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SUMMARY The latency and the energy consumption of DRAM are se-
rious concerns because (1) the latency has not improved much for decades
and (2) recent machines have huge capacity of main memory. Device-level
studies reduce them by shortening the wait time of DRAM internal oper-
ations so that they finish fast and consume less energy. Applying these
techniques aggressively to achieve approximate memory is a promising di-
rection to further reduce the overhead, given that many data-center appli-
cations today are to some extent robust to bit-flips. To advance research on
approximate memory, it is required to evaluate its effect to applications so
that both researchers and potential users of approximate memory can inves-
tigate how it affects realistic applications. However, hardware simulators
are too slow to run workloads repeatedly with different parameters. To this
end, we propose a lightweight method to evaluate effect of approximate
memory. The idea is to count the number of DRAM internal operations
that occur to approximate data of applications and calculate the probabil-
ity of bit-flips based on it, instead of using heavy-weight simulators. The
evaluation shows that our system is 3 orders of magnitude faster than cycle
accurate simulators, and we also give case studies of evaluating effect of
approximate memory to some realistic applications.
key words: approximate memory, computer architecture, memory systems

1. Introduction

Performance of memory subsystems play a significant role
to determine the overall performance of computers in two
aspects. First, the energy consumption of memory subsys-
tems is getting larger and larger as more and more memory
capacity is required by data-center workloads such as artifi-
cial intelligence (AI), high performance computing (HPC),
and big data analytics. Second, the memory access latency
relative to the performance of CPU cores is getting larger
and larger. This is because the floating point operations
per second of cores have been increasing exponentially for
decades, while the memory access latency has been almost
the same [1], [2]. As a result, memory subsystems today are
the largest concern both in terms of the energy consumption
and the performance of large-scale computers.

Prior works have succeeded to lower the latency and
energy consumption of main memory by reducing pre-
defined wait parameters of DRAM internal operations so
that they consume fewer amount of energy and take less
time [2]–[7]. To further lower the latency and energy
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consumption, using these techniques more aggressively to
achieve approximate memory is a promising direction. Ap-
proximate memory is a type of approximate computing,
which realizes increased efficiency such as reduced energy
consumption [8], larger capacity [9], and faster through-
put [10] in the cost of computation accuracy. By ag-
gressively applying the existing techniques [2]–[7], we can
achieve main memory that does not guarantee data integrity
but has lower latency and consumes less energy. It is ex-
pected to be useful for HPC applications that use iterative
methods so that small numerical errors can be amortized,
and for AI and big-data analytics applications whose data
contain noises by nature.

To advance research on approximate memory, evalu-
ating its effect that occurs to applications running on it is of
great importance. First, it allows researchers of approximate
memory to evaluate how their proposals affect applications.
Second, it enables potential users of approximate memory
to estimate how their applications behave on approximate
memory. However, it is challenging due to three reasons:

1. There is yet no off-the-shelf approximate memory de-
vice that users can try with their own applications.

2. Device-level studies reveal the relationship between
energy/latency reduction and error rate, but users can-
not know how their own applications are affected.

3. Applications must be executed repeatedly with dif-
ferent error-rates, but cycle accurate simulators of
hardware are too slow to run realistic applications
repeatedly.

To this end, we propose a lightweight method to evalu-
ate effect of approximate memory to given applications. The
main idea is that we can calculate the probability that each
bit is flipped by approximate memory from the number of
DRAM internal operations that can be measured by a hard-
ware performance monitoring mechanism rather than cycle
accurate simulators. First, users specify data to which er-
rors can be injected (referred to as approximate data) with
our memory allocator. Then, our system measures the num-
ber of DRAM internal operations that occur only to the ap-
proximate data while the application is running. Our sys-
tem calculates the probability that each bit of the approxi-
mate data is flipped from the measurement and the error-rate
parameter, and periodically injects bit-flips to the approxi-
mate data. Finally, the application outputs a result that users
can compare with the correct one to evaluate effect of ap-
proximate memory to their applications. Our system allows
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users to execute same applications repeatedly with different
error-rate parameters because it slows them down only by
several times compared to native execution.

This paper is structured as follows. Section 2 intro-
duces the background. Section 3 explains why evaluating ef-
fect of approximate memory is important and difficult. Sec-
tion 4 describes our lightweight method and its implemen-
tation. Section 5 shows overhead analysis of our system and
case studies. Section 6 gives some discussions. Section 7
reviews related work and Sect. 8 concludes this paper.

2. Background

2.1 Main Memory as Performance Bottleneck

Main memory is a large performance bottleneck of com-
puters today. First, the energy consumption of main mem-
ory pressures the energy budget of a computer because AI,
HPC, and big-data analytics applications require 100s of GB
of memory. For example, AI Bridging Cloud Infrastructure
(ABCI) [12] has 384 GiB of memory per node, and NVIDIA
DGX-2 [13] has 1.5 TB of memory per node. As a result of
installing large memory, even 25% – 40% of the energy of a
machine is consumed by the main memory [14], [15].

Second, the memory access latency today affects ap-
plication performance to the largest extent ever because it
has not improve much for the last 20 years while the perfor-
mance of CPUs have increased exponentially [1], [2]. For
example, our previous work observed that the scalability of
a memory-access intensive application is worse on a newer
machine than on an old machine due to larger performance
gap of the CPU and the memory [11]. Figure 1 shows
the elapsed time of the Alternate Least Square (ALS) al-
gorithm [16] on an old machine (left, Xeon E5-2603 with
DDR3-1600) and a newer machine (right, Xeon E5-2699 v3
with DDR4-2133) with different number of processes. It has
many random accesses to an 8K × 8K matrix, thus memory
access latency largely affects the performance. Each row is
accessed independently and there is no inter-process com-
munication. The “actual” values show the measured elapsed
time, and the “ideal” values show the elapsed time with an
assumption that the algorithm scales perfectly. The figure
shows that the “actual” and “ideal” values differ much on the
newer machine due to a larger memory/CPU performance
gap.

Fig. 1 Elapsed time of ALS algorithm on an old machine (left) and a
newer machine (right), reproduced from Fig. 1 of [11]. It does not scale
well on the newer machine due to larger memory/CPU performance gap.

2.2 DRAM Internal Operations

Main memory modules used for current computers are made
of DRAM. A DRAM device has a hierarchical structure
with multiple channels, ranks, banks, and capacitor arrays.
In this paper, we focus on a single capacitor array for sim-
plicity and better understanding without loss of generality.

Figure 2 shows electric operations that occur on a ca-
pacitor array when it is accessed. Capacitors in a capacitor
array are organized as rows and columns, along with a sense
amplifier (also known as a row buffer). Each row is con-
nected with a wordline (WL), and each column is connected
with a bitline (BL). A circle in the figure represents a capac-
itor, with a color describing the value of it. A black circle
has a value of 1, a white circle has a value of 0, and a gray
circle shows a capacitor is in the intermediate state. For each
access, the capacitor array undergoes three operations [17]:

1. An activation enables the WL of a specified row, which
makes the capacitors in the row connected to the BLs.
The electric charge stored in the capacitors increase
the voltage of the BLs from Vref to a slightly higher
value of Vref+. At the same time, the electric charge
leak from the capacitors and they become intermediate
states (Fig. 2 (b)). The sense amplifier senses the slight
increase of the voltage of the BLs and amplifies it to
the voltage that represents the value of 1 (Fig. 2 (c)).

2. A restoration restores electric charge to the capacitors
that have leaked in the activation. This operation is
mandatory because a BL is long to cover many capac-
itors and the capacitance of a BL is much larger than
that of a capacitor. Thus, slightly increasing the volt-
age of a BL requires a capacitor to leak much of its
charge.

3. A precharge resets the voltage of all the BLs, WLs,
and the sense amplifier to Vref so that another row can
be activated for the next access.

2.3 Existing Device-Level Techniques

DRAM internal operations described in Sect. 2.2 take much
time and consume much energy. First, they dominate a large
portion of the time that a random memory access takes. Typ-
ical memory access latency from software point of view

Fig. 2 DRAM Internal Operations: Activation, Restoration, Precharge
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is 50 – 100 ns in modern Intel CPUs, and it is around 80
ns specifically in our machine described in Table 5 (mea-
sured by Intel Memory Latency Checker [18]). On the other
hand, the activation latency, the restoration latency, and
the precharge latency are defined as 12.5 ns, 22.5 ns, and
12.5 ns, respectively for DDR3-1600J standard. The sum of
these latencies dominates 59.4% (≈ 12.5+22.5+12.5

80 × 100) of a
random memory access latency.

Second, the three operations also dominate a large por-
tion of energy consumed by DRAM because these opera-
tions charge and leak electric charge to and from capaci-
tors. Lee et al. [3] executed memory intensive workloads
in a simulator and broke down the energy consumption of
DRAM. Figure 2 of [3] shows that the sum of the en-
ergy consumed by the three operations (labeled as “ACT-
PRE”) consumes more than 20 % of the energy consumed
by DRAM in average, and close to 40% for some workloads.
Note that an activation and a restoration are combined and
referred to as “a row activation” in their terminology, but
how to count them (either combined or decoupled) does not
matter here.

The fact that the activation, restoration, and precharge
operations incur large overhead both in terms of energy and
latency has motivated many prior works to reduce the over-
head with novel device-level techniques. Chang et al. [2]
give a thorough analysis on how reduced activation latency
incurs bit-flips, and propose a flexible-latency DRAM sys-
tem based on their insight. Wang et al. [4] shorten the
restoration latency by predicting rows that will be accessed
in the near future and applying shorter restoration time than
defined for these rows because these rows will be fully
charged when they are activated again for a future access.
There are many other works that focus on reducing the laten-
cies of DRAM internal operations [5]–[7] to achieve faster
and energy efficient memory. Reducing the latencies also
has a positive effect on the energy consumption because
of two reasons: (1) Shorter execution time of applications
achieved by lower memory access latency consumes smaller
amount of energy, and (2) Reducing latencies means charg-
ing less electricity to capacitors, resulting in lower energy
consumption.

2.4 More Aggressive Reduction: Approximate Memory

Approximate memory is an idea that embraces bit-flips in-
side main memory to achieve efficiency to the extent that
conventional methods cannot achieve. This is particularly
suitable for AI, HPC, and big-data analytics applications
where the results are calculated by iterative methods and
small numerical drifts caused by bit-flips can be amor-
tized. For example, Fang et al. [19] showed that substitut-
ing 0s instead of true values referenced by broken point-
ers yields acceptable results in some HPC applications, and
Liu et al. [20] showed that reducing the refresh rate of
DRAM is acceptable for an optimization algorithm, a nat-
ural language parser, an mpeg2 decoder, a ray shader, and a
turn-based game.

Given (1) that reducing the activation, restoration, and
precharge latencies can greatly reduce the memory access
latency and the energy consumption, and (2) that some ap-
plications are robust to bit-flips injected to their data, using
the device-level techniques [2], [4]–[7] more aggressively to
achieve approximate memory is a promising direction to fur-
ther reduce the overhead. In this paper, we presume a use of
the device-level techniques aggressively so that the integrity
of data is no longer guaranteed in return of larger reduction
of the latency and energy consumption. The approximate
memory model we assume in this paper is as follows:

1. Main memory is divided into two regions: the approxi-
mate region and the critical region and they are applied
different latency parameters. One possible way to im-
plement this is to assign different sets of DRAM banks
to each region (e.g. banks 1–4 for the approximate re-
gion, banks 5–8 for the critical region) and apply dif-
ferent latency parameters to these sets.

2. The integrity of data on the critical region is guaran-
teed by hardware, while data on the approximate re-
gion may be injected bit-flips when accessed. Applica-
tions that run on this memory place approximate data
on the approximate region and critical data on the crit-
ical region. Critical data refers data whose integrity
must be guaranteed (such as a program binary), and
approximate data refers data in which a small number
of bit-flips can be injected (such as weights of a neural
network).

3. Bit-flips occur with a small probability every time a
DRAM row in the approximate region is activated, re-
stored, and precharged. Other operations such as ac-
cessing the critical region and touching registers do
not incur bit-flips. The probability of bit-flips depends
on the extent of latency reduction (a larger reduction
comes with a larger error-rate).

We use a simple error model (assumption 3) that does
not perfectly reflect every aspect of DRAM internals. For
example, prior works show that bit-flips are not equally dis-
tributed but localized to weak bitlines for activations [21]
and to weak rows for refreshes [22]. Even with the simple
model, our method is advanced because it can use a real
value for the average number of bit-flips. Existing meth-
ods either (1) are light-weight but use random error mod-
els [23], [24], or (2) use more realistic error model but rely
on heavy-weight simulation [20], [25]. Our method allows
more realistic evaluation than random error models with low
overhead.

Given a specific bit-error rate, the amount of la-
tency reduction that can be achieved within the bit-
error rate hugely depends on which particular DIMM
model is used for approximate memory. From real
measurements, Chang et al. [2] confirmed that reducing
the activation latency (tRCD) from 12.5 ns to 7.5 ns
yielded a bit-error rate of 10−10 for some DIMM mod-
els, but the same tRCD resulted in a bit-error rate
of 10−1 for others. Thus, this paper focuses on
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revealing the relationship between bit-error rates and
application results, but we defer modeling the relationship
between bit-error rates and application speedups for future
work.

3. Evaluating Effect of Approximate Memory

3.1 Importance and Difficulties

Evaluating effect of approximate memory that occurs to ap-
plications running on it is important both for researchers of
approximate memory and potential users of it. It allows re-
searchers of approximate memory to investigate how their
proposals affect applications so that they can be confident
of their work. It also enables potential users of approximate
memory to estimate how their applications behave on it so
that they can rationally consider an use of it.

To this end, we need an easy-to-use method to evalu-
ate effect of approximate memory. First, approximate mem-
ory devices are still being actively researched, and there is
no off-the-self device that users can try. Thus, we need
a method that requires no real hardware. Second, device-
level studies show the relationship between (1) their la-
tency/energy reduction and introduced error rates and/or (2)
their latency/energy reduction and the effect to some appli-
cations used for their evaluation. However, potential users
of approximate memory cannot know effect of it to their
own applications.

Approximate memory imposes multiple types of effect
to applications. Table 1 describes the three types of ef-
fect (crash, endless execution, drifted result). What makes
the situation more complex is that different types of effect
may occur alternately even for the same application with
the same error rate. For example, a numerical application
may experience a crash, a drifted result with an acceptable
amount of drift, and a drifted result with an un-acceptable
amount of drift for three different runs with the same error
rate.

3.2 Requirement

Evaluating effect of approximate memory requires to run
same applications repeatedly with different bit-error rates
and data separation patterns. Bit-error rate refers the proba-
bility that a bit is flipped for each DRAM operation (row ac-
tivation, restoration and precharge in our scenario). The bit-
error rate is controllable by changing configurations of un-
derlying approximate memory devices. For example, larger

Table 1 Types of Effect caused by Approximate Memory

Crash Applications crash due to fatal errors such
as defererencing invalid pointers or applying
arithmetic operations to NaNs.

Endless Execution Iterative algorithms such as graph traversal
and path search do not finish if the on-
memory data is changed to unexpected states.

Drifted Result Applications finish safely, but the results are
different from the correct ones.

bit-error rate reduces more energy and achieves lower la-
tency, but it obviously increases the bit-error rate. There-
fore, it is important to find bit-error rate that gives the best
efficiency with acceptable effect to a given application.

A data separation pattern refers which part of data to
store in the approximate region and which part to store in
the critical region. For example, matrix-matrix multiplica-
tion has three matrices as its data. Because each matrix has
different memory access pattern, the effect to the final re-
sults can differ depending on which one among the matrices
(or what combination of them) to store in the approximate
region. It is needed to find the best data separation pattern
that leverages approximate memory the most and yields the
smallest extent of effect.

3.3 Use of Cycle Accurate Simulators

A naı̈ve way to evaluate effect of approximate memory is
to use cycle accurate simulators. They simulate internal
mechanisms of a target machine such as CPUs and mem-
ory devices for each cycle (a.k.a. clock). Because they are
software-based, users can modify them to mimic approxi-
mate memory devices and probe the internals with lighter
burden than preparing a real hardware.

An issue of using cycle accurate simulators is that they
are extremely slow due to their accurate simulation. Fig-
ure 3 shows slowdown of benchmarks executed on a cycle
accurate simulator relative to cases when they are executed
on a bare-metal machine. As a representative of cycle accu-
rate simulators, we used gem5 [26]. We used DerivO3CPU
and DRAMCtrl included in gem5 to simulate an out-of-order
CPU and DDR3 memory, respectively. Other parameters of
the simulated machine are in Table 2. The SE simulation
mode delegates system calls to the host machine and only
simulates an userspace environment. The x axis indicates
benchmarks included in SPEC CPU 2006 Benchmarks, and
the y axis shows the relative slowdown. We used the

Fig. 3 Slowdown of SPEC CPU 2006 benchmarks executed on gem5

Table 2 Details of the Simulated Machine

Core x86 ISA, Out-of-order execution, 1 GHz
L1 Cache 16 KB data + 16 KB instruction, 2 cycles for a miss
L2 Cache 256 KB, 20 cylces for a miss
Memory DDR3-1600, 2 ranks, 8 banks/rank

Simulation System-call Emulation (SE) mode
OS Debian 9.5 (shared with the host machine)
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smallest dataset called test. The result shows that execut-
ing benchmarks on gem5 takes 16500× longer time than na-
tive execution in the worst case, and 9000× longer time in
average. Cycle accurate simulators are too heavy to evaluate
effect of approximate memory and a lightweight alternative
is needed.

3.4 Use of Other Software-Based Techniques

PIN [27] and LLVM [28] are two often used software-based
techniques to inject errors into applications to investigate
their error-robustness. PIN is a dynamic binary instrumenta-
tion tool that can intercept, investigate, and modify program
instructions at runtime. In the context of this paper, it can be
used to inject errors into operands of instructions including
both registers and memory locations. However, in order to
consider internal states of DRAM such as the number of ac-
tivations, it has to be modified to simulate them to know if
an activation occurs for each memory operand. This is not
an easy task because internal states of DRAM depends not
only on DRAM commands issued in the past, but also the
time they have been issued.†

LLVM is a compiler suite that is designed to be highly
modular and easy to reuse its components. For example,
Wei et al. [29] use LLVM to inject errors in the IR (Interme-
diate Representation) level. Their method also injects errors
into operands of instructions, but is superior to PIN-based
methods in the sense that mapping an error-injected instruc-
tion into its corresponding line in the source code is easier.
The issue of LLVM-based methods is the same as PIN-based
methods; they cannot consider internal states of DRAM un-
less detailed simulation is implemented.

We discuss the details of existing PIN- and LLVM-
based methods in Sect. 7 to clarify the differences between
our work and these methods.

4. Proposal: A Lightweight Method

4.1 Overview of the System

We propose a lightweight method to evaluate effect of ap-
proximate memory to given applications with only several
times of slowdown compared to native execution. The main
idea is to calculate the probability that each bit in approx-
imate data is flipped from the number of DRAM internal
operations that can be measured on a bare-metal machine.
We enable this by assigning a designated NUMA node for
approximate data and measure the number of operations
for that NUMA node. The overview of our method is as
follows:

1. Users allocate approximate data of their applications
using our memory allocator. The approximate data is
placed on a different NUMA node from critical data.

†An activated row is closed in less than 10 micro seconds for
refresh operations (that use the same row buffer) of other rows.

Fig. 4 Evaluating effect of approximate memory using our system.

2. A target application is executed on a bare-metal ma-
chine with our error emulator attached.

3. While the application is running, the error emulator
counts the number of DRAM internal operations on the
NUMA node where the approximate data is placed.

4. The error emulator calculates the probability that a bit
is flipped from the number of DRAM internal opera-
tions and inject bit-flips to the approximate data.

Figure 4 shows how our system works. First, the user
specifies which data of the target application is approximate
data ( �1 ). We provide a special memory allocator for this.
The memory allocator stores the approximate data to a des-
ignated NUMA node at run time. The details of the memory
allocator are described in Sect. 4.2. Second, the error emu-
lator invokes the target application ( �2 ). The error emulator
takes the bit-error rate per DRAM internal operation as a pa-
rameter. Third, the error emulator monitors the number of
DRAM internal operations on which the approximate data is
placed ( �3 ). In Fig. 4, it monitors the DRAM internal opera-
tions of NUMA node #1. The implementation details of the
monitoring mechanism are shown in Sect. 4.3. Fourth, the
error emulator periodically suspends the target application
and injects bit-flips into the approximate data ( �4 ). The tar-
get application is suspended every time its memory IO after
the previous suspension reaches a threshold, which is given
to the error emulator as its parameter. We use the amount
of memory IO to define the interval because it is easier to
set than directly using the number of DRAM internal oper-
ations. While the target application is suspended, the error
emulator injects bit-flips that would have occurred during
the time between the previous and the current suspension
(we refer this time period to as an epoch). The algorithm to
calculate the probability that each bit is flipped is explained
in Sect. 4.4. After injecting bit-flips finishes, the target ap-
plication is resumed with some bit-flips injected to its ap-
proximate data. The procedures �3 and �4 are repeated until
the target application finishes.

4.2 Memory Allocator

Figure 5 shows the programming interfaces of our memory
allocator. It is called bmalloc, with the prefix “b” standing
for bit-flipping. b_init is called once at the beginning of
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Fig. 5 Programming Interfaces of Our Memory Allocator

a target application to specify the bit-error rate per DRAM
internal operation and the threshold to determine the interval
of error injection. b_malloc, b_calloc, and b_realloc
are used to allocate memory regions for approximate data.
They are used in the same ways as the normal malloc,
calloc, and realloc functions except that they take the
data attribute (*attr) as an additional parameter. A data
attribute is expressed with a struct b_attr that includes the
type of data (either ‘F’ or ‘I’) and the size of each element
of the data. When the type field of an attribute is ‘I’, bit-
flips are injected with the equal probability among all bits
of the data and the size field does not matter in this case.
When the type field is ‘F’, it implies that the data stored in
this region are floating point numbers. In this case, when a
bit-flip occurs to an element of this region, a random float-
ing point number with the size specified by the size field is
assigned. This mechanism prevents a floating point number
from being changed to a NaN by flipping arbitrary bits of it.
If users want to emulate this phenomenon as well, the type
field can be set to ‘I’ even when the stored data are floating
point numbers. Note that how to prevent this type of serious
errors is related but a different story.†

Figure 6 and Fig. 7 show usages of bmalloc. There are
two types of usages depending on the way approximate data
is used in the original source code.

1. Coarse-grained separation is applied to applications
whose approximate data is continuous (e.g. a large ma-
trix). Figure 6 shows an example. It requires modifica-
tion of the source code that allocates approximate data,
but accessing the approximate data is done by the same
way as in the original source code.

2. Fine-grained separation is applied to applications
whose approximate data is embedded in a larger data
hierarchy. For example, when particular members of
a struct are stored into the approximate region, fine-
grained data separation is used. Figure 7 shows an ex-
ample. In addition to modifying the allocation code of
approximate data, it requires to modify lines of code
that access approximate data. Note that newly intro-
duced pointers (e.g. double *v in Fig. 7) are located
†Our ongoing work provides an OS support to repair NaNs that

may appear by bit-flips [30].

Fig. 6 Example of coarse-grained data separation.

Fig. 7 Example of fine-grained data separation.

in the critical region, thus memory IO to the pointers
themselves do not affect the accuracy of our method.

The implementation of bmalloc leverages the NUMA
support APIs of Linux (libnuma). The memory allocation
functions of bmalloc use numa_alloc_onnode to allocate
approximate data to a specific NUMA node. We rely on
libnuma because allocating a memory region on a speci-
fied NUMA node requires placing the region in a particular
physical address range, which requires to modify the under-
lying OS. We discuss the validity of this choice in Sect. 6.1.

4.3 Counting DRAM Internal Operations

Our system counts the number of DRAM internal operations
with the help of hardware performance monitoring mecha-
nism of the memory controllers connected to the NUMA
node of the approximate region. Modern Intel Xeon proces-
sors have an integrated memory controller (iMC) for each
memory channel and expose them as PCI devices that can
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Table 3 Vendor ID and Device IDs of PCI devices for iMCs of Recent
Gegenerations of Intel Xeon CPUs

Generation Vendor ID Device IDs
Skylake 0x8086 0x2042, 0x2046, 0x204a

Broadwell 0x8086 0x6fb0, 0x6fb1, 0x6fb4, 0x6fb5
Haswell 0x8086 0x2fb0, 0x2fb1, 0x2fd0, 0x2fd1

Ivy Bridge 0x8086 0x0eb0, 0x0eb1, 0x0eb4, 0x0eb5
Sandy Bridge 0x8086 0x3cb0, 0x3cb1, 0x3cb4, 0x3cb5

Table 4 A Part of Performance Metrics Supported by iMCs of Modern
Xeon Processors, reproduced from Sect. 2.3.5 of [31]

Metric Event Code Description
CLOCKTICKS 0x00 DRAM Clockticks
ACT COUNT 0x01 DRAM Activate Count
PRE COUNT 0x02 DRAM Precharge commands
CAS COUNT 0x03 DRAM CAS (Column Address

Strobe) Commands
DRAM REFRESH 0x04 Number of DRAM Refreshes

Issued
. . . . . . . . .

be read/written from software. The PCI devices can be used
to configure the hardware performance monitoring mecha-
nism and retrieve performance metrics.

To access an iMC, a pair of a bus number (bus_no), a
device number (dev_no), and a function number (fn_no)
associated to the iMC is required. Once the pair is
determined, Linux allows reading data from and writ-
ing data to the iMC via a file named /proc/bus/pci/
bus_no/dev_no.fn_no. The pairs can be found by match-
ing the first 4 bytes of each file in /proc/bus/pci with the
pre-defined vendor ID and device IDs shown in Table 3.

Table 4 shows a part of the performance metrics sup-
ported by iMCs of modern Intel Xeon processors. The table
is reconstructed from Sect. 2.3.5 of an official manual [31].
The event code of each metric is written to the iMCs in or-
der to count the metric. Each iMC supports counting four
metrics simultaneously. We use ACT_COUNT to count the
number of activations and restorations (note that a restora-
tion happens after every activation), and use PRE_COUNT to
count the number of precharges. We also use CAS_COUNT
to measure the amount of memory IO to the approximate
region to detect the end of epochs.

4.4 Emulating Bit-Flips

Our system emulates the behavior of approximate memory
by injecting bit-flips to approximate data at the end of each
epoch. To achieve this, we calculate the probability that
each bit is flipped during an epoch (referred to as x) and
traverse every bit of approximate data to flip each bit with
this probability. Let the number of DRAM internal opera-
tions (activations, restorations, precharges) during the epoch
be Nop and the bit-error rate per DRAM internal operation
be R, the expected number of bit-flips C during this epoch
is:

C = Nop × Srow × R (1)

where Srow is the number of bits in a DRAM row (typically
4096). Next, we assume that x is constant across all the bits
of approximate data, which stems from two assumptions:
(1) each bit is flipped independently from the others, and (2)
data accesses to approximate data are distributed to all the
bits. Then, C is expressed in a different form as:

C = x × Sdata (2)

where Sdata is the amount of approximate data expressed in
bits. One can refer Appendix A for the details. From Eq. (1)
and Eq. (2), we get:

Nop × Srow × R = x × Sdata (3)

∴ x =
Nop × Srow × R

Sdata
(4)

Equation (4) is used to calculate x. Among the vari-
ables, Nop is counted by our system, Sdata is retrieved from
our memory allocator, and Srow is a constant. R is a config-
uration parameter that is adapted to underlying approximate
memory hardware.

To decide the value of R, two methodologies exist de-
pending on use cases.

1. Users can identify several Rs that their applications
produce reasonable results by swinging R among var-
ious values, then compare the identified values with
hardware characteristics (either given by real measure-
ments or modeling) to decide latency parameters they
can potentially use.

2. If there are particular latency parameters that come
from users’ energy and performance requirements, the
users can set a specific value of R that a particular mem-
ory device yields with the given latency parameters.
For example, if an approximate memory device in in-
terest flips m bits for every DRAM internal operation
in average, the value of R for that device is m

Srow
.

Because the focus of this paper is to reveal how a given R
affects application results, how to acquire the bit-error rate
from a real device is out-of-scope of this work. Character-
izing and modeling the relationship between bit-error rates
and latency parameters is an on-going research field.

5. Evaluation

5.1 Methodology

To show that our system can evaluate effect of approximate
memory to given applications, we conduct two types of eval-
uation. First, we show that the runtime overhead incurred by
data separation is small enough to run same applications re-
peatedly with different parameters. Second, we apply our
system to selected applications of SPEC CPU Benchmarks
to evaluate effect of approximate memory for these applica-
tions. Table 5 shows the evaluation environment.
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Table 5 Evaluation Environment

OS Debian GNU/Linux 9.5
CPU Intel Xeon Silver 4108 (8 cores) ×2
LLC 11 MB per NUMA node (1.375 MB per core)

Memory DDR4 2400 MHz, 48 GB per NUMA node

Fig. 8 Slowdown caused to various workloads by data separation.

5.2 Runtime Overhead due to Data Separation

Data separation with bmalloc slows down some applica-
tions because (1) it changes the data layout inside main
memory and (2) it requires extra pointer dereferencing that
do not exist in the original source code. In this section, we
show that this slowdown is small enough to run the same ap-
plication repeatedly, which is mandatory to evaluate effect
of approximate memory with different parameters. In terms
of the overhead caused by injecting bit-flips, we evaluate it
in the next section for more realistic applications.

Figure 8 shows slowdown of synthetic workloads. The
x axis shows workloads and the y axis shows relative slow-
down compared to the elapsed time of the original source
code. The labels “Coarse-grained” and “Fine-grained” show
the applied data separation patterns. The values are aver-
aged over 10 runs. We used six synthetic workloads with
sufficiently large data compared to the LLC size.

• dense gemm calculates C = A × B for dense matrices
A, B, and C of size 2048 × 2048. An element of the
matrices is a double. The matrices are stored in the
approximate region by coarse-grained data separation.
• dense gemv calculates y = A × x for vectors x, y and

a dense matrix A of size 2048 × 2048. An element of
the vectors and the matrix is a double. The vectors
and the matrix are stored in the approximate region by
coarse-grained data separation.
• sparse gemv calculates y = A× x for vectors x, y and a

sparse matrix A of size 2048 × 2048. A is expressed in
the csr format and 20% of the elements are non-zeros.
An element of the vectors and the matrix is a double.
The vectors and the matrix are stored in the approxi-
mate region by coarse-grained data separation.
• merge sort sorts a linked-list by the merge sort algo-

rithm. An element of the list has two members: its
value and the pointer the next element. The value el-
ements are stored in the approximate region by fine-
grained data separation.

• sequential search finds elements whose values are less
than a threshold from an array of elements. An ele-
ment has two members: its id and value. The value
elements are stored in the approximate region by fine-
grained data separation.
• struct random traverses an array of elements with a

random order. An element has two members: its id and
value. The value elements are stored in the approxi-
mate region by fine-grained data separation.

The workloads applied coarse-grained data separation
experience almost negligible amount of slowdown because
data separation does not change the memory access pattern
nor require additional pointer dereferencing. As shown in
Fig. 6, approximate data is accessed with the same way as
it is accessed in native execution. On the other hand, the
slowdown is sometimes visible for the workloads applied
fine-grained data separation because it changes the mem-
ory access pattern and requires extra instructions for pointer
dereferencing. The reason why the slowdown of merge sort
is smaller than that of sequential search and struct random
is that merge sort has more work to do between two approx-
imate data accesses, thus the cycles needed for pointer deref-
erencing do not count that much. The different amount of
overhead for sequential search and struct random comes
from their data access patterns. For sequential search, ap-
proximate data pointed by extra pointers are prefetched by
hardware prefetchers, while for struct random fetching the
extra pointers and approximate data are serialized.

The results show that the runtime overhead incurred by
data separation is 1× to 3× compared to native execution. It
is 3 orders of magnitude faster than gem5 (9000× of native
execution in average). This allows users to evaluate effect of
approximate memory to applications repeatedly with differ-
ent parameters.

5.3 Case Studies with SPEC CPU Benchmarks

In this section, we use our system to evaluate effect of ap-
proximate memory to realistic applications. We chose two
applications from SPEC CPU Benchmarks for case studies:

• mcf uses a network simplex algorithm (. . . ) to schedule
public transport [32]. The source code has data struc-
tures for nodes and arcs of a network. We store the cost
values associated with them as approximate data with
fine-grained separation.
• milc is a gauge field generating program for lattice

gauge theory programs with dynamical quarks [33].
We select a data type named su3_vector as approxi-
mate data and store it with coarse-grained separation.

The number of lines modified in the source code is 62 for
mcf and 43 for milc. Note that we cannot publish the modi-
fied code because SPEC CPU Benchmarks are not free soft-
ware. We used the middle-sized data set called train.

For each workload, we choose three bir-error rates with
which the workload produces various results, so as to show
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Table 6 Effect of Approximate Memory to mcf. ‘o’: application finished
correctly, ‘x’: application yielded a wrong result, ‘e’: endless execution.

R = 1.0 × 10−12

run 1 2 3 4 5 6 7 8 9 10
bit-flips 10 5 7 12 5 10 6 5 5 6
effect x o x o o x o o o o

R = 2.5 × 10−12

run 1 2 3 4 5 6 7 8 9 10
bit-flips 20 - 24 30 23 20 16 19 15 25
effect o e x o x x o o x x

R = 5.0 × 10−12

run 1 2 3 4 5 6 7 8 9 10
bit-flips - 25 36 57 44 49 - 34 - 38
effect e x x x x x e x e x

that executing the same application with various parameters
is important to evaluate effect of approximate memory. This
corresponds to the 1st methodology of deciding the value of
R explained in Sect. 4.4. We do not use bit-error rates from
real measurements because the bit-error rate for a particular
latency value differs by orders of magnitude depending each
DIMM model (see Sect. 2.4 for the details).

5.3.1 mcf

Table 6 shows the evaluated effect of approximate memory
to mcf. We set the amount of memory IO for the error injec-
tion interval to 10 GB. The bit-error rate per DRAM internal
operation (R) is set to 1.0×10−12, 2.5×10−12, and 5.0×10−12.
Each column of the table corresponds to one run. The ‘bit-
flips’ rows show the number of bit-flips injected during each
run. The ‘effect’ rows show the effect of approximate mem-
ory observed: ‘o’ means that no effect was observed, ‘x’
means that the final result differed from the correct one, and
‘e’ means that the application was caught into endless ex-
ecution and did not finish in a reasonable amount of time.
Because mcf is a discrete application, we define any results
that are different from the correct one as “wrong” (that is,
there is no “close” result). The number of bit-flips for non-
finished runs are not shown because bit-flips are kept in-
jected during endless execution. The application finished
correctly even when some bit-flips are injected into the data.
This is because mcf is a search-based application and data
that is no longer referred by the search algorithm is tolerant
to any number of bit-flips. Note that this does not mean that
there is no need to store this data because we cannot know
that any portion of data is not necessary before completing
a search.

The results show the importance of executing target ap-
plications repeatedly to evaluate effect of approximate mem-
ory. For example, the 4th run for R = 2.5 × 10−12 case
had a correct result with 30 bit-flips while the 3rd run for
R = 1.0 × 10−12 case had a wrong result even with 7 bit-
flips. This shows that the behavior of a discrete algorithm
does not directly depend on the number of injected bit-flips.
Therefore, the capability of our system to allow users to run

Fig. 9 Effect of Approximate Memory to milc. The bar char (left) shows
the drift of the final results from the correct one with various R. The table
(right) shows the number of injected bit-flips.

same applications repeatedly is mandatory to evaluate effect
of approximate memory for these applications.

5.3.2 milc

Figure 9 shows the evaluated effect of approximate mem-
ory to milc. We set the amount of memory IO for the error
injection interval to 300 MB. The bit-error rate per DRAM
internal operation (R) is set to 1.0 × 10−10, 1.0 × 10−9, and
1.0 × 10−8. We only show the averaged results for 10 appli-
cation runs because milc is a numeric application and every
run finished with either a drifted or undrifted result. The ap-
plication outputs a value called GACTION as a part of the
final result. The bar chart of Fig. 9 shows the difference
of GACTION between an error-free run and the cases when
bit-flips are injected. The error-free value of GACTION is
2.222088. The table in Fig. 9 shows the number of injected
bit-flips. Unfortunately, the manuals of milc [33], [34] do
not provide any information on how much error is accept-
able in the result, nor does the author have proper knowledge
to interpret the physical meaning of it. However, given that
the code supports a compiler option to change the precision
of floating point operations (either 32 bit or 64 bit) [34], we
believe that some use cases of milc accept drifted results.

The results again show the importance of executing tar-
get applications repeatedly to evaluate effect of approximate
memory. The number of bit-flips increases linearly as R is
increased, but the difference of GACTION compared to the
correct value does not obey the linear correlation. For exam-
ple, increasing R from 1.0× 10−9 to 1.0× 10−8 increases the
number of bit-flips by 10×, but the difference of GACTION
compared to the correct value increases only by 5.8×. This
means that the capability of our system to allow users to run
same applications repeatedly with different R is an urgent
need to evaluate effect of approximate memory.

5.3.3 Execution Time

Figure 10 shows the overhead of our system incurred to the
mcf and milc benchmarks. The labels “vanilla” show the
elapsed time of them with no modification to the source
code, the labels “separation” show the elapsed time when
data separation is applied but no bit-flips are injected,
and the labels “bmalloc” show the elapsed time when our
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Fig. 10 Elapsed time of mcf and milc on our system. “vanilla” means
the original code, “separation” means that the approximate data is allocated
with our allocator, and “bmalloc” means that our method is fully applied.

method is fully applied (data separation and bit-flip injec-
tion). The values are averaged over 10 runs.

The slowdown due to data separation is negligible for
milc while mcf is slowed down by 3.8×. The reasons is that
the approximate data of milc is continuous and applied the
coarse-grained data separation, but the approximate data of
mcf is a member of a larger data hierarchy and is applied
the fine-grained data separation with extra pointer derefer-
encing. The slowdown due to the bit-flip injection is also
negligible for milc while it is not negligible for mcf. The
reason is that the size of the approximate data of mcf is
larger than that of milc and injecting bit-flips takes longer
time. The results show that our system with all the overhead
taken into account is still 3 orders of magnitude faster than
cycle accurate simulators.

6. Discussion

6.1 Validity of Using NUMA Nodes

An alternative implementation choice to measure the num-
ber DRAM internal operations only for approximate data is
to store it to designated memory channels within a single
NUMA node. Although this choice needs only one CPU,
the disadvantage is that placing data on an arbitrary mem-
ory channel is hard to implement in a portable way.

The mapping between physical memory addresses and
memory channels cannot be known in a portable way be-
cause they are not defined in an open specification to the
best of our knowledge. Even if the memory interleaving
functionality is disabled, we can only guess that the physi-
cal memory is evenly divided, which may be true for some
machines but may not for others. In contrast, the mapping
between physical memory addresses and NUMA nodes is
notified with System Resource Affinity Table by ACPI (see
Sect. 5.2.16 of the ACPI spec [35] for the details). There-
fore, using NUMA nodes is the most portable way to meet
our need.

6.2 Overhead Due to Bit-Flip Injection

The overhead due to bit-flip injection (the time it takes to
inject bit-flips into approximate data) is not negligible for
some applications as shown in Sect. 5.3. One possible way
to suppress this overhead is to randomly select C bits (which

can be calculated by Eq. (1)) from approximate data and flip
them at the end of every epoch, instead of traversing ev-
ery single bit. Although this choice incurs almost no over-
head for bit-flip injection, the issue is that it could reduce
the accuracy of mimicking effect of approximate memory.
As seen in Sect. 5.3 for mcf, the number of injected bit-flips
differs run by run even for the same bit-error rate because C
only refers the expected value. Injecting C bit-flips in every
epoch dismisses this phenomenon and might only produce
“averaged” effect in return of reduced overhead.

6.3 Limitations

Our current system is applicable only to approximate mem-
ory models where bit-flips are incurred by DRAM internal
operations. Therefore, it cannot directly be applied to an
approximate memory model where lower refresh rate is ap-
plied to approximate memory or to other approximate com-
puting models that assume ALUs and caches do not guaran-
tee data integrity. However, we hope that our basic idea of
leveraging hardware performance monitors to emulate bit-
flips will be further studied to be applied for these approx-
imate models. Hardware performance monitors exist not
only in iMCs but also in CPU cores and caches and these
monitors could be leveraged to extend our system to other
approximate models that we do not handle in this work.

7. Related Work

Error-robustness of applications is widely studied in the
context of fault tolerance. Ashraf el al. [36] study error-
robustness of MPI applications by injecting bit-flips into
registers at compile-time using an LLVM-based fault injec-
tor [29]. Although their method does not use hardware simu-
lators, it cannot be applied to our scenario because it cannot
consider the number of DRAM internal operations. They
depend on available cache size and input data size, thus it
is not possible to deal with bit-flips stemming from approx-
imate memory at compile time. Carbin et al. [37] analyze
source code to estimate error-robustness by tracking how er-
rors propagate from one place to another. A shortcoming of
their method is that it is very conservative. For example, the
trustworthiness of a value modified by an approximate op-
eration inside a loop is 0 in most cases because the number
of loop iterations cannot be known from the source code.

Error-robustness analysis is applied to GPUs as well
because they are used for mission-critical applications.
Li et al. [38] extend the same LLVM-based fault injector as
used by Ashraf el al. [36] to inject bit-flips into GPU ap-
plications. Their method not only injects bit-flips but also
tracks how injected errors are propagated across multiple
kernels. Nie et al. [24] prune the number of possible places
to which bit-flips are injected for highly parallel GPU ap-
plications. The main idea is that GPU applications apply
the same instructions to much data using many threads, thus
it is not needed to consider all possibilities when injecting
bit-flips.
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In the context of approximate computing, evaluation
of proposed approximation models is done with heavy-
weight methods. Flikker [20] prolongs the refresh inter-
val of DRAM to reduce the energy consumption. It uses
PIN [27], a dynamic binary instrumentation tool, to detect
if a byte is accessed after the previous refresh. Although
not cycle accurate, PIN is already tremendously slow. It
is reported that PIN takes 4 – 6 days to record a full trace
for SPEC CPU 2006 Benchmarks [39]. Another shortcom-
ing of PIN is that it cannot consider effect of caches, as
it traces instructions from a viewpoint of software. This
does not matter much in a mobile environment with small
caches that Flikker assumes, but the effect of caches can-
not be dismissed in server environments with large LLCs.
EnerJ [25] is a new instruction set architecture for approxi-
mate computing. They use an in-house instrumentation tool
to trace method calls, object creation and destruction, arith-
metic operators, and memory accesses. Although they do
not show how long it takes to retrieve a trace, it must be as
slow as PIN given that they do similar things. Device-level
techniques to reduce the latency and energy consumption of
DRAM use either cycle accurate simulators or real hardware
with FPGA-based memory controllers to evaluate their pro-
posals [2]–[7]. Cycle accurate simulators are too slow for
our scenario as shown Sect. 3.3 and FPGA-based hardware
is not easy-to-use. On the other hand, our system is both
lightweight and easy-to-use.

8. Conclusion

This paper proposed a lightweight method to evaluate ef-
fect of approximate memory to applications to tackle the
latency and energy problem of main memory. Instead of us-
ing heavy-weight cycle accurate simulators, we emulate bit-
flips caused by approximate memory by measuring the num-
ber of DRAM internal operations on a bare-metal machine
while an application is running. Thanks to the small over-
head, our system enables to evaluate effect of approximate
memory repeatedly for a given application with different pa-
rameters. We showed that it is 3 orders of magnitude faster
than cycle accurate simulators and we gave case studies of
evaluating approximate memory for realistic applications.
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Appendix A: Proof of Eq. (2)

Let the probability that a bit is flipped be x and the size of ap-
proximate data be S bits, the expected number of bit-flips in
the approximate data is calculated by definition as follows:

S∑
s=1

(
s × Combination(S , s) × xs(1 − x)S−s

)
. (A· 1)

The below proves that Eq. (A· 1) is equal to Eq. (2).

S∑
s=1

(
s × Combination(S , s) × xs(1 − x)S−s

)

=

S∑
s=1

(
s × S !

s!(S − s)!
xs(1 − x)S−s

)

= xS ×
S∑

s=1

(S − 1)!
(s − 1)!(S − s)!

xs−1(1 − x)S−s

= xS ×
K∑

k=0

K!
k!(K − k)!

xk(1 − x)K−k

(s − 1 = k, S − 1 = K)

= xS × (x + (1 − x))K

= xS

Soramichi Akiyama is a faculty member
of Department of Creative Informatics, The Uni-
versity of Tokyo, Japan. Dr. Akiyama received
a B.Eng. from Kyoto University in 2010 and a
Ph.D. from The University of Tokyo in 2015.
Dr. Akiyama’s research interest centers on how
to efficiently execute large-scale workloads in
the AI and HPC fields with as little program-
mer effort as possible, by leveraging knowledge
of operating systems, virtualization techniques,
memory systems, and performance analysis.

http://dx.doi.org/10.1145/1950365.1950391
http://dx.doi.org/10.1109/iccd.2018.00051
http://dx.doi.org/10.1109/tc.2015.2448079
http://dx.doi.org/10.1109/dsn.2014.50
https://doi.org/10.1109/MICRO.2018.00066
http://dx.doi.org/10.1145/1993316.1993518
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/dsn.2014.2
http://dx.doi.org/10.1145/2807591.2807670
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1109/sc.2016.20
http://dx.doi.org/10.1145/2989081.2989119
http://dx.doi.org/10.1145/2989081.2989119

