ON A FLOW OF QUESTIONS

the system. Since the meeting scheduler has more various
functions than the ATM system, the goal model of the meet-
ing scheduler must have various goals to be achieved. In this
situation, the examinee needed to carefully decide where to
place the goals when manually constructing the goal model.
The tool helped the examinee decide the place by asking the
relationships between goals.

42 Exp2

Next, we quantitatively compared goal models constructed
by six examinees. All examinees were researchers or stu-
dents in the software engineering field: three of them had
experiences of goal modeling (experienced analysts), and
the others did not have the experiences of goal modeling
(beginning analysts). All of the examinees constructed goal
models, which were for the meeting scheduling system used
in Exp 1, using our tool first, then at least one week later,
they constructed goal models manually.

Table 3 lists the quantitative results of Exp 2. From the
results, even though the numbers of questions were widely
different among examinees, the tool-assisted goal modelling
was able to make a goal model faster than the manual con-
struction of every examinee. We also found that every set
of the goals in the tool-assisted goal model except the one
constructed by examinee E was basically the subset of the

Table 2 Number of questions and goals. “MS” stands for the meeting
scheduling system.
| Question | ATM | MS |
askPurpose 1 1
isGoal 31 33
selectType 30 30
isSubgoal 97 156
canAggregateGoals 16 32
askParentGoal 1 0
[Total | 176 | 252 |
Number of goals (manual) 35 35
Number of goals (tool-assisted) 32 31
Elapsed time (manual, minutes) 40 61
Elapsed time (tool-assisted, minutes) 33 17

Table 3

1315

goals in the manually constructed goal model. Almost all of
the additional goals in the manually constructed goal mod-
els corresponded to further concretized goals. This phe-
nomenon is caused by the difference in the goal decomposi-
tion granularity, described in Sect. 4.1. Moreover, we found
that all examinees extracted a similar number of goals in the
tool-assisted construction. Examinees E and F extracted rel-
atively small or large number of goals in their manual con-
structions, respectively. Constructing a goal model based on
a certain level of goal granularity is an advantage of using
our tool.

5. Discussion

The research questions in this evaluation are as follows:

RQI. Can the proposed process construct correct goal
models?

RQ?2. To what extent does the proposed process decrease
construction cost?

The subsequent subsections answer the research questions
in the light of our experiments and discuss the limitations of
our process.

5.1 RQI1. Can the Proposed Process Construct Correct
Goal Models?

The result obtained from Exp 1 demonstrates that the tool
helps to construct a goal model that is similar to a goal
model constructed manually. Differences in two goal mod-
els, i.e., the manually constructed and tool-assisted goal
models, are caused by the following factors: the order of
sentences in the given document, and the difference in the
goal decomposition granularity. Table 3 shows that the man-
ually constructed goal model contains more goals than the
tool-assisted goal model for every examinee except E. The
difference in the number of goals comes from the difference
in the goal decomposition granularity. This difference stems
from the assumption of the tool, i.e., each sentence in the
document has at most one goal. An extension of the tool
that can remove this assumption will make two goal models

Experimental results in Exp 2. Examinees A, B, and C have experiences of goal modeling

(experienced analysts). The other examinees D, E, F are engaged in the study of software engineering
but do not have the experiences of goal modeling (beginning analysts). The result of the examinee A is
the same as the result listed in the column MS in Table 2

| Question | A] B J] ¢ | D [E [F [Mn | Max | Avg |
askPurpose 1 1 1 1 1 1 1 1 1
isGoal 33 33 33 33 33 33 33 33 33
selectType 30 27 28 27 31 27 27 31 28.3
isSubgoal 156 128 163 66 127 72 66 163 118.7
canAggregateGoals 32 20 11 4 30 11 4 32 18
askParentGoal 0 0 0 0 0 0 0 0 0

[Total [252] 209] 236] 131 [222 144 131 | 252] 199 |
Number of goals (manual) 35 36 37 36 29 41 29 41 35.7
Number of goals (tool-assisted) 31 28 29 28 32 28 28 32 29.3
Elapsed time (manual, minutes) 61 85 98 68 58 48 48 98 70
Elapsed time (tool-assisted, minutes) 17 26 46 25 31 23 17 46 28

1316

more similar.

The tool prevents analysts from failing to extract goals
from a document. The results in Exp 2 show that a begin-
ning analyst examinee E extracted fewer goals in the manual
goal model construction than in the tool-assisted goal model
construction. This feature helps beginning analysts not miss
the goal extraction from the document.

5.2 RQ2. To What Extent Does the Proposed Process De-
crease the Construction Cost?

Tables 2 and 3 list quantitative evaluation results. First,
comparing the elapsed time between the two construction
methods, it can be seen that the proposed process success-
fully shortened the time required for constructing goal mod-
els for both systems. Although the difference is not very
significant for the ATM system, the average time of tool-
assisted goal model construction for the meeting schedul-
ing system was about 2.5-fold faster than that of the manual
construction. If a system has various functions, we expect
that the tool helps an analyst construct a goal model more
efficiently.

The differences in time between tool-assisted and man-
ual goal modelling in Table 3 show the advantage of our
process. Even though further decomposition of goals in the
tool-assisted goal model is required to acquire a goal model
similar to the manually constructed goal model, it is not a
heavy task because the decomposition can be started from
specific leaves in the goal model. The tool relieves analysts
from the essential burden of deciding the place of various
goals, i.e., structuring the goal model.

Despite of the above advantage, we should reduce the
number of questions. The results listed in Table 3 show
that experienced analysts tend to be asked more questions.
The fact that the number of the isSubgoal questions is domi-
nant among the questions explains that experienced analysts
carefully choose parent goals of the target goals. In order
to further reduce the cost of the goal modeling, we shuold
improve the question of finding the parent goal.

5.3 Applicability

The applicability of the proposed process depends on the
document given as input data. Therefore, when we deal
with a system whose requirements, i.e., features to be im-
plemented, can be explicitly described in the document, we
can expect that the process generates a concrete goal model.
On the other hand, when we deal with a system such as a
cutting-edge system that requires continuous requirements
elicitation based on prototyping, it is rather difficult to con-
struct a precise goal model. If a system has various func-
tions, i.e., if an analyst has to deal with various require-
ments, the proposed process works more efficiently by re-
lieving the analyst from the burden of structuring the goal
model.

The structure of the given document also affects the ap-
plicability of the proposed process. The current tool works

IEICE TRANS. INE. & SYST., VOL.E103-D, NO.6 JUNE 2020

under the assumption that every sentence has at most one
goal. Therefore, manual decomposition after the goal model
generation is required when sentences in the document have
more than one goal. If similar goals are widely distributed
in the document, the number of questions will increase.

Even if we use the proposed process, the constructed
goal model differs depending on the analyst. When a be-
ginning analyst constructs a goal model using the tool, the
analyst can expect that the constructed goal model contains
necessary goals. Goal model construction based on a certain
level of goal granularity is another advantage of applying
our process for the beginning analyst. When an experienced
analyst uses the tool, the acquired goal model becomes more
similar to the goal model that the analyst would construct
manually, by answering more isGoal questions than a begin-
ning analyst. In order to help the experienced analyst more
efficiently, further tool/process improvement should be con-
ducted.

6. Threats to Validity

In our experiments, construction of the goal models was
performed by six examinees. In general, the quality of
goal models depends on the skills of requirements analysts.
Therefore, a different result might be obtained if the experi-
ments are performed by different analysts. To mitigate these
potential threats to internal validity, we plan to conduct ad-
ditional experiments where other analysts are involved.

Since the six questions are general and independent
from any particular domain, we believe that the proposed
method can be applied to other domains different from the
domains conducted in the experiments. However, since the
numbers of extracted goals in both experiments are not so
large, further evaluation concerning to the scalability of the
process is desirable.

7. Conclusions

In this paper, we proposed an approach to supporting the
construction of goal models. The approach is based on an
interactive process using a set of questions. In this process,
goals are derived and inserted to the goal model according
to the questions and answers. Answers are used to define
goals and to find the relationships between goals. We imple-
mented a tool that implements the goal construction process
and conducted experiments in two sample systems. The re-
sults showed that the constructed goal model is adequately
similar to the goal model constructed manually. One of the
benefits of using the proposed process is that we can con-
struct a preliminary goal model without comprehending the
whole structure of the model.

For future work, we plan to tackle following problems:
goal summarization, goal decomposition, and implicit goal
extraction. First, the proposed method extracts goals from
sentences of a requirements description. The current method
requires analysts to summarize the sentences to define goals.
Some studies in the natural language processing may help

NAKAGAWA et al.: INTERACTIVE GOAL MODEL CONSTRUCTION BASED ON A FLOW OF QUESTIONS

to extract goal descriptions from the sentences. Second, it is
sometimes appropriate to decompose these goals into finer
goals so that each goal’s responsibility can be associated
with a single actor. We previously proposed a method of
goal decomposition based on extraction rules [S]. We plan
to integrate these two methods to tackle the problem of goal
decomposition. Third, the current version of the method
cannot extract goals that are not explicitly described in the
input requirements description. The use of domain knowl-
edge seems to be essential to elicit such goals. Incorporating
domain knowledge into our context deserves further studies.

In addition, the questions flow has room for improve-

ment. The current version of the prototype tool asks several
questions for each one of the goals. When the number of
goals is large, this may result in a burden for the analyst.
To mitigate this problem, we plan to extend the proposed
method by adding the mechanisms as follows:

Text summarization. Text summarization can be used
to replace multiple sentences with a short single sen-
tence, thus, reducing the number of goals extracted.
Goal relevance calculation. This mechanism calcu-
lates the mutual relevance between two different goals.
The relevance obtained can be used to narrow down the
candidates for the parent goal of a new goal.

References

(1]

(2]

[3]

[4]

[3]

[6]

(71

[8]

(91

[10]

A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of Computer Programming, vol.20,
no.1-2, pp.3-50, 1993.

E.S.K. Yu, “Towards modelling and reasoning support for ear-
ly-phase requirements engineering,” Proc. 3rd IEEE International
Symposium on Requirements Engineering (RE’97), pp.226-235,
1997.

J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using
nonfunctional requirements: a process-oriented approach,” IEEE
Trans. Softw. Eng., vol.18, no.6, pp.483-497, June 1992.

H. Kaiya, H. Horai, and M. Saeki, “Agora: attributed goal-oriented
requirements analysis method,” Proc. IEEE Joint International Con-
ference on Requirements Engineering (RE2002), pp.13-22, 2002.
H. Shimada, H. Nakagawa, and T. Tsuchiya, “Constructing a goal
model from requirements descriptions based on extraction rules,”
Proc. Asia Pacific Requirements Engineering Conference (APRES
2017): Requirements Engineering for Internet of Things, vol.809,
pp-175-188, 2018.

J. Pimentel, J. Vilela, and J. Castro, “Web tool for goal modelling
and statechart derivation,” Proc. 23rd IEEE International Require-
ments Engineering Conference (RE 2015), pp.292-293, Aug. 2015.
M. Rahimi, M. Mirakhorli, and J. Cleland-Huang, “Automated ex-
traction and visualization of quality concerns from requirements
specifications,” Proc. 22nd IEEE International Requirements Engi-
neering Conference (RE 2014), pp.253-262, Aug. 2014.

T.H. Nguyen, J. Grundy, and M. Almorsy, “Rule-based extraction of
goal-use case models from text,” Proc. 10th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE 2015), ESEC/FSE
2015, New York, NY, USA, pp.591-601, ACM, 2015.

X. Franch, G. Grau, E. Mayol, C. Quer, C.P. Ayala, C. Cares, F.
Navarrete, M. Haya, and P. Botella, “Systematic construction of i*
strategic dependency models for socio-technical systems,” Interna-
tional Journal of Software Engineering and Knowledge Engineering
(IJSEKE 2007), vol.17, no.1, pp.79-106, 2011.

M. van Zee, F. Bex, and S. Ghanavati, “Rationalization of goal

1317

models in GRL using formal argumentation,” Proc. 23rd IEEE
International Requirements Engineering Conference (RE 2015),
pp.220-225, Aug. 2015.

[11] D. Yu, Z. Chen, and Y. Zhang, “From goal models to feature models:
A rule-based approach for software product lines,” Proc. Asia-Pa-
cific Software Engineering Conference (APSEC 2015), pp.277-284,
Dec. 2015.

[12] M. Santos, C. Gralha, M. Gouldo, and J. Aratjo, “Increasing the se-
mantic transparency of the KAOS goal model concrete syntax,” Con-
ceptual Modeling - 37th International Conference, ER 2018, Xi’an,
China, Oct. 22-25, 2018, Proceedings, pp.424—439, 2018.

[13] S. Liaskos, A. Ronse, and M. Zhian, “Assessing the intuitive-
ness of qualitative contribution relationships in goal models: An
exploratory experiment,” Proc. ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM
2017), pp.466-471, Nov. 2017.

[14] D.Han,J. Xing, Q. Yang, J. Li, X. Zhang, and Y. Chen, “Integrating
goal models and problem frames for requirements analysis of self-
adaptive cps,” Proc. 41st IEEE Annual Computer Software and Ap-
plications Conference (COMPSAC 2017), pp.529-535, July 2017.

[15] L. Piras, E. Paja, P. Giorgini, and J. Mylopoulos, “Goal models
for acceptance requirements analysis and gamification design,” Con-
ceptual Modeling, Lecture Notes in Computer Science, vol.10650,
pp-223-230, Springer International Publishing, Cham, 2017.

[16] C.M. Nguyen, R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Re-
quirements evolution and evolution requirements with constrained
goal models,” Proc. International Conference on Conceptual Model-
ing (ER2016), pp.544-552, 2016.

[17] B. Steven, E. Loper, and E. Klein, Natural Language Processing with
Python, O’Reilly Media Inc, 2009.

[18] “Graphviz.” http://www.graphviz.org/.

[19] A. Cailliau and A. van Lamsweerde, “Integrating exception handling
in goal models,” Proc. 22nd IEEE International Requirements Engi-
neering Conference (RE 2014), pp.43-52, Aug. 2014.

[20] “Requirements Statement for Example ATM System.” http://www.
math-cs.gordon.edu/courses/cs211/ATMExample/Requirements.
html.

[21] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, Wiley, 2009.

Hiroyuki Nakagawa is currently an As-
sociate Professor at Osaka University. He re-
ceived his B.S. degree in computer science from
Osaka University in 1997, his M.S. degree in
computer science from the University of To-
kyo in 2007, and his Ph.D. degree in computer
science from Waseda University in 2013. He
worked in Kajima Corporation from 1997 to
2008. He worked the University of Electro-
Communications as an assistant professor from
2008 to 2013. His research interests include
models@run.time, self-adaptive systems, requirements engineering, and
software evolution.

LN

http://dx.doi.org/10.1016/0167-6423(93)90021-g
http://dx.doi.org/10.1109/isre.1997.566873
http://dx.doi.org/10.1109/32.142871
http://dx.doi.org/10.1109/icre.2002.1048501
http://dx.doi.org/10.1007/978-981-10-7796-8_14
http://dx.doi.org/10.1109/re.2015.7320444
http://dx.doi.org/10.1109/re.2014.6912267
http://dx.doi.org/10.1145/2786805.2786876
http://dx.doi.org/10.1142/s0218194007003148
http://dx.doi.org/10.1109/re.2015.7320426
http://dx.doi.org/10.1109/re.2015.7320426
http://dx.doi.org/10.1109/apsec.2015.22
http://dx.doi.org/10.1007/978-3-030-00847-5_30
http://dx.doi.org/10.1109/esem.2017.69
http://dx.doi.org/10.1109/compsac.2017.152
http://dx.doi.org/10.1007/978-3-319-69904-2_18
http://dx.doi.org/10.1007/978-3-319-46397-1_42
http://dx.doi.org/10.1109/re.2014.6912246

1318

Hironori Shimada received his M.S. degree
in computer science from Osaka University in
2019.

Tatsuhiro Tsuchiya is currently a professor
of the Department of Information Systems En-
gineering at Osaka University. He received the
M.E. and Ph.D. degrees from Osaka University
in 1995 and 1998, respectively. His research in-
terests are in the areas of model checking, soft-
ware testing, and distributed fault-tolerant sys-
tems.

IEICE TRANS. INE. & SYST., VOL.E103-D, NO.6 JUNE 2020

