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PAPER

A Two-Stage Approach for Fine-Grained Visual Recognition via
Confidence Ranking and Fusion

Kangbo SUN†a), Student Member and Jie ZHU†b), Nonmember

SUMMARY Location and feature representation of object’s parts play
key roles in fine-grained visual recognition. To promote the final recogni-
tion accuracy without any bounding boxes/part annotations, many studies
adopt object location networks to propose bounding boxes/part annotations
with only category labels, and then crop the images into partial images to
help the classification network make the final decision. In our work, to pro-
pose more informative partial images and effectively extract discriminative
features from the original and partial images, we propose a two-stage ap-
proach that can fuse the original features and partial features by evaluating
and ranking the information of partial images. Experimental results show
that our proposed approach achieves excellent performance on two bench-
mark datasets, which demonstrates its effectiveness.
key words: fine-grained, object location, attention, bilinear pooling, deep
learning

1. Introduction

Fine-grained visual recognition task is a great challenge for
most deep learning networks. This task is aimed at distin-
guishing subtle differences among various classes of spe-
cific things, such as different birds and different aircraft.
Size, shape, and texture of images play important roles in
the image recognition task. However, the shape and size
are similar among different categories in fine-grained im-
age recognition, which leads to high difficulty in recogni-
tion. Therefore, it is important to distinguish partial textures
in fine-grained image recognition. The bounding box as an
auxiliary label can provide effective foreground information,
which can greatly reduce the difficulty of fine-grained image
classification. However, it is expensive to annotate bound-
ing boxes artificially.

To benefit from bounding boxes without using them,
many methods propose to utilize neural networks to gen-
erate bounding boxes in a weak supervision manner (with
category label only). These methods obey the same manner:
locating object with location networks under weak supervi-
sion and cropping out the regions inside bounding boxes as
auxiliary data to train classification neural networks. There-
fore, these methods can be defined as the two-stage methods
with location process and classification process.

In the location process, Ge et al. [1] utilize the trained
network from the object location task. The trained location
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network can not be optimized by fine-grained image recog-
nition task, which results in the method not being an end-
to-end method. Some methods [2], [3] propose to locate and
classify the object within one end-to-end network with at-
tention mechanism or Region Proposal Network (RPN) [4].
In the classification process, Hu et al. [2] utilize the auxil-
iary partial images to enhance the ability of the classifica-
tion network by a data augmentation way. Zheng et al. [5]
propose to utilize knowledge distillation to force the main
branch to learn the information form the part branch as an
alternative feature fusion option. Yang et al. [3] concate-
nate original feature and partial features together to get final
classification. The two-stage methods similar to [1]–[3], [5]
greatly improve the classification accuracy of fine-grained
visual recognition tasks on related datasets.

In general, different partial images have different in-
formation for classification, and the more information, the
more contribution to the final classification. Therefore, how
to propose partial images with high information and how
to fuse the original and partial features are essential for the
two-stage fine-grained image recognition. In this paper, we
propose the confidence ranking and fusion method to pro-
pose partial images and fuse original feature and partial fea-
tures extracted by our two-stage network, which is shown in
Fig. 1. Our proposed method adopts an attention-based lo-
cation method to generate candidate partial images. To pro-
pose partial images with high information and extract dis-

Fig. 1 The overview of our proposed approach. Backbone: the base-
line based on the InceptionV3 and bilinear pooling, and the two backbones
share same parameters. RPN: Region Proposal Network that proposes the
top N informative partial regions, which includes Confidence Evaluation
Network (CEN) and the location method. CFN: Confidence Fusion Net-
work that fuses the original and the N partial features to make final deci-
sions. N is determined as 4 in this figure.
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criminative features from proposed partial images, we eval-
uate the information of the candidate partial images and se-
lect the most informative partial images, and fuse the orig-
inal and partial features to make final decisions. The pro-
posed approach could effectively extract discriminative in-
formation from these original and partial images.

To verify our approach, we conduct extensive experi-
ments on related fine-grained image datasets. Experimental
results show that our proposed model outperforms the base-
line model with a large margin of 3.2% accuracy and gets a
competitive performance on the CUB-200-2011 [6] dataset
with 89.7% accuracy, and achieves state-of-the-art perfor-
mance on the FGVC-Aircraft [7] dataset with 94.3% accu-
racy.

The rest of this paper is organized as follows. Section 2
introduces related works. Section 3 introduces our approach
in detail. Section 4 provides experiments and results. Fi-
nally, conclusions are drawn in Sect. 5.

2. Related Works

Fine-grained image recognition. Deep learning and con-
volutional neural networks have achieved great success in
image recognition and have replaced traditional manual fea-
ture extraction methods like SIFT [8] and HOG [9]. In
fine-grained image recognition, classic CNN networks such
as VGG [10], ResNet [11], and Inception [12] have also
achieved competitive performance, but the recognition ca-
pabilities of these networks are still far from human beings.
To address this problem, researches on fine-grained image
recognition are mainly divided into two directions. One di-
rection is to design a better network to extract more discrim-
inative features, and the other direction is to provide the net-
work with more discriminative images by using manually
labeled bounding boxes to reduce the difficulty of recogni-
tion.

To design a better CNN extractor, Lin et al. [13] first
adopt bilinear pooling in fine-grained visual recognition
and achieve remarkable improvements. Many works about
bilinear pooling focus on simplifying bilinear operations
to reduce computational costs like [14], [15] or designing
more complex bilinear networks to improve performance
like [16]. In our work, we use the bilinear pooling to fuse
the attention features and the CNN features to generate more
discriminative features.

Bounding boxes can promote the performance of
CNNs by a large margin, while it is expensive to get the
manually labeled data. Many works [1]–[3] have been done
to produce bounding boxes by neural networks in weak su-
pervision manner. Ge et al. [1] utilize Mask-RCNN [17] net-
work pre-trained by object location task to generate bound-
ing boxes and partial images, which provide the classifica-
tion network with more discriminative features. Hu et al. [2]
propose to utilize attention maps to locate the object, and
re-train the network in a data augmentation way. Zheng et
al. [5] propose to zoom in the attention regions and utilize
knowledge distillation to force the main branch to learn the

information form the part branch as an alternative feature
fusion option. Yang et al. [3] evaluate the region of preset
anchors to locate object, and select the most possible partial
images to train the network with original image together. In
our work, we utilize the attention maps to generate bounding
boxes as auxiliary data in one end-to-end network. Our pro-
posed method does not need to preset anchors to locate the
object parts and could extract features from the parts more
effectively.
Object Location in weak supervision manner. Object lo-
cation networks such as Mask-RCNN [17], SSD [18] and
YOLO [19] have achieved impressive performance in object
location. However, the large number of bounding boxes/part
annotations burden networks with limited budgets. Weakly
supervised methods aim to train networks with only image-
level labels, which can alleviate this problem. Jie et al. [20]
propose a self-taught learning network by selecting some
high-response proposals and fine-tuning the network with
these proposals. Diba et al. [21] propose to produce region
proposals by using the attention maps. In our work, we ap-
ply the 1*1 convolution layer to generate attention maps and
locate the high-response regions as the part annotations.

3. Approach

In this section, we introduce our method in detail. We first
introduce the entire structure of our proposed model, and
then explain in detail its three major components, includ-
ing the baseline CNN model, our Region Proposal Network
(RPN), and our Confidence Fusion Network (CFN).

3.1 Approach Overview

Our proposed model has three main components which are
shown in Fig. 1. Our backbone network is built based on
InceptionV3. Inspired by the work by [2], we extract the
feature out of layer Mix6e and utilize the 1*1 convolution
layer to generate attention maps. We adopt the bilinear pool-
ing to fuse the attention features and the CNN features to
generate more discriminative features. To generate partial
images with high information, we design the RPN which in-
cludes Confidence Evaluation Network (CEN) and location
method that work in pairs. The CEN evaluates the confi-
dence score of each channel in the attention maps and sorts
those channels by the score. Then, the location method
utilizes Non-Maximum Suppression (NMS) method to se-
lect the top N most informative attention maps for cropping
partial images. To utilize the relationship of confidence be-
tween features, we designed a special classification network
named Confidence Fusion Network (CFN) to fuse the origi-
nal feature and partial features. The details of our backbone
model, RPN and CFN will be shown in Sect. 3.2, Sect. 3.3
and Sect. 3.4, respectively.

3.2 Bilinear Pooling in the Baseline Model

In our baseline model shown in the top half of Fig. 2, we uti-
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Fig. 2 Our backbone model and Region Proposal Network (RPN). InceptionV3: the CNN feature
extractor, which generates feature maps out from Mix6e layer in InceptionV3. BP: bilinear pooling
method detailed in Sect. 3.2. 1*1 Conv layer: to generate the attention maps from the feature produced
by the InceptionV3 model. Normalization: to normalize the bilinear feature with sqrt and L2 normal-
ization. Attention Location: our location method that can generate bounding boxes from the attention
maps. Confidence Evaluation Network (CEN): to evaluate the confidence score for selecting the top N
informative regions. NMS: Non-Maximum Suppression that can select the bounding boxes with less
overlap.

lize bilinear pooling method to further enhance the feature
by the InceptionV3 network. It is assumed that F ∈ RS×K1

is the feature maps obtained from the layer Mix6e of the In-
ceptionV3 network, and the attention maps A ∈ RS×K2 is
the attention maps, where K1 and K2 mean the number of
channels, and S = H ∗W is the spatial size of feature maps.
Bilinear pooling is defined as:

B = AT F (1)

where B ∈ RK2×K1 is the output of bilinear pooling layer. For
each element Bi, j in B, there are:

Bi, j = Ai
T F j = (ai)

T x j =

S∑

k=1

ak,i xk, j (2)

where Bi, j is the product of spatial location of the origi-
nal feature in channel i of A and channel j of F, ai =

(a1,i, a2,i, . . . , aS ,i)T and x j = (x1, j, x2, j, . . . , xS , j)T mean the
feature on channel i and j of A and F respectively, and x j,i

means the feature on the position j of the channel i.

3.3 Region Proposal Network

To propose partial regions from the original images and the
attention maps, we build Region Proposal Network (RPN)

shown in the bottom of Fig. 2. The RPN first locates the
partial regions with each channel of attention maps by the
method introduced in Hu et al. [2]. Then, the appropriate
partial regions will be chosen to crop partial images accord-
ing to certain rules. This is because not all partial images can
benefit the final classification and it is impossible to train all
partial images generated by the attention maps. We assume
that the more information a partial image has, the greater
its contribution to the final classification. And, the contri-
bution is called confidence score in this paper. Therefore, to
achieve similar results as training all partial images by using
only part of the partial images, we select the top N most in-
formative partial images from all the images. To determine
the top N informative partial images, we build the Confi-
dence Evaluation Network (CEN) and the network takes the
attention maps as input and estimates confidence score for
each channel of the attention maps. To train CEN, the confi-
dence labels for each channel are necessary for supervision.
In this paper, we can produce N confidence labels by deter-
mining the classification cross-entropy of the top N confi-
dence partial images. However, the number (M) of labels
may not match the number (N, N ≤ M) of partial images
used. To address this issue, we utilize the learning to rank
method introduced by Yang et al. [3] to train the CEN.

Assuming that the confidence score evaluated by the
CEN is given as C = (C1,C2, . . . ,CN , . . . ,CM), C1 > C2 >
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· · · > CN > · · · > CM , the top N informative partial im-
ages generated by the region proposal network are given
as P = (P1, P2, . . . , PN), and the corresponding probabil-
ity evaluated by the classification network is given as Pp =

(P1,P2, . . . ,PN). However, it is not sufficient to supervise
C (length M) with probability Pp (length N). To address
this issue, we utilize the pairwise rank loss to train the CEN,
which is shown in Eq. (3) and will be detailed in Sect. 3.5.

Lrank( f ,C,Pp) =
∑

(i, j),Pi<P j

f (Ci,C j) (3)

where f is the hinge function that can penalize cases where
the ordering of sequences C and Pp is inconsistent.

3.4 Confidence Fusion Network

In this section, we introduce the confidence fusion network
in our model. It is given that the original feature produced by
bilinear pooling is Bo and the corresponding N partial fea-
tures are Bp1, Bp2, . . . , BpN . We first rank the partial features
in confidence score order, and form these features as a se-
quence (Bo, Bp1, Bp2, . . . , BpN). We believe that these partial
images sorted in confidence order are context-sensitive, so
we use bidirectional LSTM for joint classification. To speed
up the training process, we first use the Batch Normalization
(BN) layer to normalize the features before the bidirectional
LSTM. The proposed confidence fusion network is shown
in Fig. 3.

3.5 Loss Function and Optimization

In this subsection, we introduce the loss function in detail.
To train our model, we use the center loss to constrain the
attention maps, the ranking loss to propose partial images
and the classification loss to classify images.

Center loss. The center loss is proposed by Wen et
al. [22] to solve face recognition. To ensure the RPN could
propose different partial regions, different channels in the
attention maps should have different high response parts. To
guarantee that, we adopt center loss in our work to constrain
the feature produced by bilinear pooling.

Fig. 3 Confidence Fusion Network (CFN) consists of a BN layer, a bidi-
rectional LSTM and an FC layer, which makes final decisions based on the
sequence features. N is determined as 3 in this figure.

It is assumed that B ∈ RM×K is the feature produced by
bilinear pooling, and M is the number of channels in atten-
tion maps, K is the number of channels in CNN feature. For
Bi ∈ R1×K , it is assumed that the center of Bi is ci. For each
category, the center loss is determined as Eq. (4).

Lcenter =

M∑

i=1

||Bi − ci||22 (4)

ci ← ci + λ(Bi − ci) (5)

where ci is initialized as zeros, and updated by moving av-
erage determined in Eq. (5) for each category.

Ranking loss. The confidence score is given as C =
(C1,C2, . . . ,CN , . . . ,CM) in the sorted order, and the par-
tial features are given as P = (P1, P2, . . . , PN , . . . , PM).
To further ensure that the top N informative partial im-
ages can be better proposed, we utilize the top R (R ≥ N)
informative partial features to train the ranking loss. There-
fore, assuming that the selected partial features are P =
(P1, P2, . . . , PN , . . . , PR), and their confidence score and
probability to the real label are as C = (C1,C2, . . . ,CN , . . . ,
CR) and Pp = (P1,P2, . . . ,PN , . . . ,PR). To train the confi-
dence evaluation network, we determine our ranking loss as
Eq. (6).

Lrank(C,Pp) =
∑

(i, j),Pi<P j

max(0,Ci −C j) (6)

The ranking loss function can encourage that C and Pp are
in the same order.

Classification loss. We use the category cross-entropy
function to train networks to make the final decisions. The
decision loss is determined as follows:

Lcls1 = − log(F (X, P1, P2, . . . , PN)) (7)

where F is our approach which outputs the final classifica-
tion decision.

To teach the backbone model to extract features from
the original and partial images, we define the loss function
as follows:

Lcls2 = − log(Co(B(X))) (8)

Lcls3 = − 1
N

N∑

i=1

log(Cp(B(Pi))) (9)

where B means the backbone model which extract bilinear
features from the original and partial images, and Co, Cp

mean two different single-layer FCs used to classify original
and partial images, respectively.

The final classification loss is determined as follows:

Lcls = Lcls1 +Lcls2 +Lcls3 (10)

Training loss and algorithm. The final loss in our
experiments is determined as Eq. (11):

L f inal = Lcls + αLrank + βLcenter (11)
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Algorithm 1 The training algorithm
Input: original images X, training epochs E, and M,N,R, λ, α, β
Output: predict probability P

while the trained epochs < E do
1. Get the original image X and the category label Y
2. Generate feature maps Fo, attention maps Ao, bilinear features

Bo, and predict probability Po of original image
3. Locate the top R informative partial images

P = P1, P2, . . . , PN , . . . , PR

4. Generate bilinear features Bp, and predict probability Pp

of partial images P
5. Fuse Bo and Bp[1 : N] with CFN, and generate

final predict probability P
6. Calculate loss function Lcls , Lrank and Lcenter

7. Calculate gradient with BP, and update the network with SGD
end while

Table 1 Details of datasets.

Dataset Categories Training samples Testing samples

CUB-200-2011 200 5994 5794
FGVC-Aircraft 100 6667 3333

where α = 1 and β = 3 in our experiments. The final training
algorithm is shown in Alg. 1.

4. Experiments

In this section, we introduce our experiments in detail, in-
cluding datasets used, implement details, the performance
of our approach. Finally, we visualize the proposed part lo-
cations of the object by RPN.

4.1 Datasets

We evaluate our proposed model on two benchmark datasets
for fine-grained visual recognition: the CUB-200-2011 [6],
FGVC-Aircraft [7]. Table 1 shows the details of these
datasets, including the number of categories, the number of
samples in the standard training/testing splits. In our ex-
periments, we train our models in a weak supervision man-
ner, which means that no bounding box or part annotation is
used.

4.2 Implement Details

The input images are resized to 512 × 512 and randomly
cropped into 448 × 448. Besides, we also use random rota-
tion and random horizontal flip for data augmentation. The
partial images proposed by RPN are resized to 224×224. We
train all models using Stochastic Gradient Descent (SGD)
optimizer with momentum of 0.9, weight decay of 1e-5, and
the batch size is set to 4 on one GTX 1080Ti GPU. The ini-
tial learning rate is set to 0.001, with exponential decay of
0.9 after every 2 epochs.

Backbone network. We extract the out feature of layer
Mix6e from InceptionV3 model and utilize the 1*1 convo-
lution layer to generate attention maps, and finally use the
bilinear pooling to generate bilinear features. The number

Table 2 Ablation experiments on NMS.

Method Accuracy (%)

No NMS 87.6
NMS 89.4

Table 3 Ablation experiments on numbers of attention maps M.

Method Acc (%)

M = 16 87.7
M = 32 89.4
M = 64 89.4

Table 4 Ablation experiments on numbers of partial images.

(N,R) Acc (%) (N,R) Acc (%)

(0, 4) 84.7 (1, 4) 86.4
(2, 4) 88.1 (3, 4) 88.9
(4, 4) 89.3 (4, 6) 89.4
(6, 6) 89.4 (6, 8) 89.4

of attention maps is determined as 32. The InceptionV3
network is pre-trained on ImageNet dataset. We use the
signed square root and L2 normalization after bilinear pool-
ing, which is widely applied in [13], [14], [16].

Region proposal network. We use non-maximum
suppression (NMS) to select the top N most informative
partial regions. To further ensure that the top N informa-
tive partial images can be better proposed, we utilize the top
R (R ≥ N) informative partial features to train the ranking
loss. We first calculate all the bounding boxes and rank them
with confidence score. We select those boxes one by one,
and remove the boxes whose IoU with the selected boxes is
greater than 0.5, and finally get bounding boxes with high
confidence score and less overlapping regions.

Without special instructions, N is set to 4, R is set to
4, M is set to 32, and λ, α and β are set to 0.05, 1 and 3,
respectively.

4.3 Evaluation and Analysis on the CUB-200-2011

To further understand our proposed model, we conduct ex-
tensive experiments on the CUB-200-2011 dataset, includ-
ing ablation experiments on the sub-modules and the final
performance of the proposed approach.

Ablation experiments on RPN. In our region pro-
posal network, we train attention maps with center loss, and
then we select the N most informative parts with NMS from
M channels of attention maps. Table 2 shows that NMS
method in the selecting process improves the accuracy with
1.8%, which means that NMS effectively enhances the rich-
ness of information. Table 3 shows that M = 32 is an ap-
propriate size and continuing to increase M over 32 will
not bring a significant performance gain, which is consis-
tent with the work of Hu et al. [2].

Table 4 shows the effect of N and R on performance,
and N = 0 means that the network does not utilize the partial
images to make decisions, and the corresponding accuracy
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of 84.7% is the classification accuracy of original images.
Under the condition of R = 4, we study the influence of
each partial image of the top N informative partial images
respectively. The condition R = 4 is to ensure that CEN
can better fit the true confidence order. The exponential re-
sults show that the top N (N = 4) informative partial images
with confidence order improve the classification accuracy
with 1.7%, 1.7%, 0.8% and 0.4%, respectively. In addition,
the performance with (N,R) = (4, 6) outperforms the per-
formance with (N,R) = (4, 4) with 0.1%, and continuing to
increase N and R will not bring a significant performance
gain.

Table 5 shows the impact of center loss on the final
recognition accuracy. Due to the constraints of center loss,
the attention maps can better focus on the parts of object,
and the final classification accuracy is improved by 0.7%.
However, excessive use of the center loss training network
will cause abnormal location of the parts. Figure 4 shows the
degradation phenomenon in learning the partial regions pro-
posed by RPN on the CUB-200-2011 training dataset. As
the epoch of training process increases, the average accuracy
of partial images deteriorates, which means that attention
maps focus on inappropriate regions. The degradation phe-
nomenon is detrimental to the decision-making of CFN in
the later epochs. To overcome the degradation phenomenon,
we utilize an exponential decay of 0.1 after every 20 epochs
for β in our work and set the initial β to 3. With the decay
strategy, our proposed model achieves a competitive accu-
racy of 89.7% on the CUB-200-2011 testing dataset.

Ablation experiments on CFN. In our classification
process, we first rank the partial features by confidence
score, and then utilize the CFN to make final decisions. To
demonstrate the effectiveness of our proposed CFN, we use
the fully connected layers and LSTM to replace the bidirec-

Table 5 Ablation experiments on center loss.

Method Accuracy (%)

β = 0 88.7
β = 3 89.4
β decay 89.7

Fig. 4 The degradation phenomenon in learning the partial regions
proposed by RPN on the CUB-200-2011 training dataset.

tional LSTM in CFN, respectively. The fully connected lay-
ers consist of two layers of FC with a hidden size of 2048,
and a dropout layer [23] is included between the two lay-
ers of FC. The hidden state size of LSTM is 1024, which
is twice that of Bi-LSTM. Table 6 shows that the bidirec-
tional LSTM can better fuse the original feature and par-
tial features, and the FCs even reduce accuracy compared
with the baseline model. However, the FCs still outperforms
the (N,R) = (0, 4) conditions with a 1.0% accuracy. It is
worth noting that if the partial features in confidence order
are shuffled, the accuracy will be reduced by 0.9%.

Table 7 shows the comparison between our proposed
method and other state-of-the-art methods on the CUB-200-
2011 testing dataset. The InceptionV3 with BP is a strong
baseline, which achieves 86.5% accuracy. While our pro-
posed approach outperforms it with a large margin of 3.2%
accuracy. Compared to NTS-net [3] which uses the pre-
set anchors to produce partial images, we achieve a 2.2%
improvement. Our proposed approach achieves a competi-
tive accuracy compared with state-of-the-art methods on the
CUB-200-2011 dataset.

4.4 Evaluation on the FGVC-Aircraft Dataset

Table 8 shows the comparison between our proposed
method and other state-of-the-art methods on FGVC-
Aircraft testing dataset. Compared to NTS-net [3] which
uses the preset anchors to produce partial images, we
achieve a 2.9% improvement. Compared to WSDAN [2]
which also uses InceptionV3 with BP as CNN extractor,
we achieve a 1.3% improvement. Our proposed approach

Table 6 Ablation experiments on fusion methods.

Method Accuracy (%)

Our baseline 86.5
BN + FCs 85.7

BN + LSTM 87.9
BN + Bi-LSTM 89.4

BN + Bi-LSTM (shuffle order) 88.5

Table 7 Comparison with state-of-the-art methods on the
CUB-200-2011 testing dataset.

Network Backbone Accuracy (%)

BCNN [13] VGGNets 84.1
STN [24] InceptionV3 84.1

LRBP [15] VGG-16 84.2
RA-CNN [25] VGG-19 85.3
MA-CNN [26] VGG-19 86.5

HBP [16] VGG-16 87.1
DFL-CNN [27] ResNet-50 87.4

NTS-Net [3] ResNet-50 87.5
TASN [5] ResNet-50 87.9

WSDAN [2] InceptionV3 89.4
Ge et al. [1] InceptionV3 90.4

Our baseline InceptionV3 86.5
Ours (β = 3) InceptionV3 89.4

Ours (β decay) InceptionV3 89.7
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Fig. 5 The visualization of the proposed partial regions by our model. The first column shows the
original images from the CUB-200-2011 testing dataset. The second column shows the original images
covered by the averaged attention map. The third column shows the heat maps. The 4-7th columns
show the top four informative attention maps and the corresponding partial regions. The 8th column
shows the all location of partial images in the original images.

Table 8 Comparison with state-of-the-art methods on FGVC-Aircraft
testing dataset.

Network Backbone Accuracy (%)

BCNN [13] VGGNets 86.6
RA-CNN [25] VGG-19 88.4
MA-CNN [26] VGG-19 89.9

HBP [16] VGG-16 90.3
NTS-Net [3] ResNet-50 91.4

DFL-CNN [27] ResNet-50 92.0
WSDAN [2] InceptionV3 93.0

Ours (β = 3) InceptionV3 94.0
Ours (β decay) InceptionV3 94.3

achieves state-of-the-art performance with 94.3% compared
with previous methods on FGVC-Aircraft dataset.

4.5 Visualization

To further understand the partial regions proposed by our
method, we visualize the average attention maps, the heat
maps, and the proposed partial regions in Fig. 5. Attention
maps and heat maps in the 2–3rd columns prove that atten-
tion maps could reveal the location of object. We use red,
green, blue, and yellow to mark the location of the top four

informative partial regions in the 4–7th columns. It is shown
that the most informative region may be the head of birds
in the CUB-200-2011 dataset in Fig. 5, and our approach
could locate the most discriminative region and other high-
information regions.

5. Conclusion

In this paper, we propose a two-stage approach for fine-
grained visual recognition. Our proposed approach could lo-
cate and generate the most discriminative partial region and
other high-information partial regions and fuse the original
feature and partial features. We conduct our approach on
extensive datasets, and the approach significantly improves
the final accuracy with a large margin and achieves state-of-
the-art performance accuracy on the FGVC-Aircraft dataset
and a competitive accuracy on the CUB-200-2011 dataset.
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