
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020
1911

LETTER

H-TLA: Hybrid-Based and Two-Level Addressing Architecture for
IoT Devices and Services

Sangwon SEO†a), Member, Sangbae YUN††, Jaehong KIM†, Inkyo KIM†††, Seongwook JIN††††,
and Seungryoul MAENG†, Nonmembers

SUMMARY An increasing number of IoT devices are being introduced
to the market in many industries, and the number of devices is expected to
exceed billions in the near future. With this trend, many researchers have
proposed new architectures to manage IoT devices, but the proposed ar-
chitecture requires a huge memory footprint and computation overheads to
look-up billions of devices. This paper proposes a hybrid hashing archi-
tecture called H- TLA to solve the problem from an architectural point of
view, instead of modifying a hashing algorithm or designing a new one.
We implemented a prototype system that shows about a 30% increase in
performance while conserving uniformity. Therefore, we show an efficient
architecture-level approach for addressing billions of devices.
key words: H-TLA, jump hash, consistent hashing, hash

1. Introduction

An Increasing number of IoT devices are being introduced
to many industries, and the number of devices is expected
to exceed billions in the near future [4]. With this trend,
a lot of researches and studies are being done on manag-
ing IoT devices effectively and efficiently [1]–[3], [7], [10].
One of the most important issues that need to be solved
is processing the look-up quickly in the IoT platforms be-
cause the number of devices on the platform can be in
the billions. For traditional non-IoT platforms, we used to
store device-information in relational databases and search
as needed. However, if there are billions of devices, the re-
lational database easily becomes a bottleneck [5], and it will
take a long time to search for even one device. To solve this
problem, new techniques that can search a device quickly
such as hashing were discussed. Among those, Consistent
Hashing [6] and Jump Hash [8] stood out as two of the most
efficient ways.

While consistent hashing operates effectively on IoT
platforms that frequently add or delete their nodes, con-
sistent hashing extremely consumes memory to create and
manage many virtual buckets. Jump hash has been pro-
posed to solve the high memory usage of consistent hash-
ing. Jump hash minimizes the memory usage while keeping
consistency to addition and deletion of nodes at the same

Manuscript received February 16, 2020.
Manuscript revised April 16, 2020.
Manuscript publicized May 14, 2020.
†The authors are with Computer Science Department, KAIST,

Korea.
††The author is with Pinplay, Korea.
†††The author is with Samsung Electronics, Korea.
††††The author is with KIWI PLUS, Korea.
a) E-mail: smiler.seo@gmail.com

DOI: 10.1587/transinf.2020EDL8027

level of consistent hashing. It also provides a high level of
uniform distribution that is equivalent to that of consistent
hashing but needs computations instead of memory. To cal-
culate the hash, it makes statistics-based jumps that require
a heavy computation to produce a hashed value.

Although jump hash has an advantage from a memory
usage perspective, it requires still many computational re-
sources. The computational overhead is high because a lot
of jumps occur in the early stage. This is one of the charac-
teristics of jump hash. During the early stage, the gaps be-
tween jumps are very dense. However, the interval of jumps
becomes longer, as more jumps occur, thereby decreasing
the computational overhead. If we can decrease the number
of jumps in the early stage, we would be able to decrease
the computational overhead while keeping the low memory
usage. This can be an ideal hashing algorithm that can ef-
fectively manage billions of devices.

In this paper, we propose H-TLA (Hybrid-based and
Two-Level addressing Architecture) that minimizes the
computational overhead from jump hash. We focus on effec-
tively exploiting jump hash as a look-up algorithm, instead
of modifying and enhancing jump hash itself. H-TLA intro-
duces Hybrid Hash to significantly lower the computational
overhead. In the early stage, it lowers the computational
overhead by performing a simple bit-wise hash instead of a
computation-heavy jump hash. It uses jump hash in the later
stages so that consistency can still be supported even in the
case of a node addition or deletion.
H-TLA manages all the nodes as 2-dimension of buck-

ets and nodes, instead of 1-dimension. Since there are multi-
ple nodes in a bucket, both bucket hash and node hash are re-
quired to compute a single hash value, which is called Two-
level Addressing. With the two-level addressing, H-TLA can
reduce the addressing time because two-level addressing cut
down the early stage of jump hash significantly, which is a
performance bottleneck of H-TLA

In this research, we conducted our experiments focus-
ing on the performance and uniformity. We implemented the
prototype of H-TLA based on jump hash. The experiment
results show H-TLA has a low memory usage and compu-
tational overhead while providing consistency. Especially,
H-TLA shows 40% better performance compared to jump
hash, by effectively lowering the computational overhead of
the jump hash. The results show a small decline in unifor-
mity, which is only about 0.2%.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



1912
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

2. Background and Motivation

While Consistent Hashing [6] provides consistency by lever-
aging virtual buckets, it has the problem of high memory
usage. Jump Hash [8] uses computations to provide con-
sistency with low memory consumption. The jump refers to
the computations to find the node where a key belongs. Con-
suming the computational resources instead of the memory
resources is the unique characteristic of jump hash.

Based on the probability of a key being assigned to a
specific node, Jump hash continuously makes jumps until
the total distance of jumps becomes greater than the total
number of nodes. The probability starts from 100% when
the node size is 1 and decreases to 1/n when the total num-
ber of nodes is n. This is a harmonic series and its proba-
bility decreases dramatically when the number of nodes in-
creases.

As described in Fig. 1, the jumps are more dense in
the early stage and more sparse in the later stage. In jump
hash, the jumps are connected to the computational over-
head. There is no relationship between the jump distance
and the overhead, but the overhead is related to the number
of jumps. As the number of nodes increases, the number
of jumps and the overall computations also increase. How-
ever, as the jump distance becomes larger, the frequency of
the jump becomes relatively sparse. As a result, as the to-
tal number of nodes increases, the required computational
overhead per node dramatically decreases.

Figure 2 describes the total elapsed time of jump hash
for 1 billion keys as the number of nodes increases. It shows
that the computational overhead is considerably high even
when the number of nodes is small. Moreover, when the
number of nodes increases by 10 times from 100 to 1,000,
the time to execute increases only by 20%, not by 10 times.
As the number of nodes increases, the computational over-
head increases at a slower rate. In the early stage, the jumps
are short and happen very frequently because the probability
is high. However, in the later stage, the jumps are long and
sparse due to the low probability, decreasing the computa-

Fig. 1 Basic operation of jump hash

Fig. 2 Total elapsed time of jump hash

tional overhead.
A lot of jumps occur in the early stage is one of the

characteristics of jump hash. If we can decrease the number
of jumps in the early stage, we would be able to decrease
the computational overhead while keeping the low memory
usage. This can be an ideal hashing algorithm that can ef-
fectively manage tens of billions of keys.

3. Design

3.1 Hybrid Hash

In this work, we attempt to solve the issue from an architec-
tural point of view, instead of directly modifying jump hash
or designing a new algorithm. To solve the computational
overhead problem, we propose Hybrid Hash as an architec-
tural approach that has two steps: bit-wise hash and jump
hash. Bit-wise hash doesn’t provide consistency feature but
has a much lower computational overhead than jump hash
because of the simple computations. Hybrid hash uses the
existing jump hash without any modification. The difference
from using only jump hash is as follows. In the early stage
where there are a lot of jumps causing the computational
overhead, jump hash is replaced by bit-wise hash. Jump
hash which supports consistency is used for the rest. By
using this mechanism, we can eliminate the computational
overhead in the early stage while providing consistency fea-
ture to minimize the redistribution of keys when the number
of nodes increases.

Figure 3 describes regular jump hash and hybrid hash.
In jump hash, jumps are dense in the beginning and become
more sparse as it gets closer to the total number of nodes,
which explains why there is more computational overhead
in the beginning. On the other hand, bit-wise hash is used
between from node 1 to node 256. From node 257 jump
hash is used. By starting jump hash from the node 257
instead of the node 1, the distance of each jump becomes
much longer and the entire nodes can be covered with much
fewer jumps. This eliminates the computational overhead in
the early stage. Theoretically, for the first 256 nodes, 6.12
jumps are required on average. On the other hand, from
node 257 to 1024, the average number of jumps is 1.38.
While the number of nodes in the latter is four times big-
ger, the number of jumps is only 22.5% of the former. This
clearly shows that replacing jump hash with bit-wise hash in
the early stage is very effective.

Bit-wise hash to minimize the computational overhead
is effective, compared to jump hash. Although both the per-
formance and uniformity characteristics of bit-wise hash are
very good, it is unable to provide consistency when a node is
added or deleted, which is a critical disadvantage for the IoT
platforms. For example, when the node size increases, bit-
wise hash needs to redistribute the entire keys, which causes
a serious computational overhead. In this paper, bit-wise
hash is only used for the pre-determined, the early stage,
which doesn’t require consistency. The rest of the stage is
covered by jump hash. One disadvantage of using bit-wise



LETTER
1913

Fig. 3 Jump hash and hybrid hash

hash in the early stage is that it can’t be changed once de-
termined. However, the number of nodes for IoT platforms,
which we focus on, is more than tens of thousands node in
most cases and well beyond the number that bit-wise hash
can cover. Instead of modification of jump hash, hybrid hash
leveraging the architectural approach can be very effective.

3.2 Two-Level Addressing

Two-level Addressing consists of buckets and nodes.
A key finds its bucket through a hash calculation. Then
through another hash calculation, it finds the node it belongs
to within the bucket. Through the first hash calculation, all
requests are distributed evenly to 1/bucket and then again to
the number of nodes in each bucket through the second hash
calculation.

An advantage for two-level addressing is that it can re-
duce the addressing time. The bucket hash is used to find
the right bucket and the node hash is needed to find the node
within the bucket. One might assume that it would require
more time since there are two levels of hash instead of one.
However, if the bucket hash and the node hash can be done
in parallel, we can reduce the overall time. The key point is
that the node hash doesn’t have to wait until the bucket hash
is completed. To perform a precise node hash, we need to
know the total number of nodes in a certain bucket through
a bucket hash calculation. Regardless, H-TLA starts both
hashes at the same time. A node hash calculation is per-
formed until we know the total number of nodes in a bucket.
When the bucket hash is completed, we can determine
whether to continue the node hash based on the total num-
ber of nodes. However, as shown in Fig. 4, if the bucket hash
takes long, the jumps can exceed the total number of nodes.
In this case, H-TLA disregards the redundant computations
and use the results reflecting the total number of nodes.

3.3 Uniformity

The uniformity is as important as the performance in hash-
ing. It is difficult to use a hashing algorithm with a low uni-
formity, even if it provides high performance. H-TLA pro-
vides some enhancements from a uniformity perspective. In
the case of hybrid hash, bit-wise hash is used until it reaches
a fixed size, and after that, jump hash is used. Although the
uniformity of bit-wise hash is lower than that of jump hash,
the impact on bit-wise hash is reduced to a level similar to
jump hash. Unlike hybrid hash, two-level addressing can
impact the uniformity. Two-level addressing adds another

Fig. 4 Redundant computation on two-level addressing

hash layer on top of the current one-level jump hash, and
therefore, the uniformity errors of jump hash will be dupli-
cated.

The number of keys is denoted by k and the node size
is denoted by n. When k becomes big enough, the unifor-
mity of jump hash increases. On the other hand, when n
increases, the uniformity decreases. The uniformity of the
one-level jump hash is proportional to k/n. In the case of the
two-level jump hash, we need to consider the buckets. The
number of buckets is denoted by b. Two-level jump hash
distributes keys (k) evenly to buckets (b), which can be ex-
pressed as k/b. Then k/b keys are distributed to n/b nodes in
each bucket, which can be expressed as k/b ∗ ((k/b)/(n/b)).
This can also be expressed as k/b ∗ k/n. This represents
the uniformity of one-level jump hash. The uniformity of
two-level hash changes depending on how k/b changes. In
other words, the uniformity of two-level addressing is pro-
portional to k and inversely proportional to b. The unifor-
mity of two-level addressing would be lower than that of
one-level addressing since there is an additional jump hash.
But the degree of such decrease depends on the number of
buckets, which is discussed in Sect. 4.2

4. Results

We evaluated H-TLA on AMD Ryzen 7 2700 processors with
physical 8 cores. The processor has 768KB L1 cache, 4MB
L2 cache, and 16MB L3 cache. The machine has 16GB
memory and uses Ubuntu Linux 18.04 as the operating sys-
tem. To evaluate the effectiveness of H-TLA, we created
a simple workload which generates random keys and runs
hash operations for the keys. The workload is designed to
measure the throughput and uniformity of H-TLA. For bit-
wise hash, we adopt Pearson hashing [9] designed for fast
execution.

4.1 Performance Evaluation

Figure 5 describes the performance difference between jump
hash and two-level addressing. In the figure, jump hash
represents jump hash and Hybrid Hash represents hybrid
hash. Two-level represents two-level addressing using hy-
brid hash. We used a 128 bit-wise hash and distributed 10
billion keys to 1 million nodes.

Figure 5 also shows the performance improvement
through two-level addressing. Two-level addressing per-
forms better than a single hybrid hash in the figure because
the early stages of jump hash were significantly reduced by
using two-level addressing. For example, a single hybrid
hash can apply fast bit-wise hash once, whereas two-level



1914
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Fig. 5 Performance of H-TLA

Fig. 6 Uniformity comparison

addressing can apply double times. If the total number of
nodes goes beyond a certain threshold, the performance en-
hancement is limited because the early stages can’t be re-
duced anymore. In contrast, H-TLA can not provide a con-
sistency feature if the number of nodes is smaller than that of
the early stage. H-TLA shows no difference in performance
compared to the jump hash when the size of early-stage is
reduced to provide consistency.

4.2 Uniformity Evaluation

For hashing, the uniformity is as important as the perfor-
mance. Figure 6 consists of three charts that show the uni-
formity of each configuration. In this experiment, one mil-
lion nodes and 10 billion keys were used. Each key has a
random and unique number used for hashing. Ten thousand
keys must be allocated to each node for the perfect unifor-
mity.
Jump Hash: The left part of the chart shows the uniformity
of the jump hash. The top 90% of the nodes received the
most keys which are 10,212 keys. On the other hand, the
bottom 90% received 9,870 keys. We can say that the jump
hash has an error of about 2%.
Hybrid Hash: The middle chart shows the uniformity of
the hybrid hash. A hybrid hash uses 128 bits for the Bit-
wise hash. For the top 90%, the hybrid hash received 10,142
keys. For the bottom 90%, the hybrid hash received 9,864
keys. As shown in the chart, there is not much difference
between the jump hash and the hybrid hash.
Two-level Addressing: The right part of the chart shows the
uniformity of two-level addressing. The two-level address-
ing uses 128 bits and performs the hybrid hash twice. The
top 90% with most keys from the two-level addressing re-
ceived 10,285 keys. The bottom 90% received 9,786 keys.
We can see that the uniformity of the two-level addressing is
slightly worse than that of a single hybrid hash because the

error accumulates through an additional hash after the first
hybrid hash. However, adding another level to a single hy-
brid hash to a two-level addressing only increases the errors
by 0.5%, not by 2 times.

5. Conclusions and Future Work

As more and more IoT devices will impact our lives, it is
crucial to manage IoT devices efficiently. To address this,
we proposed a new addressing architecture that solves the
computational overhead problem of jump hash. Specifically,
it enhances the computational overhead issues through an ar-
chitecture, not through a performance enhancement by mod-
ifying the jump hash algorithm. The experiment showed a
30% better performance than that of the jump hash algo-
rithm with a similar level of uniformity. we show an ef-
ficient architecture-level approach for managing billions of
devices.

Beyond effective addressing of billions of devices, IoT
platforms need management-related features. If a certain
node fails after billions of files are distributed to many
nodes, it should be quickly replaced with alternative nodes.
We will extend H-TLA to provide a weighted load balancing
and fail-over features, leveraging the characteristics of the
jump hash algorithm. Considering additions, deletions, and
connections of devices on the fly, IoT platforms need to pre-
serve the status of billions of devices, which requires a huge
computation and memory. If each node has its own status
map for their devices, we can simply find the status of a
specific device through two-level addressing of H-TLA. We
will research an efficient architecture of a distributed map
with H-TLA.

References

[1] M. Aazam and E.-N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” 2014 International Conference
on Future Internet of Things and Cloud, pp.464–470, Aug. 2014.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of things: A survey on enabling technologies, pro-
tocols, and applications,” IEEE Commun. Surv. Tutorials, vol.17,
no.4, pp.2347–2376, 2015.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
things (IoT): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol.29, no.7, pp.1645–1660,
2013.

[4] Internet of things, https://en.wikipedia.org/wiki/Internet of things.
[5] J. Han, H.E,G. Le, and J. Du, “Survey on NoSQL database,” 2011

6th International Conference on Pervasive Computing and Applica-
tions, pp.363–366, Oct. 2011.

[6] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” Proc.
Twenty-ninth annual ACM symposium on Theory of computing -
STOC ’97, pp.654–663, New York, NY, USA, 1997.

[7] R. Khan, S.U. Khan, R. Zaheer, and S. Khan, “Future internet: The
internet of things architecture, possible applications and key chal-
lenges,” 2012 10th International Conference on Frontiers of Infor-
mation Technology, pp.257–260, 2012.

[8] J. Lamping and E. Veach, “A fast, minimal memory, consistent hash
algorithm,” CoRR, abs/1406.2294, 2014.

http://dx.doi.org/10.1109/ficloud.2014.83
http://dx.doi.org/10.1109/comst.2015.2444095
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/icpca.2011.6106531
http://dx.doi.org/10.1145/258533.258660
http://dx.doi.org/10.1109/fit.2012.53


LETTER
1915

[9] P.K. Pearson, “Fast hashing of variable-length text strings,” Com-
mun. ACM, vol.33, no.6, pp.677–680, June 1990.

[10] P. Sethi and S.R. Sarangi, “Internet of things: Architectures, pro-
tocols, and applications,” Journal of Electrical and Computer Engi-
neering, vol.2017, pp.1–25, 2017.

http://dx.doi.org/10.1145/78973.78978
http://dx.doi.org/10.1155/2017/9324035

