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A Weighted Viewport Quality Metric for Omnidirectional Images
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SUMMARY Thanks to the ability to bring immersive experiences to
users, Virtual Reality (VR) technologies have been gaining popularity in
recent years. A key component in VR systems is omnidirectional content,
which can provide 360-degree views of scenes. However, at a given time,
only a portion of the full omnidirectional content, called viewport, is dis-
played corresponding to the user’s current viewing direction. In this work,
we first develop Weighted-Viewport PSNR (W-VPSNR), an objective qual-
ity metric for quality assessment of omnidirectional content. The proposed
metric takes into account the foveation feature of the human visual sys-
tem. Then, we build a subjective database consisting of 72 stimuli with
spatial varying viewport quality. By using this database, an evaluation of
the proposed metric and four conventional metrics is conducted. Experi-
ment results show that the W-VPSNR metric well correlates with the mean
opinion scores (MOS) and outperforms the conventional metrics. Also, it is
found that the conventional metrics do not perform well for omnidirectional
content.
key words: omnidirectional images, objective quality metrics

1. Introduction

Omnidirectional content is a key component in virtual re-
ality (VR) systems which can bring immersive experiences
to users. Because omnidirectional content has very high bi-
trate, a key challenge in transmission and rendering of om-
nidirectional content is how to optimize the use of system
resources while still ensuring satisfaction of user experi-
ence [1], [2]. To deal with the above challenge, quality met-
rics capable of representing user perception when watching
omnidirectional content are of indispensable necessity.

Due to the nonuniform distributions of photorecep-
tors in the retina, the human visual ability is spatially vari-
able [3], [4]. In particular, when a person gazes at a point,
called foveation point, a zone closer to this point is per-
ceived to be sharper than the others. This means that the
human eyes have a higher sensitivity to distortions in this
zone. Hence, the foveation feature should be taken into ac-
count in quality metrics for omnidirectional content.

Some existing studies have proposed objective quality
metrics taking into account the foveation feature for tradi-
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tional content [5], [6]. However, to the best of our knowl-
edge, there is no such a metric for omnidirectional con-
tent. Also, evaluations of the conventional metrics for om-
nidirectional content have not been conducted. It should
be noted that omnidirectional content is usually viewed on
Head Mounted Displays (HMDs). In addition, only a small
part of a full content (called viewport) is displayed at a
time [7]. Thus, existing metrics, which have been proposed
for traditional content, can not be directly used for omnidi-
rectional content.

Most existing studies use PSNR as a quality metric to
evaluate the quality of omnidirectional content [8], [9]. Be-
sides, several PSNR-variants taking into account the redun-
dancy of projection formats have been proposed for quality
assessment of omnidirectional content, such as weighted to
spherically uniform PSNR [10] and spherical PSNR without
interpolation [11]. To assess the quality as watched by users,
another metric called viewport-PSNR (V-PSNR), which is
PSNR of a viewport, has been used in [1], [12], [13].

In our previous study [14], a comparison between eight
state-of-the-art quality metrics has been conducted. Experi-
ment results show that PSNR is the most effective metric for
quality assessment of omnidirectional videos. It is worth
to note that stimuli used in that study has uniform qual-
ity. In VR systems, foveated imaging, which reduces qual-
ity of zones far from the foveation point [15], can be used
to reduce resource consumption such as power and band-
width [16]. In such scenarios, metrics without taking into
account the foveation feature such as PSNR may be not ef-
fective.

In this paper, we first propose a new objective quality
metric, called Weighted-Viewport PSNR (W-VPSNR), taking
into account the foveation feature for quality assessment of
omnidirectional images. Next, a subjective database con-
sisting of 72 stimuli with spatial varying viewport quality
is built. Based on this database, we then evaluate the cor-
relations of the proposed metric and four conventional met-
rics with the MOS. Experiment results indicate that the W-
VPSNR metric can achieve high correlations with the MOS
and outperforms the conventional metrics. Also, the V-
PSNR metric is found to be not effective when the view-
port quality is spatially variable. In addition, it is shown
that the metrics taking into account the foveation feature for
traditional content do not perform well for omnidirectional
content.

The remainder of the paper is organized as follows.
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The proposed metric is presented in Sect. 2. Section 3 de-
scribes settings of subjective experiments. An evaluation
of the proposed metric and four conventional metrics is pre-
sented in Sect. 4. Section 5 concludes the paper and provides
an outlook on future work.

2. Proposed Quality Metric

Figure 1 (a) illustrates a typical viewing geometry in VR
systems where a viewer watches an omnidirectional content
using an HMD. Assume that VP is the displayed viewport
on the HMD, the lens of the HMD produces a virtual view-
port VP′ that is further formed on the retina of the viewer’
eyes. Eccentricity e (degrees) is used to measure the angular
distance from the central gaze direction to any point in the
viewport VP′.

Let F denote the focal length of the lens (units of
length), S 0 and S 2 are respectively the distances from the
lens to the viewport VP and the eye (units of length). Based
on lens equations, the distance from the eye to the view-
port VP′ is computed by S 3 = S 2 +

F×S 0
F−S 0

(units of length).
Denote {Wp × Hp (pixels)} and {Wl × Hl (units of length)}
respectively the width and height of the viewport VP in pix-
els and units of length. It can be seen that the sizes of the
viewports VP and VP′ are the same in pixels, but different
in units of length. In particular, the width of the viewport
VP′ is W ′p = Wp (pixels) and W ′l = Wl × F

F−S 0
(units of

length). The height of the viewport VP′ is H′p = Hp (pixels)
and H′l = Hl × F

F−S 0
(units of length).

Assume the foveation point is the center of a pixel O′
in the viewport VP′ corresponding to the pixel O = (xO, yO)
(pixels) in the viewport VP. The coordinate values of the
pixels O and O′ are equal. Denote M a pixel at the po-
sition (xM , yM) (pixels) in the viewport VP. The coordi-
nate values of the virtual pixel M′ corresponding to the
pixel M is equal to (xM , yM) (pixels). The distance dl′
from the pixel M′ to the foveation point is calculated by

dl′ =
√(

(xM−xO)×W′l
W′p

)2
+

(
(yM−yO)×H′l

H′p

)2
(units of length). The

eccentricity e corresponding to the position (xM , yM) (pix-
els) in the viewport VP is given by e(xM , yM) = tan−1

(
dl′
S 3

)
(degrees).

To take into account the foveation feature, the viewport
VP is divided into K zones {Zk |1 ≤ k ≤ K}. Each zone
consists of pixels having the corresponding eccentricity e ∈

Fig. 1 (a) Typical viewing geometry in VR systems; (b) three zones in a
viewport

[ek−1, ek). Currently, we use K = 3, Z1 with e0 = 0 degree
and e1 = 9 degrees is the macula region of the retina, Z2

with e2 = 30 degrees is the near-peripheral region, and Z3

with e3 = +∞ is the rest. Figure 1 (b) illustrates the three
zones used in our study. Each zone Zk(1 ≤ k ≤ K) is then
assigned a weight wk representing the human visual ability
in that zone. Note that, the sum of all weights is equal to
one, i.e.,

∑K
k=1 wk = 1.

Let V(x, y) and G(x, y) respectively be the pixel values
at the position (x, y) in the original and distorted viewports.
The mean squared error (MSE) of pixels in zone Zk is com-
puted by

MSEk=

∑Wp

x=1

∑Hp

y=1[V(x, y) −G(x, y)]2 × Rk(x, y)∑Wp

x=1

∑Hp

y=1 Rk(x, y)
, (1)

where

Rk(x, y) =

{
1, ek−1 ≤ e(x, y) < ek

0, otherwise
. (2)

The W-VPSNR metric is then defined as

W-VPSNR = 10 log10

⎛⎜⎜⎜⎜⎝ MAX2∑K
k=1(wk ×MSEk)

⎞⎟⎟⎟⎟⎠ (dB), (3)

where MAX is the maximum possible pixel value. In our
experiments, the value of MAX is set to 255 corresponding
to the bit depth of 8 bits per pixel.

3. Experiment Settings

For the experiments, we used three omnidirectional images
with descriptions shown in Table 1. The resolution of these
images is 3840 × 1920. For each image, we asked 5 par-
ticipants about interesting points when freely observing the
original images. Based on the obtained answers, we selected
two foveation points for each image which were then the
centers of the viewports used in our experiments.

To generate stimuli for subjective tests, each image was
first blurred at 6 levels using Gaussian filters with a fixed fil-
ter size of 50 and six standard deviations of 2, 4, 8, 15, 30
and 50. Next, the original and blurred images were used
to generate two blurring scenarios. In the first scenario,
zone Z1 is preserved as the original image while zone Z3

is blurred. By contrast, zone Z1 of the second scenario is
blurred while zone Z3 is of the original image. In order to
avoid noticeable boundary effects, zone Z2 in both scenar-
ios was used as a transition zone between zones Z1 and Z3,
where the blurring levels of pixels are gradually changed.
Totally, there were 72 stimuli used in our subjective tests.

In the tests, we used the Absolute Category Rating

Table 1 Features of source images

Image Description
Image #1 A wheat field, without presence of human
Image #2 A harbor, without presence of human
Image #3 An event at Times Square, containing human faces



LETTER
69

Fig. 2 Confidence intervals of the MOSs

method [17]. These stimuli were watched using a display
device set including a Samsung Galaxy S6 smartphone and
a Samsung Gear VR headset with the binocular 96◦ field of
view. Before doing actual tests, participants were trained to
get accustomed to the devices, the rating procedure, and the
foveation points. During the test process, the stimuli were
randomly displayed one at a time. Note that, for a stim-
ulus, the corresponding viewport displayed on HMD was
fixed during the rating period. Participants were asked to
look straight ahead at the viewports displayed directly in
front of them to keep focusing on the foveation points. After
each stimulus, each participant verbally gave a rating score
with the grade scale from 1 (bad) to 5 (excellent) which was
recorded by an assistant.

Similar to [18], the viewing duration of each stimulus
was 20 seconds for rating and 5 seconds for a break. To
avoid the negative impacts of fatigue and boredom, each
participant rated only 36 among 72 stimuli with the total
rating duration of approximately 15 minutes. In our sub-
jective tests, there were totally 36 participants between the
ages of 20 and 35. A screening analysis of the obtained
results was performed following Recommendation ITU-T
P.913 [17], and no participant was rejected. Each stimulus
was scored by 18 participants. The MOS is the average
score of the participants. The 95% confidence intervals of
the MOSs are shown in Fig. 2. It can be seen that the confi-
dence intervals are in the range of 0.14 MOS and 0.44 MOS.

4. Evaluation

In this section, we will investigate the correlations with the
MOS for the proposed metric and four conventional met-
rics of V-PSNR, Foveal Peak Signal-to-Noise Ratio (FP-
SNR) [19], Weighted Signal-to-Noise Ratio (WSNR) [20],
and Foveal Weighted Signal-to-Noise Ratio (FWSNR) [5].
The definitions of the conventional metrics are presented in
Table 2. Regarding the FPSNR metric, the weight of each
pixel is the local frequency at that pixel. Meanwhile, the
weighting function of the WSNR metric is the contrast sen-
sitivity function. In the FWSNR metric, both the contrast
sensitivity and the local frequency are used in the weighting
functions.

For a fairness, the conventional metrics were calculated
for the viewports instead of the whole images. In addi-
tion, the parameters such as eccentricity and distances to

Table 2 Definitions of conventional metrics
Metric Definition

V-PSNR V-PSNR = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
WpHpMAX2

∑Wp
x=1

∑Hp
y=1[V(x, y) −G(x, y)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (dB)

FPSNR FPSNR = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Wp∑
x=1

Hp∑
y=1

[ f (x, y)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎠MAX2

Wp∑
x=1

Hp∑
y=1

[V(x, y) −G(x, y)]2[ f (x, y)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(dB)

WSNR WSNR = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wp∑
x=1

Hp∑
y=1

[V(x, y) ∗ c(x, y)]2

Wp∑
x=1

Hp∑
y=1

[(V(x, y) −G(x, y)) ∗ c(x, y)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(dB)

FWSNR FWSNR = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wp∑
x=1

Hp∑
y=1

[V(x, y) ∗ c(x, y)]2[ f (x, y)]2

Wp∑
x=1

Hp∑
y=1

[(V(x, y) −G(x, y)) ∗ c(x, y)]2[ f (x, y)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(dB)

Note: ∗ denotes linear convolution. f is the local frequency at the position (x, y) (pix-
els) [19]. c is the contrast sensitivity function in the spatial domain at the position (x, y)
(pixels) [5].

Table 3 Correlation coefficients of the metrics with the MOS

Metrics
Training

image

Test image
Image #1 Image #2 Image #3

PCC RMSE PCC RMSE PCC RMSE
V-PSNR N/A 0.87 0.56 0.89 0.45 0.73 0.78
FPSNR N/A 0.77 0.73 0.85 0.52 0.83 0.63
WSNR N/A 0.87 0.56 0.89 0.45 0.73 0.78
FWSNR N/A 0.87 0.56 0.89 0.45 0.89 0.51

W-VPSNR
Image #1 — 0.95 0.30 0.92 0.44
Image #2 0.95 0.34 — 0.93 0.43
Image #3 0.92 0.46 0.95 0.31 —

the foveation point are also computed by the equations in
Sect. 2. To extract viewports, 360Lib software [21] was used
in our experiments. The parameters of the display devices
are as follows: Wp=1280 pixels, Wl=57mm, Hp=1440 pix-
els, Hl=64mm, F=62mm, S 0=25mm, and S 2=10mm.

In our previous study [14], it was indicated that a four-
parameter logistic function of the form f (x) = d + ((a −
d)/(1 + (x/c)b)) is a good mapping function for PSNR-
variants and the MOS. So this function was also used in this
study to evaluate the correlation between the metrics and
MOS. Note that a, b, c and d are content-dependent parame-
ters.

To avoid content dependencies, we selected a source
image as the training image and the rest as the test images.
The stimuli generated from the training image were used
to obtain the metric’s weights empirically by curve-fitting.
Similar to [22], the weights were obtained so as to minimize
the root-mean-square error between the W-VPSNR values
and the subjective MOS values of the stimuli. The stimuli
generated from each test image were used to calculate the
correlation coefficients including Pearson Correlation Coef-
ficient (PCC) and Root Mean Squared Error (RMSE) [14].

We repeated the selection 3 times with different train-
ing images. Table 3 shows the PCC and RMSE values for
each test image when using different training images. It can
be seen that the W-VPSNR metric well correlates with the
MOS. Specifically, this metric has PCC values higher than
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Table 4 Weights of zones

Zone
Z1 Z2 Z3

[0◦, 9◦) [9◦, 30◦) [30◦,+∞)
Weight 0.925 0.067 0.008

0.92 and RMSE values lower than 0.46 MOS. Comparing
to the conventional metrics, its PCC values are significantly
higher while its RMSE values are considerably lower for all
the cases. In particular, when the test image is Image #1,
the conventional metrics have PCC values lower than 0.87
and RMSE values higher than 0.56 MOS. Meanwhile, the
PCC and RMSE values of the W-VPSNR metric are respec-
tively 0.95 and 0.34 MOS when the training image is Image
#2 and 0.92 and 0.46 MOS when the training image is Im-
age #3. For the other test images, the similar observations
are also obtained. This result indicates that the W-VPSNR
metric outperforms the conventional metrics in quality as-
sessment for omnidirectional contents.

In all the test image cases, the conventional metrics
have low PCC values (from 0.73 to 0.89) and high RMSE
values (from 0.45 to 0.78). This result means that these met-
rics do not well perform for omnidirectional content with
spatial varying quality. It also implies that the weighting
functions proposed for traditional content may be not suit-
able in this new context.

Table 4 shows the weights wk of zones. Similar to [22],
the selected values correspond to the training case that re-
sults in the highest PCC of the test images. From Table 4,
it can be seen that w1 is highest while w3 is lowest. In ad-
dition, w1 is much higher than w2 and w3. This means that
the image area corresponding to the macula region of the
retina has a much more significant contribution to the over-
all quality than the rest. This result can be explained by the
fact that the density of cone and ganglion cells, which plays
an important role for the sensitivity of the human eyes, drops
rapidly away from the foveation point [3].

5. Conclusions

In this paper, we have proposed an objective quality met-
ric called W-VPSNR for quality assessment of omnidirec-
tional images. Through experiment results, it was shown
that, thanks to taking into account the foveation feature of
the human visual system, the W-VPSNR metric well corre-
lates with the MOS and outperforms conventional metrics.
For future work, we intend to extend our study to larger
numbers of zones in viewports. In addition, we will apply
weighting for zones to other metrics such as SSIM.
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