
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2435

LETTER Special Section on Empirical Software Engineering

How Does Time Conscious Rule of Gamification Affect Coding and
Review?∗

Kohei YOSHIGAMI†, Taishi HAYASHI††, Nonmembers, Masateru TSUNODA††a),
Hidetake UWANO†††, Members, Shunichiro SASAKI††, Nonmember, and Kenichi MATSUMOTO†, Member

SUMMARY Recently, many studies have applied gamification to soft-
ware engineering education and software development to enhance work
results. Gamification is defined as “the use of game design elements in
non-game contexts.” When applying gamification, we make various game
rules, such as a time limit. However, it is not clear whether the rule affects
working time or not. For example, if we apply a time limit to impatient de-
velopers, the working time may become shorter, but the rule may negatively
affect because of pressure for time. In this study, we analyze with subjec-
tive experiments whether the rules affects work results such as working
time. Our experimental results suggest that for the coding tasks, working
time was shortened when we applied a rule that made developers aware of
working time by showing elapsed time.
key words: human factors, motivation, work efficiency, gamification

1. Introduction

In software development, one of the most important objec-
tives is work efficiency. To achieve this objective, gamifi-
cation has recently been applied to activities related to soft-
ware development. Gamification is defined as “the use of
game design elements in non-game contexts” [2]. The aim
of gamification is to enhance motivation, and the outcome
of work.

However, the effects of gamification on software devel-
opment have not been sufficiently evaluated. For example,
in studies of gamification related to software development,
approximately half did not evaluate the effects of gamifica-
tion experimentally [6]. In addition, as far as we know, few
studies evaluated gamification based on the working time
of subjects, although quantitative analysis was performed in
some studies.

When applying gamification to software development,
we create various rules. However, the effect of rules is un-
certain. For example, if we create a time limit for work as

Manuscript received February 28, 2019.
Manuscript revised July 1, 2019.
Manuscript publicized September 18, 2019.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
††The authors are with Kindai University, Higashiosaka-shi,

577–8502 Japan.
†††The author is with National Institute of Technology, Nara Col-

lege, Yamatokoriyama-shi, 639–1080 Japan.
∗This work is an extended study of M. Tsunoda et al., “How

Do Gamification Rules and Personal Preferences Affect Coding?”
Proc. of International Workshop on Empirical Software Engineer-
ing in Practice (IWESEP), pp.13–18, 2018.

a) E-mail: tsunoda@info.kindai.ac.jp
DOI: 10.1587/transinf.2019MPL0002

a rule of gamification, it may shorten the working time. In
contrast, it may not shorten the time because of pressure for
time. Additionally, if we apply a time limit to a code re-
view, it may shorten review time. However, it is possible
that the number of faults found decreases. Therefore, we
focus mainly on whether the rules of gamification shorten
working time or not. It would be helpful to consider how to
apply the rules of gamification by clarifying the influence of
those rules.

The major contribution of our study is that using sub-
jects, we evaluated effect of gamification based on working
time. About half of the studies did not evaluate gamifica-
tion experimentally, and only few studies have evaluated the
effect of gamification on working time.

2. Gamification

Gamification aims to enhance the motivation of workers
by adding amusement factors to the work process. In re-
cent years, this approach has attracted attention in various
fields [3], [7]. For example, gamification is represented in
the following approaches [6]:

• Point: A worker gets points when a task is finished.
• Ranking: Based on the points, higher-ranked workers

are shown to other workers.
• Badge: A worker gets various badges (in the system)

on finishing a task.
• Level: Workers’ level goes up when the point level

reaches a certain criterion.

The effect of getting items and badges is that it stim-
ulates the desire to collect, and this is expected to enhance
motivation for tasks. Also, by showing the points accumu-
lated, workers can compete with themselves and with others,
and this may spur motivation.

Pedreira et al. [6] mapped studies of gamification in
the software engineering field based on a target develop-
ment process, gamification approaches, and evaluation of
the gamification effect. Approximately half of the stud-
ies did not evaluate gamification experimentally, and many
studies demonstrated new proposals only.

To evaluate the effect of gamification, many studies
have focused on cumulative work results, such as the num-
ber of faults found and the number of commits. Few studies
have evaluated the effect of gamification on working time.
Khandelwal et al. [4] applied gamification to code review,

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



2436
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

and analyzed the difference in working time when gamifica-
tion was applied. However, as far as we know, no study has
quantitatively analyzed whether working time is shortened
when a rule is changed.

3. Experiment

In the experiment, subjects performed a code review task
and a coding task sequentially. In the review task, subjects
found faults in source code, and on the coding task, they
created programs according to specifications. After the cod-
ing task, subjects answered a questionnaire. The coding task
was performed one week or more after the review task. Be-
fore the experiment, we told subjects that they would know
their rank after the experiment to stimulate a sense of com-
petition within the subjects. Subjects were undergraduate
students who majored in information science. The number
of subjects on the review task was 13, and the number on the
coding task was 14.

We set the rules of gamification considering the follow-
ing aims:

• The aim to shorten the time for finishing tasks related
to software development. For this aim, we applied rules
that made subjects aware of working time. We call it
time conscious rule.
• The aim to enhance the effects of gamification (i.e., en-

hance the motivation of participants). For this aim, we
applied a rule to analyze the effects of gamification that
had continuity (i.e., the previous results, such as score
and ranking, affect subsequent results). We call it con-
tinuity rule.

Note that we did not evaluate all aspects of gamifica-
tion rules, but we mainly focused on rules which are ex-
pected to affect to working time.

3.1 Code Review Task

On the code review task, we showed subjects specifications
of the programs (including no faults) and source code (in-
cluding faults), and the subjects indicated found faults and
how to modify them. The source code was written in Java,
which all subjects understood. To analyze the negative effect
of gamification rules, we focused on the number of found
faults.

We selected two review targets, illustrated in study [5]:

• Target A: A program outputs a sum of numbers. The
length of the specification document is about 50 words,
and the number of lines of source code is about 200.
The source code includes five faults.
• Target B: A program reads a file and finds target data.

The length of the specification document is about 300
words, and number of lines of source code is about 130.
The source code includes eight faults.

First, subjects reviewed target A, and after that, they
reviewed target B. We made the following gamification rules

Fig. 1 Screen images on review task, applying rule β

α and β:

• Rule α: The score is calculated based on the number of
found faults.
• Rule β: The score is calculated based on the number

of found faults and the review time. The rule is time
conscious rule.

For each found fault, we added 200 points for target A,
and 250 points for target B, based on a preliminary exper-
iment. When we applied rule β, a certain score was given
first, and 5 points were deducted for every 5 s elapsed dur-
ing the review. The given score for target A was 1200, and it
was 3600 for target B. The score increased when faults were
found, although elapsed time reduced the score.

The score was shown during the task. We increased the
score when found faults were input, even if the indications
were incorrect. When subjects were ranked, the score was
modified if the indications were incorrect. The modification
was explained to subjects before the experiment.

When applying rule β, we show the average score
(based on a preliminary experiment) to enhance the moti-
vation of the subjects. In actual software development, such
a target score can be shown based on past data. Figure 1
shows the screen images that were shown to subjects in the
experiment. Figure 1 shows that the subjects wrote details
of the found faults in the upper table. The lower table shows
the score, average score (shown only when rule β was ap-
plied), and the added points for each found fault. We note
that the figure does not show the specifications and source
code that the subjects read during the experiments.

We created two groups and changed the combinations
of review targets and gamification rules.

• Group 1: Rule β was applied to review target A, and
rule α was applied to review target B (The number of
subjects was six).
• Group 2: Rule α was applied to review target A, and

rule β was applied to review target B (The number of
subjects was seven).

3.2 Coding Task

On the coding task, subjects created programs based on



LETTER
2437

given specifications. Java was used as the programming
language because all subjects understood it. Programs were
made with Eclipse, and when the execution results were cor-
rect, the tasks were considered finished (i.e., the tasks were
regarded as completed when the output texts by the program
were the same as the correct texts, which were shown in the
specifications). We regarded the quality of the tasks as suf-
ficient when the results were correct, and we did not evalu-
ate the quality of the created source code using quantitative
metrics. In actual software development, software testing is
often strictly performed. In contract, source code is gener-
ally not modified based on the metric evaluation after coding
is finished.

We gave subjects the following specifications. We se-
lected those that were relatively easy from a web site (AIZU
ONLINE JUDGE http://judge.u-aizu.ac.jp/):

• Specification C: output the multiplication table
• Specification D: read 10 values, and output three of

them in descending order

First, subjects created a program based on specification
C, and after that, they created one based on specification D.

We made the following gamification rules:

• Rule γ: Score (i.e., elapsed time) is not shown on the
tasks. The score, and the ranking based on the score
are shown after the tasks are finished.
• Rule δ: Score (i.e., elapsed time) is shown on the tasks.

The sum of scores on the coding and review task (see
Sect. 3.1) and the ranking are shown after the tasks are
finished. The rule includes the time conscious rule and
the continuity rule.

Figure 2 shows a screen capture when the rule is ap-
plied. The left text box in Fig. 2 shows the specifications,
and the upper right text explains the continuity rule (shown
only when rule δ was applied). The middle right box shows
the score (shown only when rule δ was applied). The lower
right button was pushed when the task was completed.

For each rule, subjects were given a certain score, and 5
points were deducted for every 5 seconds elapsed during the
task. We created two groups, and changed the combinations
of coding specifications and gamification rules.

• Group 3: Apply rule δ on specification C, and apply
rule γ on specification D (The number of subjects was
nine).

Fig. 2 Screen image on coding task, when applying rule δ (showing
elapsed time)

• Group 4: Apply rule γ on specification C, and apply
rule δ on specification D (The number of subjects was
five).

3.3 Subjective Evaluation

We collected subjects’ evaluation of gamification with the
following questionnaire after the coding task. Subjects an-
swered questions about their feelings on a five-point scale
(1: strongly disagree . . . 5: strongly agree).

• Q1: Did you feel that gamification affected your work
efficiency and motivation?
• Q2: Did you feel that showing the score affected your

motivation?
• Q3: Did you feel that adding the previous task’s score

(i.e., review score) affected your motivation?

We did not ask whether subjects liked code review or
coding, because we only relatively compared results of ap-
plying rules on each task (i.e., review and coding tasks).

4. Relationships between Rules and Work Outcomes

To clarify the point of the analysis, we set the following re-
search questions:

• RQ1: For code review, when we applied a rule that
made subjects aware of working time, does it affect the
review time and the number of found faults?
• RQ2: For the coding tasks, is working time shortened

when we applied a rule that made developers aware of
working time?
• RQ3: Is the evaluation of gamification rules was dif-

ferent between individuals?

4.1 Influence on Code Review

To answer RQ1, we analyzed review time and the number
of found faults on code review.

Review time: Review time is shown in Table 1. Bold
face indicates cases where rule β (considering elapsed time)
was applied. If rule β shortens the review time, then the
review time for A is expected to be comparatively shorter
for group 1, and the review time for B is also expected to
be shorter for group 2. To analyze this effect, we defined
a review time ratio, which is review time of B divided by
review time of A. The ratio is expected to be larger for group
1 than for group 2 if rule β shortens review time. However,
as shown in the table, the difference in the ratio between
group 1 and group 2 was very small. Therefore, rule β is not
considered to shorten review time.

Table 1 Difference in review time by rules (Bold: considering elapsed
time)



2438
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Table 2 Difference in found faults by rules (Bold: considering elapsed
time)

Table 3 Difference in coding time by rules (Bold: showing elapsed time
and adding review score)

Found faults: Table 2 shows the number of found
faults on the review. Bold face indicates cases where rule
β was applied. We defined found fault rate as with the re-
view time ratio. The ratio is expected to be larger for group
1 and smaller for group 2 if rule β decreases the found faults.
As shown in the table, the ratio of group 1 was almost same
as the group 2. Hence, rule β did not affect the number of
found faults.

The result suggests that when we apply a gamification
rule that makes workers aware of working time during code
review, the rule should not be expected to shorten review
time very much. This is because workers must read through
source code to review it, and their reading speed may not
change dramatically. Also, the rule did not negatively affect
found faults. So, there is no need to apply a rule that em-
phasizes working time during code review, and the answer
of RQ1 is “No.”

4.2 Influence on Coding

To answer RQ2, we analyzed coding time. Table 3 shows
the coding time elapsed during the experiment. Bold face in-
dicates cases where rule δ (showing elapsed time and adding
the review score) was applied. We defined a coding time
ratio where coding time based on specification C was the
denominator and the time based on specification D was the
numerator. If rule δ shortens coding time, the time based
on specification C (i.e., the denominator of the ratio) is ex-
pected to be comparatively shorter for group 3, and the time
is expected to be longer for group 4. In this case, the ratio
of group 3 is larger than that of group 4.

As shown in the table, the ratio of group 1 was larger.
When we applied a statistical test, difference of the ratio be-
tween the groups was not significant (the p-value was 0.12).
However, considering the number of data points, there may
be type II error. Actuarially, when we duplicated data by
copying (i.e., the number of data point was 28), the p-value
became 0.02. To check the difference visually, we made the
boxplot as shown in Fig. 3. As shown in the figure, median
and the position of the boxes (i.e., first quartile and third
quartile) is very different.

Therefore, rule δ is considered to shortened the cod-
ing time. Although rule δ showed elapsed time and added
the review score, showing the time is considered to be more

Fig. 3 Boxplot of time ratio stratified by the group

Table 4 Years of programing experience of subjects

Table 5 Correlation coefficients to years of programming experience of
each subject

effective in shortening the working time. This is because
showing time was evaluated highly on Q2 (the details of
the analysis are explained in Sect. 4.3). So, the answer of
RQ2 is “Yes.” Note that the influence of the rule on cod-
ing approach (i.e., coding quality) is not clear, even if the
execution results of the program are correct. Thus, further
analysis of the influence is needed.

4.3 Influence of the Subject Characteristics

The results presented in Sects. 4.1 and 4.2 could depend on
the characteristics of the subjects, such as their program-
ming level or programming experience. However, precisely
measuring their programming level is not easy. Thus, we
only considered their years of programing experience as one
of the characteristics and analyzed the influence on the re-
sults. The summary statistics on the years of programing
experience in each group are listed in Table 4. In Groups 1
and 4, the number of years of experience of a subject was
10, which affected the average and standard deviation of the
groups. Except for the subject the number of years of ex-
perience was between two and four, i.e., the programming
experience among the subjects did not greatly differ.

Table 5 lists the relationship between the number of
years of experience and the ratios of the review time, dis-
covered fault, and coding time. We used the Spearman’s
rank correlation coefficient to avoid the influence of outliers.
Table 5 indicates that the relationships were weak (the cor-
relation coefficients were smaller than 0.3).

Additionally, we divided the subjects into two groups



LETTER
2439

Table 6 Difference in review time by years of experience

Table 7 Difference in found faults by years of experience

Table 8 Difference in coding time by years of experience

Table 9 Basic statistics of the questionnaires

(i.e., whether the number of years of experience is short or
long) using the median of the number of years of experience.
The number of subjects in each group was almost the same.
We created Tables 6–8, and their structures were almost the
same as those in Tables 1–3 except for the grouping factor.
Tables 6 and 7 illustrate that the review-time and discovered-
fault ratios were almost the same, and the results were simi-
lar to those listed in Tables 1 and 2. In Table 8, although the
coding time of the “long group” was shorter than that of the
“short group,” the coding ratio between them was almost the
same. This result was different from that listed in Table 3,
which suggested that the result listed in Table 3 was not af-
fected by the number of years of experience. Therefore, the
results in Sects. 4.1 and 4.2 are not considered to be affected
by the programming experience, which is a major character-
istics of the subjects.

4.4 Preference for Gamification

To answer RQ3, we analyzed preference for gamification. In
addition, we analyzed whether the last result of gamification
affects the preference or not.

Preference for gamification: We analyzed to what ex-
tent subjects liked gamification and its rules. Table 9 shows
the average and standard deviation of the answers to Q1-Q3,
and the ratio of answers that were lower than three (i.e., the
ratio of low evaluations). On Q1 and Q2, the average was
larger than 3.5, and the ratio was not large. Therefore, the
evaluations were relatively high. In contrast, the ratio was
43% for Q3, and therefore the evaluation of the rule was
different among subjects.

Influence of the last result on preference: When the
last result of gamification, i.e., the result of gamification
on the review task, is good, subjects may like gamification

more. To clarify this influence, we analyzed the relationship
of the last result with Q1 and Q3. The results showed that
each correlation coefficient was very small (The correlations
were 0.07 and 0.01). That is, the preference for gamification
and its rules were not affected by the last result. So, based
on the above results, the answer of RQ3 is “Yes.”

4.5 Discussion

The effect of the gamification rules could change when the
experiment time and duration increases. For example, when
the experiment time is long, the subjects turn to gamifica-
tion, and the effect might be larger. This topic would be a
future work that could be done to analyze the relationship
between the experiment time and the effect of the gamifi-
cation rules. We note that our experiment time is not very
short to obtain this effect compared with that in previous
studies. For example, Arai et al. [1] applied gamification to
remove the warnings made by static analysis tools. In their
experiment, the subjects coped with two tasks, and each task
was performed within 30 min. As a result, they successfully
observed the gamification effects.

We used rankings as a reward for gamification. The ef-
fect of the gamification rules could change if other rewards
are used, such as badges. This would also be a future topic to
analyze the relationship between the type of rewards and the
effect of the gamification rules. We note that rankings are
often used by software engineering studies that focused on
gamification. According to the survey by Pedreira et al. [6],
ranking is the third most used reward in the software engi-
neering field out of 14 rewards.

After the experiments, a few subjects wanted to know
their ranking as soon as possible. If we show not only their
scores but also their rankings during the experiments, the ef-
fect of the gamification rules could be enhanced. However,
showing such real-time rankings in actual software devel-
opment is not easy because each developer does not simul-
taneously deal with similar tasks (e.g., a developer could
be making a source code, whereas another developer could
be performing software testing at the moment). In contrast,
showing such real-time rankings in programming classes is
not difficult.

5. Conclusions

This study experimentally evaluated the effect of gamifica-
tion rules on work results such as working time. As a result,
we observed the following tendencies:

• For code review, when we applied a rule that made sub-
jects aware of working time, it did not shorten the re-
view time. However, it also did not reduce the number
of found faults.
• For the coding tasks, working time may have been

shortened when we applied a rule that made developers
aware of working time.

Our future research work will evaluate the influence of



2440
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

rules on the quality of coding, and to analyze the relation-
ship.

Acknowledgments

This research was partially supported by the Japan Soci-
ety for the Promotion of Science (JSPS) [Grants-in-Aid
for Scientific Research (C) and (A) (No.16K00113 and
No.17H00731)]

References

[1] S. Arai, K. Sakamoto, H. Washizaki, and Y. Fukazawa, “A Gamified
Tool for Motivating Developers to Remove Warnings of Bug Pattern
Tools,” Proc. International Workshop on Empirical Software Engi-
neering in Practice (IWESEP), pp.37–42, 2014.

[2] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game de-
sign elements to gamefulness: defining “gamification,”” Proc. Inter-
national Academic MindTrek Conference: Envisioning Future Media
Environments (MindTrek), pp.9–15, 2011.

[3] T. Ichinose and H. Uwano, “Evaluation of task performance with dif-
ferent entertainments in gamification,” The transactions of Human In-
terface Society, vol.18, no.2, pp.65–76, 2016 (in Japanese).

[4] S. Khandelwal, S.K. Sripada, and Y.R. Reddy, “Impact of Gamifica-
tion on Code review process: An Experimental Study,” Proc. Innova-
tions in Software Engineering Conference (ISEC), pp.122–126, 2017.

[5] S. Ohji and H. Uwano, “Effect of review guidance to efficiency of soft-
ware review,” IPSJ SIG Technical Reports, vol.2014-SE-185, no.2,
pp.1–8, 2014 (in Japanese).

[6] O. Pedreira, F. Garcı́a, N. Brisaboa, and M. Piattini, “Gamification
in software engineering – A systematic mapping,” Information and
Software Technology, vol.57, no.1, pp.157–168, 2015.

[7] L.C. Stanculescu, A. Bozzon, R.-J. Sips, and G.-J. Houben, “Work
and Play: An Experiment in Enterprise Gamification,” Proc. ACM
Conference on Computer-Supported Cooperative Work & Social
Computing (CSCW), pp.346–358, 2016.

http://dx.doi.org/10.1109/iwesep.2014.17
http://dx.doi.org/10.1145/2181037.2181040
http://dx.doi.org/10.1145/3021460.3021474
http://dx.doi.org/10.1016/j.infsof.2014.08.007
http://dx.doi.org/10.1145/2818048.2820061

