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Robust Transferable Subspace Learning for Cross-Corpus Facial
Expression Recognition∗
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SUMMARY In this letter, we propose a novel robust transferable sub-
space learning (RTSL) method for cross-corpus facial expression recog-
nition. In this method, on one hand, we present a novel distance metric
algorithm, which jointly considers the local and global distance distribu-
tion measure, to reduce the cross-corpus mismatch. On the other hand, we
design a label guidance strategy to improve the discriminate ability of sub-
space. Thus, the RTSL is much more robust to the cross-corpus recognition
problem than traditional transfer learning methods. We conduct extensive
experiments on several facial expression corpora to evaluate the recogni-
tion performance of RTSL. The results demonstrate the superiority of the
proposed method over some state-of-the-art methods.
key words: facial expression recognition, subspace learning, transfer
learning, graph Laplacian

1. Introduction

Facial expression recognition has become an active research
topic because of its far-reaching applications in human-
computer interaction, multimedia entertainment, machine
intelligence, medicine and psychology [1]. The main pur-
pose of facial expression recognition is to recognize the
unlabeled facial images into various emotional states, e.g.,
anger, disgust, fear, happiness, sadness, and surprise.

Current facial expression recognition methods can
achieve satisfactory performance under restricted condi-
tions. However, in practice, the training and testing data are
often sampled from different corpora, which are recorded
from different devices or environments. This would lead
to large feature distribution divergence, and suffer a heavy
drop in performance. Thus, it is worthwhile to investigate
the cross-corpus facial expression recognition problem.

To address the above-mentioned challenging problem,
over the past few years, with the development of transfer
learning [2], many methods have been developed. For exam-
ple, in [3], Chu et al. propose a simple yet effective transfer
learning method called selective transfer machine (STM),
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Fig. 1 The diagram of our proposed RTSL method.

STM can simultaneously learn a classifier and re-weight the
training samples that the most relevant to the testing sub-
ject. In [4], Zheng et al. have presented a transductive trans-
fer regularized least-squares regression (TTRLSR) model to
cope with the cross-domain color facial expression recogni-
tion problem. In [5], Yan et al. develop an unsupervised do-
main adaptive dictionary learning (UDADL) method, which
aims to learn a shared dictionary to bridge the source and
target samples. However, most of existing methods only
consider a global distance metric, i.e., MMD, in which the
learned corpus-invariant features may not only draw both
datasets close, but also mix all the data points with differ-
ent classes togethe. Thus, the discriminative ability of the
common subspace is vital for cross-corpus recognition [6].

In this letter, to cope with the cross-corpus facial ex-
pression recognition problem, we propose a novel robust
transferable subspace learning (RTSL) method. Different
from the above-mentioned methods, our method not only
can reduce the feature distribution divergence by utilizing
a novel distance metric, but also can capture the discrim-
inative knowledge of cross-corpus sample. Therefore, our
method can learn a low-dimensional common feature sub-
space for source and target corpora, and it is much more ro-
bust to the cross-corpus recognition problem than traditional
transfer learning methods. Figure 1 shows the diagram of
our approach.

2. Proposed Method

To begin with, we briefly introduce some notations fre-
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quently used in this letter. We denote XS ∈ Rm×NS be the
emotional features of source corpus, and YS = {yS i}NS

i=1 be
the corresponding labels. Similarly, let XT ∈ Rm×NT be the
emotional features of target corpus. NS and NT are the cor-
responding numbers of source and target samples, respec-
tively, and m is the dimension of feature vectors. Then, we
introduce a feature matrix X = [XS , XT ] = {xi}Ni=1 ∈ Rm×N as
the input matrix, where N = NS + NT .

In this work, we devote to address the cross-corpus
facial expression recognition problem. Thus, we expect
that our method can efficiently reduce the feature distri-
bution divergence and obtain robust corpus-invariant fea-
ture representations. To achieve this goal, we first intro-
duce a global distance metric algorithm for source and tar-
get data, in which both marginal MMD [7] and conditional
MMD [8] are considered to measure the feature distribution
divergence, which can be formulated as

min
P

Tr
(
PT X(M0 + MC)XT P

)
+ γ||P||2F (1)

where P is the projection matrix, γ > 0 is a trade-off parame-
ter, M0 and MC =

∑C
c=1 Mc are the marginal and conditional

MMD matrices, respectively. In detail, the marginal MMD
can be computed as

Tr(PT XM0XT P) =

∥∥∥∥∥∥∥∥
1

NS

NS∑
i=1

PT xi− 1
NT

N∑
j=NS+1

PT x j

∥∥∥∥∥∥∥∥
2

(2)

and the conditional MMD can be calculated by

Tr(PT XMC XT P)=
C∑

c=1

∥∥∥∥∥∥∥∥∥
1

Nc
S

∑
xi∈D(c)

S

PT xi− 1
Nc

T

∑
x j∈D(c)

T

PT x j

∥∥∥∥∥∥∥∥∥

2

(3)

where C is the number of classes, D(c)
S denotes the set of

source samples with their true class labels belonging to class
c, and D(c)

T denotes the set of target samples with their
pseudo class labels belonging to class c. Specifically, the
labels of target data are unavailable in training, thus we uti-
lize the target pseudo labels to compute M0.

By using the global distance metric in (1), we can re-
duce the feature distribution divergence between source and
target corpora. However, it does not take into account the
discriminative knowledge and local manifold structures of
sample points, which has been proven very useful for feature
representation [9]. Thus, we present a novel local discrim-
inative distance metric by aligning the geometric structure
with label information, which is formulated as

min
P

Tr
(
PT X(Lw − λLb)XT P

)
= min

P
Tr
(
PT XLXT P

)
(4)

where Lw and Lb are Laplacian matrices of dual intrinsic
graph and total penalty graph for source and target data, re-
spectively, λ > 0 is a trade-off parameter. Mathematically,

Lw = Dw − Ww, Lb = Db − Wb, where Dw and Db are the
diagonal matrices, Ww and Wb are the weight matrices for
the dual intrinsic graph and the total penalty graph, respec-
tively. In this work, we deploy the following two criteria to
construct Ww and Wb:

1) Construct the dual intrinsic weight matrix Ww: For
cross-corpus data, we expect that our method can minimize
the intra-class compactness, meanwhile, it can reduce the
feature divergence between source and target corpora. To
this end, we design a dual intrinsic weight matrix Ww by
considering both intra-corpus and inter-corpus similarities:

• Intra-corpus intrinsic weight matrix WS
w and WT

w :

(WS
w )i j =

{
1, i f i � j, yS i = yS j

0, otherwise
(5)

(WT
w )i j =

{
1, i f i � j, ŷT i = ŷT j

0, otherwise
(6)

where ŷT is the pseudo labels of target data.
• Inter-corpus intrinsic weight matrix WS T

w and WTS
w :

(WS T
w )i j =

{
1, x j ∈Nc

k (xi)or xi ∈Nc
k (x j)

0, otherwise
(7)

(WTS
w ) ji =

{
1, xi ∈Nc

k (x j)or x j ∈Nc
k (xi)

0, otherwise
(8)

where xi and x j are from different datasets, and Nc
k (xi)

indicates the index set of the k1-nearest neighbors of xi

in the same class.

By combining these two kinds of similarity weight matri-
ces, we can construct the dual intrinsic weight matrix Ww as
follows:

Ww =

[
WS WS T

WTS WT

]
(9)

2) Construct the total penalty weight matrix Wb: To
explore more class-discriminative information, we attempt
to maximize the inter-class separability. Thus, we construct
two intra-corpus penalty weight matrices WS

b and WT
b , de-

fined by

(WS
b )i j, (W

T
b )i j =

{
1, x j ∈Pd

k (xi)or xi ∈Pd
k (x j)

0, otherwise
(10)

where Pd
k (xi) indicates the index set of the k2-nearest neigh-

bors of xi in distinct classes. By combining WS
b and WT

b , we
can obtain the total penalty weight matrix Wb as

Wb =

[
WS 0
0 WT

]
. (11)

To further improve the discriminative ability of the learned
low-dimensional common subspace, we implement a source
label guidance strategy, in which a linear regression function
is adopted:

min
P,V

1
2

∥∥∥PT XS − (YS + B � V)
∥∥∥2

F
s.t. V ≥ 0 (12)
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where V is a non-negative label relaxation matrix, B is a
luxury matrix, � indicates a Hadamard product operator of
matrices, and YS is the label matrix of the source samples.
In detail, YS and B are defined as

YS {i, j} =
{

1, i f ySj ∈ the i−th class
0, otherwise

(13)

Bi, j =

{
+1, i f YS {i, j} = 1
−1, i f YS {i, j} = 0

(14)

where i = 1, . . . ,C and j = 1, . . . ,NS .
By combining Eqs. (1), (4) and (12), we can obtain the

objective function of RTSL as

min
P,V

Tr
(
PT X(αM + βL)XT P

)
+ γ||P||2F

+
1
2

∥∥∥PT XS − (YS + B � V)
∥∥∥2

F

s.t. PT P = I,V ≥ 0 (15)

where α > 0 and β > 0 are the trade-off parameters, L =
Lw − λLb, and M = M0 + MC .

To solve the objective function in (15), we present an
iterative optimization algorithm, and Eq. (15) can be refor-
mulated as

L = Tr
(
PT X(αM+βL)XT P

)
+γ||P||2F+Tr

(
φ(I−PT P)

)
+

1
2

∥∥∥PT XS − (YS + B � V)
∥∥∥2

F
(16)

where φ is a Lagrange parameter. Then the problem (16)
can be optimized by an iterative manner, which is given as

1) Update P: Fix V , we can update P by minimizing
the problem (16). By setting the derivative ∂L/∂P = 0, we
can obtain the variable P∗ as

P∗=
(
2XG1XT+2G2+XS XT

S
)−1(XS (YS +B � V)

)
(17)

where G1 = (αM+βL) and G2 = (γ − φ)I.
2) Update V: Fix P, we can update V by minimizing

the following problem

min
V≥0

1
2

∥∥∥PT XS − (YS + B � V)
∥∥∥2

F
(18)

According to Ref. [10], the optimal solution of V∗ can be
rewritten as V∗ = max

{
(PT XS − YS ) � B, 0

}
.

It is worth noting that, at the beginning, some of the
target pseudo labels may be incorrect. Thus, we employ an
iterative manner to update the labels with the progressive
learning of common subspace, which can alternatively im-
prove the labeling quality until convergence. Specially, we
utilize a simple SVM classifier to obtain target pseudo labels
in each iteration. Also, it should be noted that the dimension
of the learned common subspace is equal to the number of
emotion category.

3. Experiments

To evaluate the performance of our method, we con-
duct extensive experiments of cross-corpus facial expres-
sion recognition on four publicly available facial expression

Fig. 2 Examples of facial images with different expressions from (a)
JAFFE, (b) CK+, (c) KDEF and (d) TFEID.

datasets, including JAFFE† [11], CK+†† [12], KDEF††† [13]
and TFEID†††† [14]. Figure 2 shows the examples of these
datasets.

We select six common basic expressions of these
datasets, i.e., Anger, Disgust, Fear, Happiness, Sadness, and
Surprise. Then, we crop and transform these facial images
to the size 60×60 and extract LBP features. Specifically, we
divide each facial image into 9 (3 × 3) regions and use a
2304 (256×9) dimensional LBP feature accordingly. Based
on these datasets, we conduct 12 different settings of exper-
iments for cross-corpus recognition (source → target), i.e.,
J→ C, J→ K, J→ T, C→ J, C→ K, C→ T, K→ J, K→
C, K→ T, T→ J, T→ C, and T→ K, where J, C, K and T
are short for JAFFE, CK+, KDEF and TFEID.

In our experiments, we compare our method with re-
cently related state-of-the-art methods including geodesic
flow kernel (GFK) [15], transfer component analysis
(TCA) [7], joint distribution adaptation (JDA) [8], transfer
joint matching (TJM) [16], discriminative transfer subspace
learning (DTSL) [10], domain invariant and class discrimi-
native feature learning (DICD) [6], and principal component
analysis (PCA). Then, we choose SVM as the baseline clas-
sifier, in which the classifier trained on labeled source data is
adopted to classify the unlabeled target data. For SVM, all
the parameters (i.e., penalty term, bandwidth of RBF kernel
σ) are chosen by a grid-search strategy.

Since the source and target data follow different feature
distributions, we cannot automatically select the optimal
model parameters under the cross-validation strategy [8].
Therefore, we empirically search the parameter space for the
optimal values to evaluate and report the best results of each
method. For the parameters of RTSL, we set the number of
nearest neighbors k1 = 5, k2 = 20, α and γ are tuned from
the parameter set [0.1,1,10], and β and λ are tuned from the
parameter set [0.01,0.1,1]. For all the baseline methods, we
report results in the original paper or the best we can get. For
the PCA, TCA, JDA, TJM, and DICD, the subspace dimen-
sion is set to 100. The subspace dimension of DTSL and
RTSL is set to 6, in which the subspace dimension of these
two algorithms is equal to the number of classes [10]. Fi-
nally, we use the classification accuracy on the testing target
corpus to measure the performance.

Table 1 shows the recognition results of our proposed

†http://www.kasrl.org/jaffe.html
††http://www.pitt.edu/˜emotion/ck-spread.htm
†††http://www.emotionlab.se/kdef/
††††http://bml.ym.edu.tw/tfeid/
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Table 1 Recognition accuracy (%) of different methods under different settings.

Tasks
Compared methods

PCA GFK TCA JDA TJM DTSL DICD RTSL RTSLa RTSLb RTSLc

J → C 39.52 31.90 41.90 43.33 40.48 49.52 46.67 50.48 50.00 48.10 45.71

J → K 41.90 34.76 48.10 51.43 42.38 47.14 50.95 54.29 54.76 50.48 42.38

J → T 20.95 23.33 39.05 39.52 35.71 44.29 41.43 44.76 42.38 41.43 36.67

C → J 33.33 34.43 39.89 42.62 40.98 38.80 44.81 45.36 43.17 42.62 37.70

C → K 46.67 42.85 50.48 50.95 47.62 51.43 58.57 60.48 59.05 56.67 61.43

C → T 34.76 45.71 44.76 43.33 42.38 44.76 47.62 47.62 47.14 46.19 40.48

K → J 39.34 40.98 44.81 45.90 49.18 48.09 46.45 50.27 48.63 49.18 43.16

K → C 52.38 56.67 53.81 55.71 53.33 61.43 61.90 66.19 63.33 62.38 64.76

K → T 40.48 43.33 44.76 46.67 45.71 50.00 49.52 50.47 50.47 47.14 40.00

T → J 22.95 25.13 41.53 40.44 40.98 39.89 42.62 45.36 42.62 44.26 40.98

T → C 40.00 36.67 50.95 52.86 43.81 53.33 51.90 56.67 52.86 53.81 50.48

T → K 40.95 43.81 48.57 48.10 43.33 49.52 50.48 55.24 54.76 54.29 47.62

Average 37.77 38.30 45.72 46.74 43.82 48.18 49.41 52.27 50.76 49.71 45.94

RTSL method and seven baseline methods. From the table,
we can have the following observations. First, among all
the transfer learning algorithms, our RTSL method achieves
the best recognition performance in all cases. This reasons
might be two-fold. On one hand, RTSL utilizes a novel dis-
tance metric algorithm to jointly reduce the distribution di-
vergence, in which the global and local distance measure-
ment are considered together. Specifically, the former aims
to align the global feature distribution of two corpora, and
the latter considers to align the similar source and target
samples. On the other hand, the discriminative information
is considered in our transfer learning framework. Second,
most of transfer learning methods including RTSL achieve
better performance than the traditional PCA algorithm. This
can be attributed to the power of transfer learning. Third, it
is interesting to find that the recognition rates on the two
cases, i.e., C → K and K → C, are much higher that
those on the other cases. The reason might be that the
expression styles are similar on CK+ and KDEF datasets.
Finally, compared with DICD, which also aims to learn a
domain-invariant and class-invariant feature representation,
our RTSL method can significantly achieve higher recogni-
tion accuracies.

To further verify the effectiveness of our method, we
consider three special cases of RTSL, i.e., RTSLa (neglect-
ing the source label guidance), RTSLb (neglecting the lo-
cal distance measurement, β = 0) and RTSLc (neglecting
the global distance measurement, α = 0). Note that since
RTSLa does not consider the source label guidance, fol-
lowing the experimental settings of subspace learning algo-
rithms, the subspace dimension in RTSLa is set to 100, while
as RTSL, the subspace dimension in RTSLb and RTSLc is
6. The results are given in Table 1. From the table, we
can find that the novel global and local distance measure-
ment plays an important role in our model. In particular, the

global distance measurement has the largest influence to our
model. In addition, the source label guidance also improves
the recognition performance of RTSL. These results ver-
ify that RTSL is effective for cross-corpus facial expression
recognition. Moreover, it is surprising to find that, in J→ K
and K→ T, RTSLa achieves the highest recognition perfor-
mance. This indicates that the distance measurement might
be much more important than the source label guidance in
some cases. In C → K, RTSLc performs the best, and in
K → C, RTSLc also outperforms RTSLb. These results in-
dicate that, in some cases, the local discriminative distance
measurement might play a much more effective role than the
global distance measurement.

4. Conclusion

In this letter, we have presented a novel transfer learn-
ing method, called robust transferable subspace learning
(RTSL), to cope with the cross-corpus facial expression
recognition problem. The main contribution of RTSL lies in
that it can effectively reduce the feature distribution diver-
gence, and obtain the robust corpus-invariant feature rep-
resentations for source and target data. Experimental re-
sults on several benchmarks verify that our method can sig-
nificantly outperform some state-of-the-art transfer learning
methods.
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