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SUMMARY Driver drowsiness estimation is one of the important tasks
for preventing car accidents. Most of the approaches are binary classi-
fication that classify a driver is significantly drowsy or not. Multi-level
drowsiness estimation, that detects not only significant drowsiness but also
moderate drowsiness, is helpful to a safer and more comfortable car sys-
tem. Existing approaches are mostly based on conventional temporal mea-
sures which extract temporal information related to eye states, and these
measures mainly focus on detecting significant drowsiness for binary clas-
sification. For multi-level drowsiness estimation, we propose two temporal
measures, average eye closed time (AECT) and soft percentage of eyelid
closure (Soft PERCLOS). Existing approaches are also based on a time do-
main convolutional neural network (CNN) as deep neural network models,
of which layers are linked sequentially. The network model extracts fea-
tures mainly focusing on mono-temporal resolution. We found that features
focusing on multi-temporal resolution are effective to multi-level drowsi-
ness estimation, and we propose a parallel linked time-domain CNN to
extract the multi-temporal features. We collected an own dataset in a real
environment and evaluated the proposed methods with the dataset. Com-
pared with existing temporal measures and network models, Our system
outperforms the existing approaches on the dataset.
key words: driver monitoring, driver drowsiness estimation, time-domain
CNN, PERCLOS

1. Introduction

Driver drowsiness is one of the leading causes of car acci-
dents. Various approaches have been studied to construct an
accurate estimator for driver drowsiness [1]–[23].

Most of the approaches are binary classification that
classify whether a driver is significantly drowsy or not. It
helps to avoid car accidents. However, even though a sys-
tem detect a significantly drowsy driver correctly, it provides
limited time to a car system until occurring accidents and the
system can wake the driver only in an uncomfortable way
such as a loud alert. On the contrary, multi-level drowsiness
estimation, that detects not only “significant drowsiness” but
also “moderate drowsiness”, enables a car system feed ap-
propriate intervention to a driver according to the drowsi-
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ness levels. For example, a system can recover comfort-
ably a moderately drowsy driver with cold air. Zilberg et
al. proposed a five-level drowsiness definition [24] that has
been widely used [8], [11], [12], [22] for multi-level drowsi-
ness estimation. We modify the five-level definition, and
develop multi-level drowsiness estimation system following
the modified definition.

Existing approaches show that conventional temporal
measures, such as percentage of eyelid closure (PERCLOS)
and blink frequency, are helpful to extract temporal informa-
tion related to eye states for drowsiness estimation. These
measures are designed to mainly focus on detecting drowsi-
ness of high levels such as significantly drowsy and ex-
tremely drowsy. For detecting drowsiness of low levels such
as moderately drowsy, we propose two temporal measures:
average eye closed time (AECT) and soft percentage of eye-
lid closure (Soft PERCLOS). AECT is the average number
of frames with eye closed in a blink interval. It is helpful
to distinguish between a slightly drowsy driver who blinks
frequently and a significantly drowsy driver who closes eyes
for a certain time. Soft PERCLOS is the ratio of the num-
ber of frames with the eyes not fully opened, and helpful to
detect a moderately drowsy driver whose eyes are not fully
opened.

Some researches proposed deep learning based ap-
proaches with a time domain convolutional neural network
(CNN). The time domain CNN can extract temporal fea-
tures, and the features are effective to drowsiness estima-
tion. The layers of the time domain CNN decrease the
size of feature maps progressively, and temporal resolu-
tion of the feature maps is also decreased. The layers are
linked sequentially, therefore, these models are designed
to extract features mainly focusing on mono-temporal res-
olution. Shih and Hsu [4] proposed a multistage spatial-
temporal network (MSTN), of which convolutional layers
are linked in parallel. The feature maps of each convolu-
tional layer are concatenated with the parallel linked struc-
ture, and fully connected layers estimate driver drowsiness
with the concatenated feature maps. Therefore, MSTN can
extract features of multi-spatial resolution. These features
are effective to drowsiness estimation, but we found that fea-
tures focusing on multi-temporal resolution are more effec-
tive to multi-level drowsiness estimation. To extract fea-
tures of multi-temporal resolution, we propose a parallel
linked time-domain CNN. Furthermore, we visualize which
of input features, that is fed into the network model, are
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important for the estimation as a sensitivity map, and vali-
date whether our proposed model extracts features of multi-
temporal resolution or not.

Combining our proposed temporal measures and par-
allel linked time-domain CNN, we conduct a multi-level
drowsiness estimation system. First, the system detects a
driver’s face and eyes, and extracts features related to eyes
on each driver image. The features include width, height of
eyes, eye states which mean eye opening degree, etc. As
a next step, the system calculates four temporal measures
from sequences of the eye states to extract temporal infor-
mation for drowsiness estimation. We utilize not only our
proposed measures but also conventional measures to esti-
mate drowsiness of various levels. Finally, the system es-
timates multi-level driver drowsiness with a parallel linked
time-domain CNN.

Most researchers evaluate methods with datasets that
are recorded in a driving simulator. The condition such as
a background, vibration, and illumination is different from
that of a real environment. Therefore, we collect an own
dataset that is recorded in a real environment. To verify
the effectiveness of the proposed system, we conduct experi-
ments with the dataset. The experiments have demonstrated
that the proposed temporal measures and parallel linked
time-domain CNN outperforms conventional temporal mea-
sures and network models. We also visualize the prediction
results as line graphs, show the correlation between the pre-
diction results and groundtruth. For showing possibility of
early detection of driver drowsiness, we evaluate the pro-
posed system on each drowsiness level, and investigate the
transition time from drowsiness of low levels to high levels.
The results show that the proposed system achieves high ac-
curacy on moderate drowsiness, and the transition time from
moderate drowsiness to significant drowsiness is sufficiently
long for recovering comfortably a drowsy driver. As a result,
our proposed system can estimate a drowsy driver early.

Our contributions are summarized as follows:

• We propose a multi-level driver drowsiness estimation
system. The system consists of three major compo-
nents: (1) calculating features related to eyes from each
driver image, (2) calculating temporal measures on eye
states, and (3) estimating drowsiness levels with time-
domain convolutional neural network (CNN). (Sect. 3)
• On the second component, we propose novel temporal

measures for detecting low level drowsiness: AECT
and Soft PERCLOS. (Sect. 3.2) On the third compo-
nent, we propose a parallel linked time-domain CNN
to extract features focusing on multi-temporal resolu-
tion. (Sect. 3.4)
• We evaluate our proposed method with a driving movie

dataset recorded in a real environment. (Sect. 4)
• We validate that our proposed method captures the

change of driver drowsiness with line graphs and ex-
tract features focusing on multi-temporal resolution
with sensitivity maps that is generated by Smooth-
Grad [25]. (Sect. 4.4)

• We also show experimental results related to early de-
tection of a drowsy driver. (Sect. 4.5)

2. Related Work

We show categories focusing on sensors to capture informa-
tion of a drowsy driver in this section. Then, we discuss
the most relevant approaches for accurate multi-level driver
drowsiness estimation.
Approaches to Estimate Driver Drowsiness: The ap-
proaches to estimate driver drowsiness are divided into three
categories: driving patterns of cars, physiological features of
drivers, and visual expressions of faces.

The first category is based on driving patterns such as
steering wheel movements, braking time series, and lane de-
parture [13]–[15]. These approaches are user-friendly but
are influenced by other factors unrelated to drowsiness such
as driving skills, road conditions, and car characteristics.

The second category uses electrical bio-signals from
electroencephalograms (EEG) [16]–[21], electrocardiograms
(ECG) [22], [23], and electrooculograms (EOG) [22], [23].
These approaches are accurate but uncomfortable for the
driver.

The third category focuses on analyzing sequences of
driver images to extract facial appearances such as eye clo-
sure, head movement, yawning, eye focus, and comprehen-
sive facial expressions [1]–[6]. These approaches are user-
friendly, as accurate as the other approaches, and less in-
fluenced by factors unrelated to drowsiness than driving-
pattern based approaches. Therefore, we use facial appear-
ances to estimate driver drowsiness.
Temporal Measures related to eyes: Some researchers
proposed methods to estimate driver drowsiness with hand-
crafted temporal measures related to eyes. Eye closure is the
most commonly used to estimate drowsiness. Percentage of
eyelid closure (PERCLOS) [7] and blink frequency [26] are
also widely used [8], [9]. Wierwille et al. mentioned that
PERCLOS strongly correlates with driver drowsiness [7].
PERCLOS measures the ratio of time with eyes closed to
a given time. Zhang et al. mentioned that blink frequency
is also an important measure for drowsiness estimation [26].
The definition of blink frequency is as follows:

f t
blink =

nt
blinking

Nt
total

, (1)

where Nt
total denotes the total number of frames, and nt

blinking
denotes the number of frames that the eye state changes be-
tween open and closed for a given period of time t. The
definition of PERCLOS is as follows:

PERCLOS t =
nt

close

Nt
total

, (2)

where nt
close denote the number of frames with eyes closed

for a given period of time t.
These temporal measures are designed for binary clas-

sification. Hence, we propose novel temporal measures for



1278
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

multi-level drowsiness estimation.
CNN Based Drowsiness Estimation: Convolutional neu-
ral network (CNN) is used to extract features directly
from driver facial images. Lyu et al. [10] proposed bi-
nary classification with a CNN and long short-term mem-
ory (LSTM) [27], [28]. Focusing on eye and month states,
Reddy et al. [6] proposed drowsiness estimation of three lev-
els (drowsy, yawning, and normal) with a CNN. Huynh
et al. [5] utilized temporal information of movies with a
3D-CNN [29]. Shih and Hsu [4] proposed MSTN for bi-
nary classification with a CNN (VGG-16 [30]) and LSTM.
MSTN can learn information of multi-spatial resolutions.
For multi-level drowsiness estimation, we consider that in-
formation of multi-temporal resolutions is more effective
than multi-spatial resolutions.
Approaches of Multi-level Drowsiness Estimation: The
approaches with a CNN achieved high accuracy, but they
are all binary classification and not suitable for preventing
drowsy driving. Some researchers have tried to prevent
drowsy driving with multi-level drowsiness levels. From
sequences of face images, Nakamura et al. [11] extracted
hand-crafted features such as eyelid movements and wrin-
kle changes, and estimated five levels of drowsiness with
the traditional k-NN method. Sun et al. [12] used only se-
quences of eye-blinks to estimate five levels of drowsiness
with deep neural networks that are simple 1D time-domain
convolution or LSTM. The time-domain convolution with
eye blinks is effective, but we consider that time-domain
convolution with temporal measures that are designed for
multi-level drowsiness estimation is more effective. Both
conventional approaches are evaluated with datasets that are

Fig. 1 The our system architecture: (1) The system detects eyes of the driver and calculates features
related to eyes from each driver image. (2) Using the features, the system calculates temporal measures
on eye states with time periods of 10 and 20 seconds: PERCLOS, Blink frequency, AECT, Soft PERC-
LOS. (3) Using the features and temporal measures, the system estimates drowsiness levels of the driver
with time-domain convolution including a parallel linked structure.

recorded in a driving simulator.

3. Method

Our system consists of three components: (1) calculating
features related to eyes from each driver image, (2) calcu-
lating temporal measures on eye states, and (3) estimating
drowsiness levels with a parallel linked time-domain CNN.
The details of the system are shown in Fig. 1.

3.1 Drowsiness Level

We use the definition of the drowsiness levels proposed by
Zilberg et al. [24]. They classify drowsiness into five lev-
els: (1) alert, (2) slightly drowsy, (3) moderately drowsy, (4)
significantly drowsy, and (5) extremely drowsy. In our ex-
periment, we simplify the scale of the rating from the five
to four levels by merging the first two levels into one level.
If a system can detect a moderately drowsy driver, the sys-
tem can have a sufficiently long time to provide appropriate
intervention to the driver. This is because the difference be-
tween alert and slightly drowsy is not important, but distin-
guishing between alert and moderately drowsy is important
for an car system. The four levels are: (1) alert, (2) moderate
drowsy, (3) significantly drowsy, and (4) extremely drowsy.

3.2 Calculating Features from Each Driver Image

First, we extract some features from each driver image. The
features consist of (1) center positions of both eyes and
pupils, (2) average widths and heights of eyes, and (3) eye
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state. The eye positions are determined by using OKAO Vi-
sion [31], then the eyes images are clipped and resized. The
eyes images are fed into a ResNet [32] to estimate the above
features. The ResNet has three residual blocks and 13 lay-
ers, and receives an eye image of 64 × 64. The eye state
ranges from −1.0 to 1.0. If the state is greater than 0.0, the
eye is open. To train the ResNet, we annotated 24 points
around an eye and eye states on eyes images. The ResNet
estimates the 24 points and eye states, and extracts the fea-
tures from points and eye states.

3.3 Calculating Temporal Measures on Eye States

We calculate temporal measures on the eye status from the
sequence of the eye states that are estimated with the ResNet
based CNN.

PERCLOS and blink frequency are widely used and
known as effective temporal measures to denote eye states
for binary classification. In addition to the measures, we
propose novel temporal measures for multi-level drowsiness
estimation: AECT and Soft PERCLOS.
AECT (average eye closed time): We propose a novel mea-
sure named AECT, which is the average number of frames
with eye closed in a blink interval. We observe that signifi-
cantly drowsy drivers tend to close their eyes for a long time,
therefore, we add AECT as a feature. Although it slightly
overlaps with PERCLOS, we found that AECT improves the
accuracy. The definition of AECT is as follows:

AECT t =
PERCLOS t

f t
blink

. (3)

AECT is similar to average eyes closed speed (AECS) [1]
but slightly different. Because AECS measures the speed of
blinking eyelids, it requires a very high frame-rate camera.
In contrast, AECT can be used with a low frame-rate (30
frames per second (FPS)) camera.
Soft PERCLOS: We propose a novel measure named ‘Soft
PERCLOS’ for drowsiness estimation. Soft PERCLOS de-
notes the ratio of the number of frames with the eyes not
fully open. This is a strong hint to detect a moderately
drowsy state. The definition of soft PERCLOS is as follows:

PERCLOS t
so f t =

nt
so f t close

Nt
total

, (4)

where nt
so f t close is the number of frames with S eye < 0.8 for

a given time t. When a driver is moderately drowsy with
eyes not fully closed, the driver may blink quickly with the
eye state dangling around 0. In that case, it is difficult to de-
tect drowsy driving with only PERCLOS, blink frequency,
and AECT. However, we found that we can estimate it by
adding Soft-PERCLOS.
Multiscale Time Period: As shown in Eq. (1), (2), (3), and
(4), the temporal measures require a time period t. We found
that the time period affects the accuracy and multiscale time
period improve the accuracy. The “multiscale time period”

indicates using multiple temporal measures that are calcu-
lated by different time periods. Our proposed parallel linked
time domain CNN extracts features of multi-temporal res-
olution, therefore, the multiscale time period are slightly
overlapped with the features. However, we found that com-
bining the parallel linked time-domain CNN with the mul-
tiscale time period improves the accuracy. In our experi-
ments, we use time periods of 10 and 20 seconds.

We concatenate the features calculated from each
driver image and the multiscale results of the measures.
They are calculated from the frames that are determined by
two parameters: specific time period T and frames per sec-
ond f ps.

3.4 Estimating Drowsiness Levels with Parallel Linked
Time Domain CNN

Our proposed network model consists of three parts:
(1) time-domain convolution block, (2) paralleled smooth
block, and (3) regression block. The model receives a se-
quence of the features and measures described in Sect. 3.2
and Sect. 3.3. The features are center positions of both eyes
and pupils, width and heights of eyes, and eye state. The
measures are PERCLOS, blink frequency, AECT, and Soft-
PERCLOS. The model outputs the drowsiness level of the
last frame. The architecture is shown in Fig. 1.

3.4.1 Time-Domain Convolution Block

We apply time-domain convolution on sequences of the fea-
tures and measures to extract temporal information. We use
three time-domain convolution blocks, with kernel size set
to 7, 5, and 3 respectively. The three time-domain convo-
lution blocks are linked sequentially. The second and third
blocks have max polling layers. Note that different input
features are treated as feature channels like the RGB chan-
nels of images.

3.4.2 Paralleled Smooth Block

The paralleled smooth blocks are used to extract deep fea-
tures focusing on multi-temporal resolutions from the time-
domain convolution blocks. The parallel linked structure
is inspired by MSTN [4], where it is used for not time-
domain convolution but usual convolution in the spatial or
feature domain. Therefore, MSTN is the structure to ex-
tract features focusing on multi-spatial resolution. On the
other hand, we link the parallel smooth blocks after each
time-domain convolution block to extract features focusing
on multi-temporal resolution. The number of convolution
kernels of parallel blocks is the same as input channels.

3.4.3 Regression Block

We use global max pooling layers to concatenate features
of different parallel smooth blocks. The outputs of parallel
smooth blocks will be one dimension after the global max
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Table 1 Variance of groundtruths: “variance” means the average of vari-
ances that is calculated from drowsiness scores on each frame. “max - min”
means the average of differences between maximum and minimum scores
on each frame. “ratio ([max - min] > threshold)” means ratio of the frames,
the difference of which between maximum and minimum scores is greater
than the threshold.

Item Value

variance 0.1942
max - min 0.6753

ratio ([max - min] > 0.5) 53.99%
ratio ([max - min] > 1.0) 12.88%
ratio ([max - min] > 2.0) 2.53%

pooling layers. The deep features of multi-temporal resolu-
tion after global max pooling are concatenated and fed into
the regression block. For the regression block, we simply
use two fully connected layers with linear activation func-
tions to estimate drowsiness levels. Note that the last block
except for the global max pooling layers cannot be com-
bined into a simple projection layer, because a dropout op-
eration is carried out after the first linear activation when
training.

4. Experiments

We present experimental results under different conditions.
First, the details of the dataset will be introduced in Sect. 4.1.
We explain our experimental details in Sect. 4.2. We show
the experimental results with different model architectures
and input features in Sect. 4.3. We also show the experi-
mental results to evaluate that our system catches the change
of driver drowsiness and extract features focusing on multi-
temporal resolution with sensitivity maps that is generated
by SmoothGrad [25] in Sect. 4.4. Finally, we mention ad-
ditional experiments for early detection of drowsiness in
Sect. 4.5.

4.1 Dataset

Our dataset is recorded in a real driving car. For safety rea-
sons, we attached an IR camera in front of the front seat
passenger in real cars. We instructed subjects to look ahead
with a feeling of driving. To make the datasets diversified,
we employed 16 different subjects, some of whom wore
glasses or masks. Each subject was recorded for around 30
minutes with an IR camera, 60 FPS. For the annotation, the
videos were cut into 5-second clips, and three workers an-
notated the clips individually. Consequently, each worker
labeled around 360 clips for each of the 16 subjects. Finally,
we used the average of the annotation as a groundtruth and
interpolated the groundtruth with linear interpolation in the
time domain. Therefore, we can get the interpolated drowsi-
ness level on each frame, and use it as a groundtruth. Note
that, we instructed the workers to train adequately how to
annotate precise drowsiness scores. As a result, variance of
the drowsiness scores is low on our dataset. The details of
the variance are shown in Table 1.

Examples of the dataset are shown in Fig. 2. These ex-

Fig. 2 One of the subjects in our dataset: This figure shows three cases
of different drowsiness levels with four sequential cropped images for each
case. The time distance of each two sequential images is 0.1 seconds ap-
proximately.

amples demonstrates the meticulousness of our experimen-
tal environment and dataset.

4.2 Experimental Details

Input: Our system receives 30 seconds image sequences
of 12 FPS. When we use 12 FPS, we can detect blinks of
the driver, and accelerate the system. For each frame, the
system estimates coordinate of centers of eyes and pupils,
average width and height of eyes, eye state, and multi-
scale temporal measures: PERCLOS , fblink, AECT , and
PERCLOS so f t with t = (10sec, 20sec). Our network model
in the system receives their feature sequences. Their dimen-
sions are 8, 2, 1, and 8, respectively. To be precise, the shape
of the model input is 360×19 shown as Fig. 1 (3). 360 means
the number of input frames, and 19 means the dimension
number of input features. Note that, the system calculate
the features and temporal measures with a sliding-window
style for each of the continuous 360 frames. The temporal
measures are calculated from the frames of 10sec and 20sec
length, and the frames are overlapping. Therefore, the mea-
sures might include some of redundant computation. How-
ever, for sake of simplicity, we complete the dimensional
numbers of the features and temporal measures. Meanwhile,
we also evaluate some network models the inputs of which
are eye image sequences. The images are resized to 64×32,
and the shape of the model input is 360 × 2048.
Hyperparameters of network: We select Adam with
hyperparameters set as follows: lr = 0.001, betas =
(0.9, 0.999), eps = 1e−8, weight decay = 0.0005. We use
the L1 loss, also known as mean absolute error (MAE).
Training and testing: We evaluate our model with a leave-
one-out cross validation. The dataset is split by subjects,
one is used for testing, and the others are used for training.
We train the model with 1,024 instances on each epoch. The
instance indicates 30 seconds clip and input of the network
model. The instances randomly picked out from the training
dataset that includes 15 subjects on each epoch. The number
of training epoch is 100, the total number of instances is
102,400. The shape of the instance is 360× 19. Meanwhile,
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we divide the testing dataset into every instance, use all of
their instances for testing. We use a batch size of 128 when
inputs of the network are sequences of features. If sequences
of eye images are fed into a model, the batch size is 4 for
the limitations of GPU memory. In the testing, we apply
exponential moving average (EMA) on both predictions and
groundtruth for denoising. The window length of EMA is
30 frames.
Metrics: The accuracy is calculated by the number of cor-
rect predictions over the total test dataset. A correct predic-
tion is defined as follows:

Correct =

⎧
⎪⎪⎨
⎪⎪⎩

1, i f |Yi − Ŷi| < M,

0, otherwise.

where Yi is the prediction of ith frame, Ŷi is the groundtruth,
and M is the width of the accurate margin (tolerance). We
also evaluate with MAE.
Model architecture: As noted in Sect. 3.4, Our pro-
posed network model is a parallel linked time-domain
CNN. For comparison, we also evaluate seven model ar-
chitectures: LSTM, VGG-LSTM, VGG-LSTM with paral-
lel linked structure, VGG-LSTM with time-domain pooling,
3D-CNN, 1 time-domain convolution block, and 3 time-
domain convolution blocks.

The details of the model architectures we used in our
experiments are shown in Tables 2, and 3. Table 2 indicates
the models that receive sequences of eye images. The eye
images are resized to 64 × 32. Table 3 indicates the models
that receive sequences of the features as noted in Sect. 3.

The time-domain pooling model is designed following
the idea of learning temporary information of Ng et al. [33].
Features are calculated from sequences of eye images with
VGG, and the features are downsampled with max pooling
in the time domain. In the time-domain pooling, we esti-
mate drowsiness with the same layers as VGG-LSTM. The
1 time-domain convolution block is the model with only one
time-domain convolution block and linear regression (fully
connected layer). The 3 time-domain convolution blocks is
the model with three time-domain convolution blocks linked
sequentially. The final one is our proposed model as de-
scribed in Sect. 3.

4.3 Performance of Proposed Method

We perform two experiments: (1) experiments with differ-
ent model architectures, and (2) experiments with different
input features. We perform the experiments with different
model architectures to validate the effectiveness of our pro-
posed network architecture that is a parallel linked time do-
main CNN. We perform the experiments with different input
features to validate the effectiveness of our proposed tempo-
ral measures: AECT and Soft PERCLOS.
Different model architectures: We performed the cross
validation on different model architectures with the same in-
put. The accuracy of different models is shown in Table 4.
Our proposed model performed better than the other models.

Table 2 Architectures of models that receive sequences of eye images:
On “lstm”, and “fc”, the argument is the hidden size. “do” is a dropout
layer: the argument is the probability. “bn” is a batch normalization layer.
“c” is a convolutional layer, and “c3” is a 3D convolutional layer: the first
argument is the number of the output channels, and the second is a kernel
size. “mp” is a max pooling layer, and the argument is the kernel size.
“block” is the block of VGG as in [30]: the first argument is the output
channels, the second is a number of convolutional layers.

VGG-LSTM
VGG-LSTM

(parallel) 3D-CNN

block(64,2),
mp(2)

block(64,2),
mp(2)

c3(16,7),
bn, relu

block(128,2),
mp(2)

block(128,2),
mp(2)

c3(32,5),
bn, relu

block(256,2),
mp(2)

block(256,2),
mp(2)

c(128,1),
relu mp(2)

block(512,2),
mp(2)

block(512,2),
mp(2)

c(256,1),
relu -

c3(64,3),
bn, relu

block(512,2),
mp(2)

block(512,2),
mp(2) - - -

-
c(512,1),

relu - - -
global MP

- concat -

bn, do(0.3), fc(128),
bn, relu, do(0.4), fc(128), relu

bn,
do(0.3),
fc(64)

lstm(64), bn, fc(1)
do(0.3),

fc(1)

Table 3 Architectures of models that receive sequences of features.

LSTM

1 time
domain

conv
block

3 time
domain

conv
blocks

parallel linked time domain CNN
(3 time-domain

convolution blocks, ours)

lstm(256)
do(0.05)

c(16,3)
bn, relu

c(32,7)
bn, relu

c(32,7)
bn, relu

lstm(256)
do(0.05) -

c(64,5)
bn, relu
mp(2)

c(64,5)
bn, relu
mp(2)

c(32,1),
relu

lstm(256)
do(0.05) -

c(128,3)
bn, relu
mp(2)

c(128,3)
bn, relu
mp(2)

c(64,1),
relu -

- - -
c(128,1),

relu - -
- global mp
- - - concat

bn, do(0.3), fc(64), do(0.3), fc(1)

The bottom four models that receive sequences of features
performed better than the top four models that receive se-
quences of eye images. On our dataset, it indicates that the
hand-crafted features are better than features extracted auto-
matically from eye images with the CNNs such as VGG and
3D-CNN. CNNs need enormous dataset to extract features
automatically, but collecting real driver drowsiness dataset
is difficult. We found that our proposed hand-crafted fea-
tures improve the accuracy on limited datasets such as driver
drowsiness. Among the models that receives sequences of
features, Our proposed model achieves the best accuracy. It
indicates that our parallel linked time domain CNN is ef-
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Table 4 Experimental results for different model architectures: As men-
tioned in Sect. 4.2, we calculated the accuracy and MAE. The accuracy is
calculated with M (width of accurate margin) of 1.0 and 0.5. The input of
the top four models is sequences of eye images. The input of the bottom
four models is sequences of features.

Model M=1.0 M=0.5 MAE

VGG-LSTM 73.89% 37.54% 0.6971
VGG-LSTM (parallel) 66.58% 31.64% 0.7990
VGG-LSTM (time-domain pool) 55.50% 28.41% 0.9695
VGG-LSTM
(time-domain pool, parallel) 48.20% 21.20% 1.3065
3D-CNN 69.31% 32.02% 0.7535

LSTM 60.71% 37.45% 1.1115
1 time-domain convolution block 80.97% 54.16% 0.5428
3 time-domain convolution blocks 97.99% 66.99% 0.3931
parallel linked time domain CNN
(3 time-domain convolution blocks,
ours) 96.79% 69.04% 0.3785

Table 5 Experimental results for different input features: The top two
features are calculated on frame-by-frame basis. The following two fea-
tures are temporal measures on eye states. We adapt multiscale time period
on the last features.

Features (dimension) M=1.0 M=0.5 MAE

Displacement (8) 95.03% 56.72% 0.4737
+Width, height and eye state (11) 95.53% 68.03% 0.4061

+ Conventional temporal measures:
PERCLOS and blink frequency (13) 96.27% 66.25% 0.3996
+ Proposed temporal measures:
AECT and Soft PERCLOS (15) 96.90% 67.98% 0.3971

+Multiscale time period (19) 96.79% 69.04% 0.3785

fective to learn temporal information for driver drowsiness
estimation.
Different input features: We also performed experiments
on different input features with our proposed model. The
results are shown in Table 5. From the top to the bottom, we
add features that is fed into our proposed model. The top
two features are calculated on frame-by-frame basis. The
displacement features consist of the center position of both
eyes and pupils. We add the average width and height of left
and right eyes, and the eye state in the second row.

The following two features are temporal measures on
eye states. In the third row, we add the conventional tempo-
ral measures: PERCLOS, and blink frequency. In the fourth
row, we add our proposed temporal measures: AECT, and
Soft PERCLOS. Note that, these temporal measures are cal-
culated with a time period of 20 seconds (t = 20).

The last feature is calculated with multiscale time pe-
riod as noted in Sect. 3.3. We add the temporal measures
calculated with a time period of 10 seconds (t = 10) in the
last row.

Our model performs well even if only displacement
features are given. The temporal measures on eye states
is effective for driver drowsiness estimation. Our proposed
temporal measures, AECT and Soft PERCLOS, perform
better than with only conventional temporal measures. Fur-
thermore, the multiscale time period also improves the ac-
curacy.

Fig. 3 Prediction results: The x axis denotes time (or frame) and y axis
denotes the drowsiness level. The blue line is the groundtruth, the red line
is the prediction results. We apply exponential moving average (EMA) on
both predictions and groundtruth to make the visualized results smooth.

4.4 Analysis

In this subsection we show the experimental results to an-
alyze our proposed method. We perform two experiments:
(1) experiments of visualization of prediction results, and
(2) experiments of visualization of sensitivity maps. We vi-
sualize the prediction results with line graphs, and check
subjectively whether our system can capture the change of
driver drowsiness or not. We also visualize the sensitiv-
ity maps, that is generated by SmoothGrad [25], to validate
whether the parallel linked time domain CNN extract fea-
tures focusing on multi-temporal resolution or not.
Visualization of Prediction results: The line graphs of pre-
dictions and groundtruths are shown in Fig. 3. The predic-
tions (red) of our proposed model fit the groundtruth, and
their trends are correlated. The figure indicates that the time
lag between predictions and groundtruth is small, and hence
our system can catch the change of driver drowsiness well.
Visualization of Sensitivity Maps: We visualize the sen-
sitivity maps, that is associated to input features, with
SmoothGrad [25]. The sensitivity maps are shown in Fig. 4.
We visualize sensitivity of two models: our proposed time
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Fig. 4 Visualization of sensitivity maps: The map shows that the sensitivity to input features. The
cool and warm colors are associated to low and high sensitivity, respectively. The column denotes
features: center positions of both eyes and pupils, average widths and heights of eyes, eye state, and
temporal measures from left to right. The row denotes frames: (t - 1740)-th frame, (t - 1680)-th frame,
. . . , t-th frame from top to bottom. The top and bottom maps are ‘slightly drowsy’ and ‘significantly
drowsy’, respectively. The left and right maps are our proposed method, that is parallel linked time
domain CNN, and conventional time domain CNN, respectively.

domain CNN with three time domain convolution blocks
linked in parallel, and a conventional time domain CNN
with the blocks linked sequentially.

The center position of both eyes and pupils affect the
prediction results moderately. The eye state affects the re-
sult slightly, and the width and height of eyes affects signifi-
cantly. The real width is hardly changed regardless of driver
drowsiness. However, the width, that is predicted by our
system, is strongly correlated with the eye state and height
of eyes. Both of the models leverage the width instead of the
eyes state. Among temporal measures, our system utilizes
the AECT instead of the blink frequency, and both of PER-
CLOS and Soft-PERCLOS affects the results moderately.
We utilize multiscale time period which are t of 10 and 20
seconds, both of them affect the result.

The time domain CNN utilize features of a limited
number of frames. Meanwhile, our proposed parallel linked
time domain CNN utilize features of a variety of frames.
The difference between the time domain CNN and the par-
allel linked time domain CNN can be confirmed at both of
‘slightly drowsy’ and ‘significantly drowsy’. Evidently, our
proposed model extract features focusing on multi-temporal
resolution.

4.5 Early Detection of Drowsiness for Preventing Drowsy
Driver

Drowsiness of high levels such as “significantly drowsy”
and “extremely drowsy” cause serious accidents. If a system

Table 6 Experimental results on each drowsiness level: We calculated
the accuracy, that is calculated with M (tolerance) of 1.0 and 0.5, and
MAE. The accuracy is calculated by our proposed system. As mentioned
in Sect. 3.1, we merged “alert” and “slightly drowsy” into one level.

Drowsiness level M=1.0 M=0.5 MAE

alert, slightly drowsy 90.58% 54.71% 0.4900
moderately drowsy 99.12% 74.71% 0.3847
significantly drowsy 91.48% 51.80% 0.5460
extremely drowsy 96.82% 45.12% 0.5030

can estimate drowsiness of a low level such as “moderately
drowsy” and transition time from “moderately drowsy”
to “significantly drowsy” is sufficiently long, the system
can provide more options to avoid accidents about drowsy
driver.

In this subsection, we show the experimental results for
early detection of drowsiness. We perform two experiments:
(1) experiments of evaluation on each drowsiness level, and
(2) experiments of the transition time from drowsiness of
lower levels to higher levels.
Evaluation on each drowsiness level: We evaluated our
proposed method on each drowsiness level. The accuracy
on each level is shown in Table 6. Our proposed method per-
forms well on not only “extremely drowsy” but also “mod-
erately drowsy”. As the result, our system can detect drowsy
driver in an early stage. The accuracy of “significantly
drowsy” is worse than the others. The driver of “signifi-
cantly drowsy” sometimes rubs his or her eyes and yawn. In
those cases, the height of eyes is excessively small, there-
fore, our system sometimes misclassifies the driver as “ex-
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Table 7 Transition time on each levels: We investigate the transition
time from lower levels to higher levels.

Drowsiness level
Average

[sec]
Max
[sec]

Min
[sec]

From “moderately drowsy”
to “significantly drowsy” 375.93 768.06 113.3
From “significantly drowsy”
to “extremely drowsy” 1299.34 4830.10 135.65

tremely drowsy”. For preventing the misclassification, other
features besides them related to eyes could be considered as
helpful.
Transition Time: We investigate the transition time from
lower drowsiness levels to higher levels. The transition time
is shown in Table 7. The table show that from lower levels
to higher levels is longer than 110 seconds.

Awaking the driver who is extremely drowsy with weak
intervention is hard. Meanwhile, a system can awake eas-
ily a driver of “moderately drowsy” with weak interven-
tion. Our system can detect preciously driver of “moder-
ately drowsy”, and the transition time from lower levels to
higher levels is longer than about two minutes. As the result,
our proposed method enables a system to recover the driver
comfortably with weak intervention such as cold wind.

5. Conclusions

This paper presented a vision-based driver drowsiness esti-
mation system from sequences of driver images. We pro-
posed the novel model architecture with time-domain con-
volution including a parallel linked structure, and temporal
measures: AECT, and Soft PERCLOS. We show that our
proposed methods are effective for driver drowsiness esti-
mation, on the two experiments: with different model archi-
tectures, and different input features. Our system predicts
drowsiness levels with an overall accuracy of 96.79% and
69.04% with an error-tolerant value of 1 and 0.5, respec-
tively. Moreover, its MAE is 0.3785%.

We show that our proposed parallel linked time domain
CNN can extract features focusing on multi-temporal reso-
lution with sensitivity maps. Furthermore, we also show
possibility of early detection of drowsiness for preventing
drowsy driver.

Future research should consider the potential effects of
driver’s actions, for example controlling a real driving car.
Other datasets, that are recorded in a driving simulator, can
validate the effects. Therefore, evaluating with the simulator
dataset could be a complemental experiment.

References

[1] L. Lang and H. Qi, “The study of driver fatigue monitor al-
gorithm combined PERCLOS and AECS,” International Confer-
ence on Computer Science and Software Engineering (CASCON),
pp.349–352, 2008.

[2] M. Omidyeganeh, A. Javadtalab, and S. Shirmohammadi, “Intelli-
gent driver drowsiness detection through fusion of yawning and eye
closure,” IEEE International Conference on Virtual Environments

Human-Computer Interfaces and Measurement Systems (VECIMS),
pp.1–6, 2011.

[3] F. Zhang, J. Su, L. Geng, and Z. Xiao, “Driver fatigue detection
based on eye state recognition,” International Conference on Ma-
chine Vision and Information Technology (CMVIT), pp.105–110,
2017.

[4] T.-H. Shih and C.-T. Hsu, “MSTN: multistage spatial-temporal net-
work for driver drowsiness detection,” Asian Conference on Com-
puter Vision (ACCV) Workshops, vol.10118, pp.146–153, 2016.

[5] X.-P. Huynh, S.-M. Park, and Y.-G. Kim, “Detection of driver
drowsiness using 3D deep neural network and semi-supervised gra-
dient boosting machine,” Asian Conference on Computer Vision
(ACCV) Workshops, vol.10118, pp.134–145, 2016.

[6] B. Reddy, Y.-H. Kim, S. Yun, C. Seo, and J. Jang, “Real-time driver
drowsiness detection for embedded system using model compres-
sion of deep neural networks,” IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp.438–445,
2017.

[7] W.W. Wierwille, S.S. Wreggit, C. Kirn, L.A. Ellsworth, and R.J.
Fairbanks, “Research on vehicle-based driver status/performance
monitoring; development, validation, and refinement of algorithms
for detection of driver drowsiness. final report,” National Highway
Traffic Safety Administration, no.DOT HS 808 247, 1994.

[8] M. Tsujikawa, Y. Onishi, Y. Kiuchi, T. Ogatsu, A. Nishino, and
S. Hashimoto, “Drowsiness estimation from low-frame-rate facial
videos using eyelid variability features,” International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC),
pp.5203–5206, 2018.

[9] J.W. Baek, B.-G. Han, K.-J. Kim, Y.-S. Chung, and S.-I. Lee, “Real-
time drowsiness detection algorithm for driver state monitoring sys-
tems,” International Conference on Ubiquitous and Future Networks
(ICUFN), pp.73–75, 2018.

[10] J. Lyu, Z. Yuan, and D. Chen, “Long-term multi-granularity
deep framework for driver drowsiness detection,” arXiv preprint
arXiv:1801.02325, 2018.

[11] T. Nakamura, A. Maejima, and S. Morishima, “Driver drowsiness
estimation from facial expression features computer vision feature
investigation using a cg model,” International Conference on Com-
puter Vision Theory and Applications (VISAPP), pp.207–214, 2014.

[12] M. Sun, M. Tsujikawa, Y. Onishi, X. Ma, A. Nishino, and S.
Hashimoto, “A neural-network-based investigation of eye-related
movements for accurate drowsiness estimation,” International Con-
ference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp.5207–5210, 2018.

[13] J. Krajewski, D. Sommer, U. Trutschel, D. Edwards, and M. Golz,
“Steering wheel behavior based estimation of fatigue,” International
Driving Symposium on Human Factors in Driving Assessment,
Training and Vehicle Design, pp.118–124, 2009.

[14] H. Malik, F. Naeem, Z. Zuberi, and R. ul Haq, “Vision based driv-
ing simulation,” International Conference on Cyberworlds (CW),
pp.255–259, 2004.

[15] R.F. Knipling and W.W. Wierwille, “Vehicle-based drowsy driver
detection: Current status and future prospects,” The Intelligent
Vehicle-Highway Society of America (IVHS America), 1994.

[16] Z. Mardi, S.N.M. Ashtiani, and M. Mikaili, “Eeg-based drowsiness
detection for safe driving using chaotic features and statistical tests,”
Journal of medical signals and sensors, vol.1, no.2, pp.130–137,
2011.

[17] M.V.M. Yeo, X. Li, K. Shen, and E.P.V. Wilder-Smith, “Can SVM
be used for automatic EEG detection of drowsiness during car driv-
ing?,” Safety Science, vol.47, no.1, pp.115–124, 2009.

[18] C.-T. Lin, C.-J. Chang, B.-S. Lin, S.-H. Hung, C.-F. Chao, and I.-J.
Wang, “A real-time wireless brain–computer interface system for
drowsiness detection,” IEEE Transactions on Biomedical Circuits
and Systems, vol.4, no.4, pp.214–222, 2010.

[19] C.-T. Lin, L.-W. Ko, I.-F. Chung, T.-Y. Huang, Y.-C. Chen, T.-P.
Jung, and S.-F. Liang, “Adaptive eeg-based alertness estimation

http://dx.doi.org/10.1109/csse.2008.771
http://dx.doi.org/10.1109/vecims.2011.6053857
http://dx.doi.org/10.1109/vecims.2011.6053857
http://dx.doi.org/10.1109/cmvit.2017.25
http://dx.doi.org/10.1007/978-3-319-54526-4_11
http://dx.doi.org/10.1007/978-3-319-54526-4_10
http://dx.doi.org/10.1109/cvprw.2017.59
http://dx.doi.org/10.1109/embc.2018.8513470
http://dx.doi.org/10.1109/icufn.2018.8436988
http://dx.doi.org/10.5220/0004648902070214
http://dx.doi.org/10.1109/embc.2018.8513491
http://dx.doi.org/10.17077/drivingassessment.1311
http://dx.doi.org/10.1109/cw.2004.68
http://dx.doi.org/10.4103/2228-7477.95297
http://dx.doi.org/10.1016/j.ssci.2008.01.007
http://dx.doi.org/10.1109/tbcas.2010.2046415
http://dx.doi.org/10.1109/tcsi.2006.884408


NISHIYUKI et al.: DRIVER DROWSINESS ESTIMATION BY PARALLEL LINKED TIME-DOMAIN CNN WITH NOVEL TEMPORAL MEASURES ON EYE STATES
1285

system by using ica-based fuzzy neural networks,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol.53, no.11,
pp.2469–2476, 2006.

[20] A. Picot, S. Charbonnier, and A. Caplier, “Drowsiness detection
based on visual signs: blinking analysis based on high frame rate
video,” IEEE International Instrumentation and Measurement Tech-
nology Conference (I2MTC), pp.801–804, 2010.

[21] H. Albalawi and X. Li, “Single-channel real-time drowsiness detec-
tion based on electroencephalography,” International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC),
pp.98–101, 2018.

[22] A. Tsuchida, M.S. Bhuiyan, and K. Oguri, “Estimation of drowsi-
ness level based on eyelid closure and heart rate variability,” Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp.2543–2546, 2009.

[23] A. Tsuchida, M.S. Bhuiyan, and K. Oguri, “Estimation of drivers’
drowsiness level using a neural network based error correcting out-
put coding method,” International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp.1887–1892, 2010.

[24] E. Zilberg, Z.M. Xu, D. Burton, M. Karrar, and S. Lal, “Methodol-
ogy and initial analysis results for development of non-invasive and
hybrid driver drowsiness detection systems,” International Confer-
ence on Wireless Broadband and Ultra Wideband Communications
(AusWireless), p.16, 2007.

[25] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg,
“Smoothgrad: removing noise by adding noise,” arXiv preprint
arXiv:1706.03825, 2017.

[26] W. Zhang, B. Cheng, and Y. Lin, “Driver drowsiness recognition
based on computer vision technology,” Tsinghua Science and Tech-
nology, vol.17, no.3, pp.354–362, 2012.

[27] F.A. Gers, J. Schmidhuber, and F. Cummins, “Learning to for-
get: Continual prediction with LSTM,” Neural Computation, vol.12,
no.10, pp.2451–2471, 2000.

[28] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural net-
work regularization,” arXiv preprint arXiv:1409.2329, 2014.

[29] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural net-
works for human action recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol.35, no.1, pp.221–231, 2013.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[31] “OKAO Vision.” https://plus-sensing.omron.com/.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-

age recognition,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.770–778, 2016.

[33] J.Y.-H. Ng, M.J. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R.
Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.4694–4702, 2015.

Kenta Nishiyuki received MS degrees in
Computer Sciences from Nara Institute of Sci-
ence and Technology in 2010. He previously
worked at Megachips Corporation, and ECC
Corporation. He is currently working at Omron
Corporation, and pursuing a Ph.D. degree in
Computer Sciences at Chubu University. His
current research interests include computer vi-
sion and machine learning.

Jia-Yau Shiau received his MS degree from
Graduate Institute of Electronics Engineering,
National Taiwan University in 2018. He en-
gaged in several projects related to urban traf-
fic management, electronic design automation,
automated driving system and virtual reality, at
home and abroad. He is currently working at
HTC VIVE to develop VIVE tracking system.
His research interests include approximation al-
gorithm, computer vision and machine learning.

Shigenori Nagae received his Ph.D. de-
gree in molecular biology from Graduate school
of Biostudies, Kyoto University, Japan in 2013.
He is currently working in OMRON Corpora-
tion. His current research interests include hu-
man activity understanding, machine learning
and robotics.

Tomohiro Yabuuchi received the M.S.
degree in informatics from Kyoto University,
Japan in 2005. He is currently a research en-
gineer at OMRON Corporation. Before joining
OMRON Corporation in 2016, he was a spe-
cially appointed assistant professor of Osaka In-
stitute of Technology from 2010 to 2015. Prior
to that, he was JSPS research fellow (DC1) at
the Academic Center for Computing and Media
Studies, Kyoto University. His research inter-
ests include computer vision, machine learning,

virtual reality and augmented reality. He is a member of the IEEE and the
IEICE.

Koichi Kinoshita received the M.S. degree
from Kobe University, Japan, in 1998 and the
Ph.D. degree in informatics from Nagoya Uni-
versity, Japan, in 2013. He is currently working
in OMRON Corporation. His current research
interests include human activity understanding,
machine learning and computer vision. He is a
member of the IEICE.

Yuki Hasegawa received her bachelor’s de-
gree in information science from Tsukuba Uni-
versity, Japan in 1997. She is currently working
in OMRON Corporation, as a department man-
ager of Computer Vision. Her research interests
include human understanding, 3D sensing, and
robotics.

http://dx.doi.org/10.1109/tcsi.2006.884408
http://dx.doi.org/10.1109/imtc.2010.5488257
http://dx.doi.org/10.1109/embc.2018.8512205
http://dx.doi.org/10.1109/iembs.2009.5334766
http://dx.doi.org/10.1109/itsc.2010.5624964
http://dx.doi.org/10.1109/auswireless.2007.44
http://dx.doi.org/10.1109/tst.2012.6216768
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1109/tpami.2012.59
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2015.7299101


1286
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

Takayoshi Yamashita received his Ph.D.
degree from Department of Computer Science,
Chubu University, Japan in 2011. He worked in
OMRON Corporation from 2002 to 2014. He is
an associate professor of Department of Com-
puter Science, Chubu University, Japan since
2017. His research interests include object de-
tection, object tracking, human activity under-
standing, pattern recognition and machine learn-
ing. He is a member of the IEEE, the IEICE and
the IPSJ.

Hironobu Fujiyoshi received his Ph.D. in
Electrical Engineering from Chubu University,
Japan, in 1997. From 1997 to 2000 he was
a post-doctoral fellow at the Robotics Institute
of Carnegie Mellon University, Pittsburgh, PA,
USA, working on the DARPA Video Surveil-
lance and Monitoring (VSAM) eort and the
humanoid vision project for the HONDA Hu-
manoid Robot. He is now a professor of the
Department of Computer Science, Chubu Uni-
versity, Japan. From 2005 to 2006, he was a

visiting researcher at Robotics Institute, Carnegie Mellon University. His
research interests include computer vision, video understanding and pattern
recognition. He is a member of the IEEE, the IEICE, and the IPSJ.


