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SUMMARY An annealing processor based on the Ising model is a re-
markable candidate for combinatorial optimization problems and it is su-
perior to general von Neumann computers. CMOS-based implementations
of the annealing processor are efficient and feasible based on current semi-
conductor technology. However, critical problems with annealing proces-
sors remain. There are few simulated spins and inflexibility in terms of
implementable graph topology due to hardware constraints. A prior ap-
proach to overcoming these problems is to emulate a complicated graph
on a simple and high-density spin array with so-called minor embedding, a
spin duplication method based on graph theory. When a complicated graph
is embedded on such hardware, numerous spins are consumed to repre-
sent high-degree spins by combining multiple low-degree spins. In addi-
tion to the number of spins, the quality of solutions decreases as a result
of dummy strong connections between the duplicated spins. Thus, the ap-
proach cannot handle large-scale practical problems. This paper proposes a
flexible and scalable hardware architecture with time-division multiplexing
for massive spins and high-degree topologies. A target graph is separated
and mapped onto multiple virtual planes, and each plane is subject to inter-
leaved simulation with time-division processing. Therefore, the behavior
of high-degree spins is efficiently emulated over time, so that no dummy
strong connections are required, and the solution quality is accordingly im-
proved. We implemented a prototype hardware design for FPGAs, and
we evaluated the proposed method in a software-based annealing processor
simulator. The results indicate that the method increased the spins that can
be deployed. In addition, our time-division multiplexing architecture im-
proved the solution quality and convergence time with reasonable resource
consumption.
key words: ising model, annealing processor, simulated annealing

1. Introduction

Combinatorial optimization is a fundamental and important
problem with various applications. The goals are gener-
ally to find the best combination from numerous candidates
within limited computing time and resources. The number
of available candidate combinations generally grows expo-
nentially according to the number of problem factors. Thus,
finding an exact solution is difficult on standard Neumann
computers within a feasible amount of time. Even when ap-
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Fig. 1 Ising model

proximated solutions instead of exact ones are permitted,
they tend to consume ample computing time when high-
quality solutions are needed.

In order to overcome such bottlenecks in standard com-
puters for combinatorial optimization, alternative comput-
ing mechanisms are aggressively pursued. One such com-
puting paradigm is so-called natural computing, inspired by
systems in nature. Unlike conventional computers, natural
computing is based on the mechanism that the computing
state eventually reaches the state of lowest energy, as shown
in Fig. 1. The annealing processor, based on the Ising model,
is one approach to natural computing. The annealing pro-
cessor exploits a combinatorial optimization method called
simulated annealing.

Among annealing processors, the CMOS annealing
processor (CMOS-AP) was proposed by Yamaoka et al. [1]
as a powerful combinatorial optimization method. The ad-
vantage of CMOS annealing is its high parallelism. It can
update many spin states—the elements constituting the sys-
tem of the Ising model—at the same time. Thus, the com-
puting state converges faster than other CMOS approaches.

A disadvantage of the conventional CMOS-AP is that
there are a limited number of spin counts that can be de-
ployed due to hardware resource constraints. Our previ-
ous memory-based architecture [2] solves this problem by
time-division multiplexing. The architecture stored an entire
large graph of problem representation in BRAM and made
it possible to solve the problem of many spins by dividing
the processing in the time direction.

Because the spin-to-spin connections in hardware are
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usually sparse in various problems, if the problem graph
into an executable graph for the hardware is more compli-
cated than spin-to-spin connectivity as a hardware circuit, it
is necessary to convert the problem graph into an executable
graph for the hardware by duplicating the spins in the graph
of the problem to match the hardware. Our previous work
suggested that this deformation leads to a decrease in solu-
tion accuracy.

In this paper, we propose the architecture that solves
the above problems based on our previous research. The
contributions of this paper are as follows:

1. We present a time-division multiplexing architecture
for an annealing processor on an FPGA that can solve
both insufficient spin counts and the problem of sparse
connections in the hardware. It enables a flexible
expansion of the spin count and connections with
BRAMs and the newly introduced techniques: Contin-
uous Processing and Reverse Order Processing.

2. We evaluated the resource consumption of our pro-
posal using commercial FPGA synthesis tools and the
accuracy and convergence speed of our architecture,
especially for more complex problems than hardware
graphs by using our software simulator.

2. Related Work

Combinatorial optimization methods for conventional com-
puters have been studied widely [3]. However, such prob-
lems are known as NP-hard [4]. Consistent with Moore’s
Law, improvements to the performance of conventional
computers is slow with respect to the increasing amount of
data [5]. Therefore, solving NP-hard problems with conven-
tional computers requires considerable time and energy.

A computing architecture called the annealing machine
has been proposed to map combinatorial optimization prob-
lems and find the ground state of the Ising model, the sta-
tistical model representing the behavior of the spins of mag-
netic material. The energy function of the Ising model is
represented as follows:

H = −
∑

<i, j>

Ji jσiσ j −
∑

i

hiσi (1)

where σi denotes an individual spin state, Ji j denotes
the interaction coefficient that represents the strength of the
interactions between different pairs of spin states and hi de-
notes the external magnetic field coefficient. Controlled ob-
jects , “vertices” in the max-cut problem and “cities and or-
ders” in the traveling salesman problem, and the cost of the
problem is expressed by the spin states and interactions, re-
spectively.

D-wave Systems proposed D-wave [6], which exploits
quantum computing technology. Unlike a general-purpose
quantum computer, D-wave is a quantum computer special-
ized for combinatorial optimization problem by expressing
the Ising model using superconducting elements. D-wave
operates based on an optimization technique called quantum

annealing. In quantum annealing, weakening the quantum
effect maximizes the probability of observing a qubit state
that minimizes the total energy of the system. However, a
large-sized cooler is needed to cool the superconducting el-
ement to an extremely low temperature. In addition, there is
a lack of spin numbers to express real problems.

In order to solve such problems, methods using opti-
cal parametric amplification [7] and methods using CMOS
technology have been proposed. CMOS-AP is an annealing
processor based on a Monte Carlo simulation of the classi-
cal system (simulated annealing) using a CMOS technique
without the quantum effect. It performs simulations of the
Ising model in a classical system and searches for the ground
state by decreasing the temperature of the system, not the
quantum effect.

In recent years, FPGA-based annealing machines have
attracted attention to facilitate the development of such
systems instead of custom LSIs. There are indeed pro-
posals of FPGA-based Monte Carlo simulations of the
Ising model [8]. However, these are simulators designed
for physics research, rather than combinatorial optimiza-
tion problems. With the FPGA-based AP approach, hard-
ware topologies, embedding [9], and random number gen-
erators [10] are mainly studied. In terms of the hardware
topology, two approaches are mainly studied: the all-to-
all type [11], [12], in which all spins are connected to each
other; and the nearest-neighbor type [13], in which only ad-
jacent spins are coupled.

With the former, since the hardware allows for all
spin coupling (high problem-expression capability), prob-
lems converted to the Ising model are easily embedded in the
hardware. However, only a few spins can be deployed be-
cause of the many interaction coefficients. In addition, due
to the restrictions of Glauber dynamics, neighboring spins
cannot be updated simultaneously. Therefore, only one spin
can be updated at the same time in all coupled spin net-
works. Furthermore, since it is necessary to share a spin
state change with all spins, its scalability is low.

With the latter approach, even under the constraints of
Glauber dynamics, non-adjacent spins can be updated at the
same time. Further, since the change in the spin state after
updating is only the adjacent spin, parallelism and scala-
bility are very high. However, when the combinatorial op-
timization problem converted to the Ising model does not
match the topology of the hardware, additional conversions
are required for the embedding process.

This “additional conversions” cause the degradation of
the solution quality. As research on solution quality, there
is ICAPT [14] that implements parallel tempering approx-
imation processing with high affinity to hardware. On the
other hand, this research focuses on maintaining the qual-
ity of the solution by eliminating the loss of accuracy due
to “additional conversion” by improving problem expres-
sion capability. In paper [15], the rectangle packing problem
is solved by the all-to-all type annealing machine and the
nearest-neighbor type annealing machine. In the evaluation
in that paper, the nearest-neighbor type annealing machine
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has degraded solution quality compared to the all-to-all type
annealing machine.

In this paper, we propose a new approach to over-
come the disadvantages to both the all-to-all approach and
the nearest-neighbor approach while maintaining high par-
allelism, scalability, and problem expression capability.

Based on the previous LUT based architecture, we
proposed a new BRAM-based architecture to deploy more
spins. In addition, by introducing time-division multiplex-
ing, our architecture can flexibly change the hardware topol-
ogy from the nearest-neighbor to the all-to-all type.

In what follows, details regarding the conventional ar-
chitecture and problems resulting from mismatches between
the converted problem and hardware topology are described.

3. Cmos Annealing Processor

3.1 Conventional Architecture

Interaction =
L−1∑

j=1

Ji jσ j + hi (2)

CMOS annealing is a technique that simulates the Ising
model with a CMOS circuit. In CMOS-AP [16], the spin
states are held in binary (+1,−1) and stored in one bit in the
circuit. Both interaction coefficients and external magnetic
field coefficients are held in ternary (+1, 0,−1). Each coeffi-
cient is stored in two bits. Using these values, the interaction
effect between neighboring spins is simulated on the digital
circuit.

Figure 2 shows the operator unit for updating the states
of spins. In this circuit, the operation shown in Eq. (2) is
performed and the state of spin “i” is updated based on the
sign of the interaction.

“This unit receives the states of adjacent spins (σi)
and coefficients (J and H) for spin updates, where Hk[0]

Fig. 2 Operator unit

and Jk[0] represent the signs, Hk[1] and Jk[1] represent the
absolute values and these interactions occur between the
spin “i” and its k-th adjacent spin.” With these values,
calculations are performed in each spin-to-spin connection
through XNOR gates (rather than the multiplier), as shown
in Fig. 2 (a1), because the spin state and interaction are bi-
nary and ternary, respectively. Further, the number of spin-
to-spin connections depends on the number of XNOR gates
in this architecture.

Then, the results are tabulated by the majority voter cir-
cuit shown in Fig. 2 (a2). In this way, the state of the next
spin is determined. States of multiple spins can be updated
at the same time, provided that they are not connected. Thus,
if the number of spins included in the Ising model increases,
the number of updated spins processed at the same time in-
creases. In short, the problem size (i.e., the number of spins)
has little influence on the update time.

Although the energy decreases according to the interac-
tion operation described above, it is possible that the model
becomes trapped in a local minimum that is not the overall
minimum. To escape from the local minimum, the states
of the spins are randomly destroyed with a thermal fluctu-
ation. This operation is performed by the inverters shown
in Fig. 2 (b) with two kinds of random pulses. For details
regarding these random pulses, see [13]. This enables the
states to escape from the local minimum by randomly tran-
sitioning the spin state, making it possible to find a state
close to the ground state.

The Fig. 3 shows the spin unit proposed in the previous
study. Since the spin unit holds four fully-coupled spins and
the adjacent spins cannot be updated at the same time, each
spin unit use one operator by switching inputs to reduce re-
sources. A 2-bit counter decides the spins to be updated and
its value is used as the address of spin memory and coef-
ficient memory and control signal of selectors. After that,
the update spin through the “operator” is written back to the
location indicated by the counter.

The optimal network of the spin unit for hardware de-

Fig. 3 Spin unit
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Fig. 4 Minor embedding

pends on problem. There are some structures for well-
known optimization problems such as a three-dimensional
mesh structure, a chimera topology, and so on. In this pa-
per, we utilize the king’s graph and chimera topology. In the
king’s graph, spins are placed on a square lattice and spin-
to-spin connections are formed on the edge of the square
and its diagonal. Therefore, each spin has eight connections.
In the chimera topology, four complete spins are contained
within one spin unit. Each internal spin is coupled to the
corresponding spin in the same position of the adjacent spin
units. In short, one spin is coupled with the other three spins
in the same spin unit and eight spins at the same position
of the adjacent spin units as shown in the upper left of the
Fig. 3. Since adjacent spins cannot be updated at the same
time, as explained above, all the spin states are updated over
four clocks in both topologies.

3.2 Minor Embedding

Minor Embedding (ME) [17] is an algorithm for embedding
arbitrary graphs in hardware. In the conventional architec-
ture, there are graphs that cannot be directly embedded in
hardware due to hardware and space constraints and because
the hardware topology is fixed. In such cases, it is necessary
to transform the problem graph so that it can be embedded in
the hardware. ME duplicates spins with reverse-minor pro-
cessing to virtually increase the degree of hardware while
maintaining the connection relationship.

We will explain ME for CMOS-AP [18] using the three
graphs shown in Fig. 4. The lattice graph in (a) and the com-
plete graph in (c) are denoted Ln and Km, respectively, where
n is the degree of nodes and m is the number of nodes. If
it is possible to solve the problem expressed in a complete
graph Km, the Ising machine can solve any kind of prob-
lems consisting of m nodes. However, not all problems are
expressible as complete graphs. Further, some edges are
deleted beforehand as unnecessary. Therefore, we mainly
focus on graphs similar to graph (b)—i.e., graphs that are

Fig. 5 Decline in accuracy due to duplicated spins

slightly more complicated than lattice graphs.
Given that the spin unit array on the hardware is config-

ured as shown in Fig. 4 (a), subgraphs of L4 can be embed-
ded without ME. If the problem graph does not satisfy the
space and hardware constraints, such graphs are embedded
as (d1) and (d2), respectively. When graph (b) is embedded
in L4, vertices 4 and 6 are duplicated for the above reasons.
Then, graph (b) is embedded as shown in (e).

Complete graphs Km can be embedded in a lattice
graph L8 whose size is m × (m − 1). The number assigned
to the vertex of row y and column x is denoted by #(y, x).
Vertices of the first row are assigned numbers as follows:

#(1, x) = x (3)

In the second and subsequent lines, numbers are allo-
cated as follows:

#(y, x) =

⎧⎪⎪⎨⎪⎪⎩
#(y − 1,max(1, x − 1)) (x + y is even)

#(y − 1,min(n, x + 1)) (x + y is odd)
(4)

In this way, graph (f) is obtained by converting graph
(b) to match king’s graph(L8) which is a kind of graph (a)
with ME. When embedding an arbitrary graph, duplicated
spins are removed from the converted complete graph so that
it has the minimum necessary spins.

3.3 Difficulties with Minor Embedding

In the previous section, we explained how arbitrary graphs
can be embedded by ME. However, a new interaction (con-
nection) is required between duplicated spins so that the
copying spins stay in the same state. If there is no self-loop,
the new interaction between spin i and the duplicated spin is
set as follows:

new connection i =
∑
|Ji j| (5)

The newly added interaction is set such that it is
stronger than any interaction originally occurring with spin
i. Therefore, the replicated spin updates its state based on
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the only state of another replicated spin. This means that
updating the duplicated spin state is not performed without
a random number (heat).

Figure 5 shows the influence on the accuracy of the so-
lution due to the number of duplicated spins in the problem.
This graph shows the results from solving the max-cut prob-
lem with both simulated annealing and CMOS-AP with ME.
When solving a problem that includes a replicated spin, the
accuracy of the solution decreases and the solution becomes
more dispersed with CMOS-AP compared to simulated an-
nealing.

3.4 Motivation

Based on the results of this preliminary evaluation, we dis-
covered a problem: the interaction between the replicated
spins caused by ME deteriorates the convergence speed and
the accuracy of the solution. We address this problem using
time-division multiplexing.

4. Time-Division Multiplexing Architecture

4.1 Processing in Conventional Architecture for Duplicate
Spins

In this section, we explain our solution to the decline in per-
formance from interactions between duplicated spins. As

Fig. 6 Time-division multiplexing

shown in Fig. 6 (a), when there is a mismatch in the problem
graph and the topology of the hardware (L4), the graphs con-
verted by ME are obtained. Figures 6 (a-1) and (a-2) show
the process of updating the duplicated spin in the conven-
tional architecture [16] and the time-division multiplexing
architecture. When the values of the interaction occurring
between spin 4 and its adjacent spins are all 1, an interaction
whose value is 5 occurs between duplicated spins, according
to Eq. (5).

In the conventional architecture (a-1), the converted
graph is allocated to the hardware such that the spin unit and
problem spins correspond one-by-one. Then, the next state
(spin 4’) is determined by calculating spin 1, spin 6, and an-
other duplicated spin 4 without spin 2, spin 8, and spin 11.
Therefore, the state of the duplicated spin is determined by
the state of the other duplicated spin since the newly added
interaction is stronger than the interaction of the originally
connected spins. This also holds for the update of the other
duplicated spin.

4.2 Continuous Processing

Here, we propose a method to solve the above problem with
a time-division multiplexing architecture. As noted above,
the conventional architecture is a fully expandable approach
that requires spin units and spins to correspond in a one-
to-one manner. On the other hand, the data supplied from
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the memory to the spin unit is switched with time-division
multiplexing. This allows one spin unit to process multiple
spins.

Our previous architecture [2] used this property to pro-
cess large-scale graphs in the spatial direction. Unfortu-
nately, according to Eq. (2), it is difficult to increase the
maximum number of degree (L-1) with this approach. It is
because increasing the maximum number of degree causes
hardware complexity. Therefore, ME is necessary. To solve
this problem, we extend the idea of ME for temporal direc-
tion, in addition to the spatial direction. In short, different
graphs are allocated in each “time” in the same hardware.
We refer to this step as the phase, as shown in Fig. 6 (a2).

In the proposed architecture, duplicated spins are not in
the same phase (conventional approach), but rather in a dif-
ferent phase. We call this “Continuous Processing.” In con-
tinuous processing, duplicated spins are processed by the
same spin unit over multiple phases. The hardware holds the
calculation result only when processing duplicate spins and
adds it to the calculation result of the next phase. This vir-
tually increases the maximum number of degree without the
strong interaction caused by ME as in the following Eq. (6).

Interaction =
phase∑

(
L−1∑

j∈phase N

Ji jσ j) + hi (6)

where j ∈ phase N means spins existing in phase N,
especially spins adjacent to spin i to be updated.

The right side of Fig. 6 (a2) shows processing updates
for the duplicated spin 4. In phase 1, interactions with spins
2, 8, and 11 are calculated and carried to phase 2. Then,
interactions with spins 1 and 6 and the interaction in phase
1 are added in phase 2. Finally, the next state of spin 4 is
determined according to the computation result. No strong
interaction is required for this calculation.

Next, we consider two methods propagating calcula-
tion results to the next phase. In the method shown on the
left side of Fig. 6 (b), the position of spins connected to the
high-degree spin is restricted because the high-degree spin
remains at the same coordinates. Therefore, we extend the
allocation position of the duplicated spin to the adjacent
spin, as shown on the right side of Fig. 6 (b). This makes
it possible to allocate graphs with arbitrary connections, as
shown in Fig. 4 (f) in the time direction.

4.3 Reverse-Order Processing

When the range of continuous processing is expanded to ad-
jacent spins, the spin unit where updating starts can differ
from the one where updating finishes, as shown in Fig. 6 (c).
In that case, it is necessary to synchronize the updated
spin information when processing phase 1, after processing
phase 3. However, writing back from an arbitrary point to
an arbitrary point increases hardware cost.

Reverse-order processing solves this problem. In for-
ward processing, after processing phases 1 to 3, it returns to
phase 1. On the other hand, after processing phase 3, the

Fig. 7 Example for continuous processing and reverse-order processing

processing is performed from phases 3 to 1 with reverse-
order processing. This increases the memory locality with
little additional resources.

Figure 7 shows an operation example of Continuous
Processing and Reverse-order Processing. When solving the
problem graph with HW Graph with 2 spin units, The em-
bedding process produces the embedded graph consisting
of two phases. The processing order of phase is as shown
in the lower left of Fig. 7, where phase 1 > 2 is defined
as a forward order and phase 2’ > 1’ as a reverse order.
Each spin unit stores three pieces of information for each
phase: update flag, CP flag, source. The update flag indi-
cates whether spin information is updated in that phase. CP
flag and source indicate whether CP is performed and from
which spin unit data should be received, respectively. In this
example, the data source is represented by 1 bit because it
is itself or the next spin unit. If the hardware graph is the
king’s graph, there are nine data sources for each spin unit,
it is represented in 4 bits.

Spin unit 1 updates spin 1 and spin 2. In phase 1,
spin unit 1 simultaneously updates spin 1 and receives in-
progress results of spin 2 from spin unit 2. In phase 2, spin
2 is updated based on the result received on the previous
phase and the calculation result between spin 2 and spin 3.
Here, if it is attempted to resume calculation from phase 1
again, the updated spin 2 exists in spin unit 1 and spin 2
calculation cannot be performed. Therefore, reverse-order
processing is introduced.

The source when forward order processing can be
interpreted as the destination during reverse processing.
Therefore, it is not necessary to prepare two sources for for-
ward order processing and reverse order processing. Unfor-
tunately, this was omitted to simplify implementation in this
paper. We implement forward and reverse order processing
with two memories.

4.4 Architecture Overview

We propose a time-division multiplexing architecture that
processes complex and large combinational optimization
problems with limited hardware resources by separating the
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Fig. 8 Time-division multiplexing architecture

spins of a target problem in both spatial and temporal direc-
tions.

Our hardware architecture consists of a control unit, a
random number generator, and a spin unit array, as shown
in the lower right of Fig. 8. The control unit manages the
annealing schedule. Based on the initial temperature, the
cooling coefficient of temperature, and the number of steps
per temperature, it supplies a threshold to control the influ-
ence of heat on the random number generator.

The random number generator compares the random
number generated by XOR-shift to the threshold value, and
random pulses are generated to calculate the interaction of
the spin unit.

In the spin unit, the spin memory and coefficient mem-
ory are composed of an LUT in the conventional archi-
tecture [16]. With the proposed architecture, they are con-
stituted on the premise of BRAM (Block RAM in Xil-
inx FPGAs), as shown on the left in Fig. 8. By using the
phase counter, the data from the spin memory and coeffi-
cient memory are switched and supplied to the logic circuit,
which calculates for the spin update. The phase counter
uses the lower two bits as a counter for spin updates and
uses the upper bit for phase management. When the phase
counter counts up to a maximum phase (forward process-
ing), the phase counter counts down to perform reverse pro-
cessing. As mentioned above, there is the constraint that
adjacent spins cannot be updated at the same time, so the
phase is updated with four clocks.

Continuous processing is realized by the transfer
memory and the sub-interaction register in both forward
and reverse order processing. Each spin unit has two trans-
fer memories for forward and reverse order processing.
When the phase counter is counting up, transfer memory
for the forward order processing is read, otherwise trans-

fer memory for the reverse order processing is read After
calculating the spin interaction, If the update flag(upd) in
the transfer memory is 1, spin update is performed. the
spin state is updated through the spin update and the result
is written to the spin memory. If Continuous Processing
flag (CP) is 1, The intermediate results selected based on
the source in the transfer memory from the neighbor spin
units and itself are stored in the sub-interaction register.
Otherwise, the value of the register is set to 0.

The timing chart for the continuous update is shown in
the upper right of Fig. 8. In this example, the spin in the
spin unit that is updated secondly in the phase is updated
over two phases by continuous processing. When the lower
bit of the phase counter is two, this spin unit calculates the
interaction based on the values obtained from the interaction
coefficient memory and the spin memory. In this phase, the
calculated interaction goes through the adder and is stored
in the sub-interaction register since the spin state is not up-
dated. The operation is managed by an update flag(upd=0)
stored in the transfer memory. In the case of continuous
processing, CP in the transfer memory is 1 and the sub-
interaction register preserves the value of the interaction
based on this value. In phase 2, the newly calculated in-
teraction is added to the value saved in the sub-interaction
register by the adder. In this phase, since 1 is stored in the
update flag of the transfer memory, the spin update updates
the spin state. The value in the sub-interaction register is
reset because the CP the transfer memory is 0.

5. Evaluation

5.1 Setup

We evaluated the resource utilization of our architec-
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ture and the conventional CMOS annealing processor
(CMOS-AP) [16] because our architecture was devised
based on [16]. The proposed architecture with continuous
processing is hereafter referred to as TDM with CP, and
our previous architecture [2] is referred to as TDM. The
resource utilization of the Entire design is the result ob-
tained for the hardware in which the spin units are com-
posed of chimera topology. Our target board was the Xilinx
Zynq UltraScale+MPSoC ZCU102 Evaluation Kit (FPGA:
Zynq UltraScale XCZU9EG-2FFVB1156). Both architec-
tures were synthesized in Verilog HDL and Vivado Design
Suite 2016.2.

In this evaluation, we assume that all the hardware con-
figurations in the evaluation run at 100MHz, and we did
not survey the maximum clock frequency, because the main
purpose of this work is to confirm the improvement of an-
nealing accuracy and feasibility of our architecture in point
of hardware resource utilization. Please note that the pro-
posed architecture requires a few components in addition to
the baseline hardware. So, it is expected that the maximum
clock frequency of the proposed architecture is comparable
to CMOS-AP.

For the current implementation, it was not possible to
evaluate the total amount of resources for the three methods.
Therefore, we used TDM to compare the overall resource
consumption of CMOS-AP. since TDM and TDM with CP
have almost the same configuration except for the spin unit.
Then, we compared the resource consumption of spin units
in the three approaches.

To illustrate the accuracy and the convergence speed
of our architecture for data expressed in graphs that are
more complicated than the hardware topology, we evaluated
datasets of 10 max-cut problems that were randomly gener-
ated. We created a dataset that does not require spin dupli-
cation by ME, consisting of 100 vertices with random spin-
to-spin interactions and connections. Based on that dataset,
nine problems with different numbers of replicated spins
were created with randomly added connections exceeding
the maximum hardware degree. The number of replicated
spins was 10 at intervals of 10 to 90. When there are some
duplicate spins, the total number of spins increases accord-
ingly. In this experiment, the total number of spins is in-
creased to 190 from 100.

The max cut problem finds two vertex groups that max-
imize the weight of the edge for each endpoint that belongs
to a different group. Therefore, the desired spin configu-
ration has a high score in terms of figures. The score was
calculated based on the cost function of the max-cut prob-
lem with the spin state after “burnout” to get the final state:
a state where there is no influence of the thermal fluctuation.
These datasets were evaluated by software simulation. The
simulator used in this study is the in-house simulator written
in Python. In the simulator, the number of temperature up-
dates (N), the number of steps at the same temperature (L)),
the initial temperature (T ), and the temperature decay coef-
ficient (β) are used as parameters specified by the user. The
entire annealing step is determined by N × L. The update of

Table 1 Resource utilization of the entire design

#. Spin Unit LUT FF BRAM

Available 537600 1075200 1728
CMOS AP 4 682 833 0.5

16 1305 905 0.5
64 3897 1193 0.5

TDM 4(×4 phases) 663 825 4
8(×8 phases) 832 831 4

Fig. 9 Resource Utilization per Spin Unit

the temperature can be obtained by multiplying the current
temperature by β.

5.2 Resource Utilization

Table 1 shows the resource consumption of (CMOS-AP) and
(TDM). The second column of the table shows the number of
spin units. In CMOS-AP, this number matched the number
of spins that could be processed. On the other hand, spin
units in TDM could process different spins in each phase.
Therefore, the number of spins that could actually be pro-
cessed is the number of spin units multiplied by the number
of phases.

As shown in the table, when the number of spins that
could be processed was the same, the consumption of the
LUT and FF was lower in TDM than in CMOS-AP. This
is because the number of spin units required for process-
ing is reduced by time-division multiplexing. Of course, it
takes more time to update the spin state with time-division
multiplexing. However, it is possible to solve problems that
cannot be processed with CMOS-AP.

When the number of spin units of CMOS-AP and TDM
was the same (e.g., the third and rows), TDM had a slightly
smaller LUT and FF consumption than CMOS-AP. This is
because CMOS-AP stores spin interaction coefficients and
spin states using an LUT and FF, whereas TDM with CP
stores them using BRAMs.

A summary of resources for each spin unit with each
method is shown in Fig. 9. Comparing CMOS-AP and TDM,
TDM had less resource consumption in terms of the LUT
and FF. On the other hand, the resource consumption of the
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Table 2 Resource utilization of a random pulse generator and a spin unit

Random pulse generator Spin unit
LUT FF BRAM LUT FF BRAM

CMOS-AP 501 809 0.5 45 6 0
TDM 509 809 0.5 47 5 4

Fig. 10 Influence of duplicated spins on the score

LUT and FF increased as the number of phases increased
with TDM with CP. This is likely because increasing the
number of phases increases the bit width of the adder for
calculating the interactions and the bit width of the register
for storing the intermediate result.

Table 2 shows the resource consumption per random
number generator, control unit, and spin unit. The control
parts are shared by the random number generators. Thus,
the hardware resource amount will not increase very little,
in contrast to the spin units. Then, the spin unit consumed
very little resources in terms of the random number gener-
ators and control unit with both methods. Therefore, the
increase in the resource consumption of the spin unit does
not considerably affect the overall performance.

5.3 Performance

Accuracy Comparison

Figure 10 shows the simulation results of the score with
respect to the aforementioned 10 max-cut problems. We
compared our architecture with CMOS-AP and simulated
annealing (SA). The x- and y-axes of the graph indicate
the number of replicated spins included in the problem and
scores, respectively. The solid line indicates the average
score obtained after 16 trials for each dataset. Error bars
indicate the range of scores obtained in these 16 trials. The
number of trials is 16, which is determined by considering
the number of spins in the evaluation data set. Please note
that there is a slight variation of obtained scores in our ex-
periments. The parameters of TDM with CP, CMOS-AP and
SA were set as [N = 100 ∼ 150, L = 3, T = 100, β = 0.96],
[N = 200 ∼ 300, L = 5, T = 100 ∼ 190, β = 0.98] and

Fig. 11 Score transition in CMOS annealing and TDM with CP

[N = 100 ∼ 150, L = 30, T = 100, β = 0.96], respec-
tively. In each problem, both CMOS AP and TDM with CP
consume 4,500 ∼ 5,500 execution cycles.

As shown in the figure, SA, CMOS AP, and TDM with
CP obtained solutions with nearly the same precision in the
case of the dataset that did not require replicated spins. This
indicates that CMOS AP and TDM with CP can search for
solutions without compromising the accuracy of the solu-
tion when the complexity of the dataset is lower than the
hardware topology. Even when TDM with CP processed
data with replicated spins, it reached solutions with the same
accuracy as SA. On the other hand, CMOS AP resulted in
significantly degraded accuracy when processing data that
included replicated spins. In addition, the range of the ob-
tained score varied greatly. This became more prominent as
the number of replicated spins increased.

There are two causes for the degradation of accuracy.
First, CMOS-AP processes replicated spins as separate spins
internally. Therefore, the frustration that occurred in the
original spin changes. Second, the strong interaction is
added to treat replicated spins as the same spin. Since
this strong interaction is greater than the sum of the origi-
nal interactions, the original interaction does not affect the
spin state update. In other words, the state of the spin
changes only with a random number for the strong interac-
tion. Therefore, as the number of replicated spins increases,
the obtained solution varies. TDM solves these problems by
internally processing the duplicated spin as the same spin
with continuous processing, and by replacing the strong in-
teraction with the constraint regarding the placement of the
replicated spin within the adjacent spin of the next phase.

Convergence Speed

Figure 11 shows the transition of the score when a dataset
with 20 duplicated spins was processed by CMOS-AP and
TDM with CP. The x-axis of the graph shows the number
of execution cycles and the y-axis shows the score at that
point. All spin units update at each clock. In the con-
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ventional CMOS-AP, all spins are updated in four clocks,
whereas the proposed architecture requires four clocks for
each phase. In this simulation, eight clocks were needed for
TDM with CP to process all spins, since all spins were em-
bedded in two phases. In order to compare the convergence
speed, we evaluated TDM with CP with two types of tem-
perature schedules. One was set so as to converge to a solu-
tion with the same execution cycles in both CMOS-AP and
TDM with CP. In this work, the annealing schedule is deter-
mined according to the number of spins in the problem. The
total number of spins in the embedded problem increased
as the number of duplicated spins increased with CMOS-
AP while TDM with CP processes duplicated spins as one
spin by continuous processing. We heuristically determined
the annealing schedules under the condition that the solution
accuracy of all 16 trials was 90% or more of the best score
of the 16 trials. Therefore, we adjusted the scheduling of
TDM with CP based on the CMOS-AP scheduling so that
the number of execution cycles until the solution converges
are the same. The other schedule was adjusted such that the
system in TDM converged most quickly under the condition
that the solution accuracy of all 16 trials was 90% or more of
the optimal solution. The endpoints of the score transition
in each schedule are represented by circles and stars.

As shown in the graph, even when convergence was
performed by applying the same cycles, the accuracy of the
solution reached by TDM with CP was higher than that by
CMOS-AP. In addition, the score of the spin state obtained
during the transition was often better than the ultimate so-
lution from CMOS-AP. Since the duplicated spins were not
updated due to the strong interaction, replicated spin states
were almost decided by random numbers. Therefore, the
score improves when good random numbers happen to be
allocated to duplicated spins.

In a tight temperature schedule, TDM with CP con-
verged about four times faster than CMOS-AP without loss
in accuracy. Further, CMOS-AP did not arrive at the optimal
solution after many trials. In view of convergence speed and
solution precision, then, it is preferable to provide a hard-
ware topology that can be embedded without spin replica-
tion when complicated problems are solved by APs.

6. Conclusion

In this paper, we proposed a time-division multiplexing ar-
chitecture that processes complex and large combinational
optimization problems. We evaluated our architecture from
the viewpoint of resource consumption, solution accuracy,
and convergence speed. With the proposed architecture,
spin arrays are reused with BRAM-based time-division pro-
cessing, and there is a virtual increase to the degree of hard-
ware spin from continuously updating the target spin be-
tween spin arrays from different times as the same spin.

Our results indicate the following:

• If the duplicated spins by ME are processed on the
same spin array, the solution accuracy decreases by 20

to 30%.
• Processing the replicated spin on the spin array from

a different time (phase) by time-division processing is
not affected by strong interaction between replicated
spins. Therefore, it is possible to obtain a solution with
the same accuracy as SA.
• There is little effect on hardware resources from intro-

ducing time-division processing.

Based on the above, our proposed architecture greatly
improves the solution accuracy and convergence speed by
introducing time-division processing.

In future research, we shall research an efficient em-
bedding method for the time-division spin array. With time-
division processing, the time required for processing in-
creases as the number of phases increases. Therefore, we
shall consider both the hardware topology (to facilitate em-
bedding) and the embedding method in which the number
of phases decreases by processing simultaneous updatable
spins without spin-to-spin connections in the same phase.
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