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PAPER

Joint Multi-Patch and Multi-Task CNNs for Robust Face
Recognition

Yanfei LIU†, Junhua CHEN††a), Nonmembers, and Yu QIU†††, Member

SUMMARY In this paper, we present a joint multi-patch and multi-
task convolutional neural networks (JMM-CNNs) framework to learn more
descriptive and robust face representation for face recognition. In the pro-
posed JMM-CNNs, a set of multi-patch CNNs and a feature fusion net-
work are constructed to learn and fuse global and local facial features, then
a multi-task learning algorithm, including face recognition task and pose
estimation task, is operated on the fused feature to obtain a pose-invariant
face representation for the face recognition task. To further enhance the
pose insensitiveness of the learned face representation, we also introduce
a similarity regularization term on features of the two tasks to propose a
regularization loss. Moreover, a simple but effective patch sampling strat-
egy is applied to make the JMM-CNNs have an end-to-end network archi-
tecture. Experiments on Multi-PIE dataset demonstrate the effectiveness of
the proposed method, and we achieve a competitive performance compared
with state-of-the-art methods on Labeled Face in the Wild (LFW), YouTube
Faces (YTF) and MegaFace Challenge.
key words: CNN, multi-task learning, face representation learning, face
recognition

1. Introduction

As the development of deep learning methods and accu-
mulation of available training data of facial images, un-
constrained face recognition, which has extensive applica-
tion prospect in the field of security, authentication, and
human-computer interaction, etc., has achieved remarkable
results in recent years. Accurate face recognition depends
on good face representations, which should be discrimi-
native to the inter-person variations but retains robust to
intra-person ones. Conventional face representation learn-
ing methods are usually based on artificial feature descrip-
tors, such as histogram of oriented gradient (HoG) [1] and
Local Binary Pattern (LBP) [2]–[4] etc. However, the repre-
sentation composed by handcrafted feature descriptors is too
shallow to distinguish the complex nonlinear facial appear-
ance variances. Recently, deep learning based face recog-
nition algorithms such as deep belief network (DBN) [5],
stacked auto-encoder (SA) [6], [7] and convolutional neu-
ral networks (CNN) [8]–[13], etc. have drawn a lot of atten-
tion due to its superior performance on face-related tasks.
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Since deep model has deep architecture and powerful learn-
ing ability, it has achieved impressive performance in face
representation learning and face recognition.

Although the deep learning based face representations
have enabled great breakthrough in face recognition, there
are still great challenges for unconstrained face recognition
due to the existence of intra-person variations such as large
pose variation, illumination variance, expression difference,
and occlusion etc. in actual application environments. Par-
ticularly, pose variation is considered as the most challeng-
ing one among other non-identity variations, which will lead
to severe decline on performance of face recognition.

To address the pose variation problem, previous works
have proposed to simultaneously learn face recognition task
and other face related tasks (such as facial attribute pre-
diction [14], pose estimation [15], and face image synthe-
sis [16], etc.) with multi-task learning. There are also some
literatures that adopt multi-patch CNNs to obtain robust face
representation by local feature fusion [8], [9], [17], [18]. It
is intuitively that local features are not only important to
face recognition task but also or even more important to
other tasks like pose estimation. For example, in the cir-
cumstance of large pose variation, one of the eyes or half
of the nose will be very different with that in the frontal
face. That is to say, local features fusion is able to en-
hance the multi-task learning of face recognition and other
tasks, and the enhanced other tasks can potentially fur-
ther promote the performance of face recognition task by
multi-task learning. However, to the best of our knowl-
edge, no literature incorporates local feature fusion with
multi-task learning together for pose-invariant face recog-
nition. To this end, we combine multi-patch CNNs with
multi-task learning (face recognition task and pose estima-
tion task) in one framework and propose joint multi-patch
and multi-task convolutional neural networks (JMM-CNNs)
to learn more robust pose-invariant face representation for
face recognition, as shown in Fig. 1. Under this framework,
the global and local features are extracted by a set of multi-
patch CNNs and then fused as a shared feature. Two fully
connected layers are connected to the shared feature to per-
form classification of each task. Extensive experiments on
one constrained face datasets: MultiPIE [19] and three un-
constrained datasets: Labeled Faces in the Wild (LFW) [20],
YouTube Faces (YTF) [21] and MegaFace Challenge [22],
indicate that superior performance is achieved with the pro-
posed JMM-CNNs framework.

To further enhance the insensitiveness of the extracted
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Fig. 1 Flowchart of the proposed JMM-CNNs framework. JMM-CNNs is essentially composed of
three steps: global and local feature extracting using a set of CNNs, feature fusion by concatenating and
a fully connected layer, and multi-task learning by fully connected layers and softmax plus regularization
loss. The representations extracted from the last fully connected layer of the face recognition task, i.e.
identity sensitive features, are used as the final feature for face recognition.

identity feature to pose variation, we introduce a similarity
regularization term on features of the two tasks to form a
regularized joint loss. The loss makes features sensitive to
face recognition task be insensitive to pose estimation task
and the features sensitive to pose variation task be insensi-
tive to face recognition task.

For multi-patch CNNs based face recognition, the im-
age patch sampling strategy will affect the performance of
face recognition. Different from traditional methods that ei-
ther randomly cropped patches [9] or uniformly sample a
small number of patches [17] with the help of 3D model,
we also uniformly crop the face image into a small number
of image patches only depending on locations of the sparse
facial landmarks for effectiveness of the method. There
are two reasons why we adopt this patch sampling strat-
egy. For one reason, sparse landmarks is more reliable than
dense landmarks. Moreover, [17] has verified that sampling
a small number of image patches uniformly in the semantic
meaning can even outperform DeepID2 [9] which randomly
cropped a large number of patches (25 patches). For an-
other reason, it makes us achieve an end-to-end architecture.
Existing works related to multiple patches usually sample
patches separately and then take multiple patches as inputs
of different network branches, because either there are so
many patches need to be cropped or the patches is sampled
with the help of other model. In contrast, the proposed patch
sampling strategy is easy to implement and can be embed-
ded in the whole framework as a layer of the network. Using
this patch sampling strategy, the proposed framework has an
end-to-end fashion that takes a holistic image with a set of
facial landmarks as input and samples local patches with the
patch sample block, then sends them to different network
branches.

The main contributions can be concluded as follows:
(1) We propose a joint multi-patch and multi-task convo-
lutional neural networks (JMM-CNNs) framework to learn
informative and pose-invariant facial feature representation
by local facial information fusing and multi-task learning.
(2) We introduce a similarity regularization term on features
of the two tasks to further enhance the insensitiveness to
pose variation of the extracted feature. (3) A simple but

effective patch sampling strategy is used to make the pro-
posed JMM-CNNs have an end-to-end architecture.

2. Related Work

2.1 Face Representation Learning

Existing face image representation learning methods can
be divided into two categories: artificial feature learning
methods and deep learning facial feature learning methods.
The face representation learning methods before 2013 were
mainly artificial descriptors or learning-based local descrip-
tors. Therefore, the corresponding pipeline of face recog-
nition at that time usually included artificial descriptor or
learning-based local descriptor and distance metric learning.
Artificial descriptors consist of scale-invariant feature trans-
form (SIFT) [23], LBP and HoG, etc. These descriptors can
be further improved and combined to obtain better perfor-
mance. For example, Zhang etc. fused Gabor and LBP fea-
ture by extracting LBP feature on Gabor amplitude image
and obtain facial feature with excellent illumination robust-
ness [24]. Learning-based local descriptor learns semantic
representation using artificial descriptor. The attribute and
similarity classifier [25] proposed by Neeraj Kumar and the
Tom-vs-Peter classifier [26] proposed by Thomas Berg are
typical learning-based local descriptors.

In recent years, face representation learning methods
based on deep learning have gradually become the research
hotspot. Compared with artificial feature extraction meth-
ods, deep learning based methods can obtain more effec-
tive feature by hierarchical nonlinear mapping due to its
deep architecture and powerful learning ability. The typi-
cal deep learning based facial feature extraction methods are
DeepFace [13] proposed by Facebook, DeepID series [8]–
[11], and FaceNet [12] proposed by Google. DeepFace
adopted 3D method for face alignment and Siamese network
architecture consisting of 2 normal convolutional layers, 3
local convolutional layers without weight sharing and 2 fully
connected layers for facial feature extraction. DeepID ex-
tracted facial feature using the improved structure of CNN,
which enhanced feature description ability by fusing the
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outputs of convolutional layer and its previous pooling layer.
FaceNet mainly used a multi-branch local network topology
named as GoogLeNet, in which the inception model [27]
simultaneously combines multi-scale features and signifi-
cantly reduces the number of training parameters by 1*1
convolutional kernel. FaceNet reached the best average clas-
sification accuracy result of 99.63% on LFW dataset, which
mainly declared the termination of eight years performance
competition on LFW dataset.

2.2 Multi-Patch CNN Based Face Recognition

Most of face recognition methods extract the global face
representation from the holistic face image, which tend to
cause recognition error in local variation conditions. To
handle this problem, strategies that fuse local features using
multiple CNNs were proposed. For example, DeepID [8]
extracted facial representations from RGB image, gray-level
image and gradient map and fused them in score level.
DeepID2 [9] proposed to extract deep features from 25 im-
age patches cropped with various scales and positions. [17]
used a set of CNNs to extract a multimodal deep face rep-
resentation by fusing features extracted from holistic im-
age, 3D pose normalized holistic image, and image patches.
These works verified that an ensemble of multiple networks
corresponding to different image patches can improve the
performance of face recognition.

2.3 Multi-Task Learning for Face Recognition

Multi-task learning (MTL) has been widely studied in com-
puter vision and machine learning [28]–[30]. We focus
our review on multi-task learning for facial feature extrac-
tion and face related tasks. [31] proposed a MTL network
named as HyperFace for face detection landmarks localiza-
tion, pose and gender estimation by fusing the intermediate
layers of CNN for improved feature extraction. An all-in-
one CNN framework [32] was proposed to realize more face
related tasks including face detection, face alignment, pose
estimation, gender recognition, smile detection, age estima-
tion and face recognition simultaneously. Xi Yin et al. [15]
proposed a multi-task CNN with pose estimation, illumi-
nation, and expression as the side task of the main task
of face recognition. The proposed method falls under the
multi-patch CNN method and the multi-task learning ap-
proach with CNNs for face recognition, but with several
differences compared with existing methods. First, to the
best of our knowledge, we are the first to combine multi-
patch CNNs and multi-task learning into a uniform frame-
work for facial feature extraction. Experiment results ver-
ify the effectiveness of the proposed combination method of
multi-patch and multi-mask CNNs. Furthermore, different
from existing multi-task CNN based methods, a similarity
regularization term is introduced in loss function to further
enhance pose robustness of the extracted features. Addi-
tionally, different from the patch sampling strategies of ex-
isting multi-patch CNN methods, we simply sample patches

depending on sparse facial landmarks, which makes the pro-
posed model have an end-to-end architecture.

3. The Proposed Method

In this section, we provide a detailed overview of the pro-
posed face recognition method based on JMM-CNNs, in-
cluding architecture of JMM-CNNs and its formulation,
regularized loss function, patch sampling strategy, network
training procedure and face verification and identification
pipeline.

3.1 JMM-CNNs

As illustrated in Fig. 1, the proposed JMM-CNNs consist
of three parts: feature learning from the holistic image and
the local patches sampled from the aligned image using a
set of CNNs, feature fusion by a fully-connected layer, and
multi-task learning of face recognition and pose estimation
by two additional fully connected layers for each task re-
spectively. To further enhance pose insensitiveness of the
extracted identity feature, a regularization loss is added in
softmax loss of the multi-task learning to constrain both
tasks in feature space, which is detailed in Sect. 3.2. The
proposed JMM-CNNs can also be considered as a two-stage
facial feature extraction architecture. At the first stage, a set
of CNNs are used to extract global feature and local features
and these features are fused into a shared facial feature by
the feature fusion subnetwork. And at the second stage, two
fully connected networks are followed by the feature fusion
subnetwork to refine the feature to learn task-specific fea-
tures for face recognition and pose estimation, respectively.

We select two typical networks as the CNN for global
and local feature learning: a modified AlexNet [33] and
ResNet-18 [34]. The architecture of the modified AlexNet
is shown in Fig. 2. The main modification of AlexNet is that
Batch Normalization [35] is applied after each convolutional
layer to accelerate the training process and Parametric Recti-
fied Linear Units (PReLUs) [36] nonlinearity is used as the
activation function for hidden neurons in all convolutional
layers.

We assume a training dataset D with N face images
and their labels, denoted as D = {(Ii, y

d
i , y

p
i )}Ni=1, where Ii is

the ith face image, yd
i and yp

i are the identity label and the
pose label of the ith face image respectively. Let I, yd and
yp represent set for Ii, yd

i , yp
i respectively, i.e. I = {Ii}Ni=1,

Fig. 2 The modified AlexNet architecture for global and local feature
learning. Conv denotes convolutional layer, Batch norm denotes Batch
Normalization layer, and FC denotes fully connected layer. Then through
the final fully connected layer the output embedding of network is fed to
feature fusion subnetwork.
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yd = {yd
i }Ni=1, and yp = {yp

i }Ni=1. For each input image
Ii, we denote the feature vector extracted by each CNN as
x j = conv(Ii, θc), j ∈ (1, 2, . . .M), where M is the number
of CNNs (namely the number of image patches including
the holistic image), conv(·) represents the feature extraction
function defined in CNN, and θc denotes the parameter to be
learned of each CNN. Then the extracted features are fused
by concatenating and a fully connected layer, which can be
formulated as

fs(x) = WT
f x + b f , (1)

where x = [x1, x2, . . . , xM] denotes the concatenated feature,
and Wf and b f represent the weight matrices and bias of the
fully connected layer for feature fusion respectively. The
fs(x) is a shared feature for face recognition and pose esti-
mation task.

Assume xd and xp be the output embedding of network
for face recognition task and pose estimation task respec-
tively, then they can be formulated as

xd = Fd( fs(x), θd)

xp = Fp( fs(x), θp), (2)

where Fd(·, ·) denotes the non-linear mapping function of
the shared feature fs(x) and parameter θd, which maps from
the shared feature fs(x) to the extracted identity sensitive
feature xd. Similarly, Fp(·, ·) denotes the mapping function
that maps from fs(x) to the pose sensitive feature xp.

We use softmax layer as classifier for both identity clas-
sification and pose estimation task. And then the loss func-
tion for face recognition task can be defined use the cross-
entropy loss:

Ld(I, yd) = − 1
N

N∑

i=1

log
exp((Wd

yd
i

)T xdi + bd
yd

i

)
∑C

c=1 exp((Wd
c )T xdi + bd

c )
, (3)

where yd
i indicate the corresponding identity label, and Wd

and bd represent the weight matrices and bias of the last
layer for face recognition task respectively. C is the number
of the subjects, and N is the number of training samples.

The loss function for pose estimation task can be for-
mulated similarly as:

Lp(I, yp) = − 1
N

N∑

i=1

log
exp((W p

y
p
i
)T xpi + bp

y
p
i
)

∑G
g=1 exp((W p

g )T xpi + bp
g )
, (4)

where G is the number of pose degrees.

3.2 Regularized Loss Function

We aim to obtain facial feature that are sensitive to identity
but insensitive to pose variance. In our method, the face
recognition and pose estimation task share the same feature
fs(x) obtained by the feature extraction subnetwork and the
feature fusion subnetwork, while face recognition task pur-
sues identity sensitive features and pose estimation task pur-
sues pose sensitive features. For feature competition, the

features sensitive to face recognition task should be insen-
sitive to pose estimation task, and the features sensitive to
pose estimation task should be insensitive to face recogni-
tion task. That is to say, there is conflict between the two
features, which suggests the relationship of them should be
negative correlation. Therefore, we introduce a cosine sim-
ilarity regularizer over the two features as the regularization
loss to constrain the correlation between them.

LR(xd, xp) =
(xd)T xp

‖xd‖2‖xp‖2 (5)

By combining Eqs. (3), (4) and (5), we can define the
regularized loss function as follows:

L(I, yd, yp) = Ld(I, yd) + Lp(I, yp) + λLR(xd, xp), (6)

where λ is the regularization parameter to control the im-
portance of the regularization term. Then given the training
set D, our JMM-CNNs will aim to minimize the regularized
loss function L(I, yd, yp).

3.3 Patch Sampling Strategy

For multi-patch CNNs based face recognition, the image
patch sampling strategy will affect the performance of face
recognition. Since [17] has verified that sampling a small
number of image patches uniformly in the semantic mean-
ing can even outperform DeepID2 which randomly cropped
a large number of patches (25 patches), we also uniformly
sample few patches with the help of facial landmarks for ef-
fectiveness of the model. We crop 145 × 120 holistic image
centering at the nose tip and five 100 × 100 image patches
centering around the five facial landmarks, i.e. the two eye
centers, the nose tip, and the two mouth corners, from the
aligned face image, which is aligned to 230 × 230 using the
five landmarks. Figure 3 shows the cropped holistic image
and patches in our method. Note that non-frontal face is
asymmetric, as shown in Fig. 3, so we leverage all the five
patches corresponding to the five facial landmarks rather
than only adopt patches of the left or the right half face.
This sampling strategy can help us achieve an end-to-end

Fig. 3 Illustration of the cropped holistic image and patches. From left
to right: holistic image, the patches centering at left eye center, right
eye center, nose tip, left mouth corner and right mouth corner. Top row:
the cropped holistic image and patches of frontal face. Bottom row: the
cropped holistic image and patches of non-frontal face.
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Table 1 Illustration of training algorithm for training the proposed
JMM-CNNs

input: training set D = {(Ii, y
d
i , y

p
i )}Ni=1, initialized parameter θc,

θd , θp, W f , Wd , Wp, learning rate η(iter), iter ← 0
while not converge do

iter ← iter + 1 sample training samples (Ii, y
d
i , y

p
i ) from D

L(Ii, y
d
i , y

p
i ) = Ld(Ii, y

d
i ) + Lp(Ii, y

p
i ) + λLR(xdi, xpi)

∇θc = ∇θc L(Ii, y
d
i , y

p
i )

∇W f = ∇W f L(Ii, y
d
i , y

p
i )

∇θd = ∂L(Ii ,y
d
i ,y

p
i )

∂xdi
× ∂xdi
∂θd

∇θp =
∂L(Ii ,y

d
i ,y

p
i )

∂xpi
× ∂xpi
∂θp

∇Wd =
∂L(Ii ,y

d
i ,y

p
i )

∂Wd
, ∇Wp =

∂L(Ii ,y
d
i ,y

p
i )

∂Wp

update Wd = Wd − η(iter) · ∇Wd, Wp = Wp − η(iter) · ∇Wp,

W f = W f − η(iter) · ∇W f , θd = θd − η(iter) · ∇θd, θp = θp−
η(iter) · ∇θp, θc = θc − η(iter) · ∇θc
end while
output θc, θd , θp,W f

architecture and we do not need to train each CNN for one
patch separately, once the training sample is preprocessed
by facial landmark detection and face alignment which are
normally essential steps in current face recognition pipeline.

3.4 Network Training

In the training set D, each face image is labeled with identity
label and pose label yd

i , y
p
i . The parameter of each CNN θc,

the feature fusion network parameter Wf , and the multi-task
learning network parameter θd and θp are trained by mini-
mizing the loss function L(I, yd, yp) using stochastic gradi-
ent descent (SGD) and standard back propagation algorithm.
Training algorithm is illustrated in Table 1.

For the parameter θc of some CNN network and the
feature fusion parameter Wf , the back propagation gradients
of θc and Wf are

∇θc L(I, yd, yp) = (
∂L(I, yd, yp)
∂xd

× ∂xd

∂ fs(x)
+

∂L(I, yd, yp)
∂xp

× ∂xp

∂ fs(x)
) × ∂ fs(x)

∂x
× ∂x
∂θc

(7)

and

∇Wf L(I, yd, yp) = (
∂L(I, yd, yp)
∂xd

× ∂xd

∂ fs(x)
+

∂L(I, yd, yp)
∂xp

× ∂xp

∂ fs(x)
) × ∂ fs(x)
∂Wf

(8)

respectively.
For the backward propagation, we need to calculate the

derivative of the loss with respect to xd and xp. Let δd and
δp denote backpropagation errors of final loss layer for each
task respectively [37]. Different from other layers, we cal-
culate the gradient of L(I, yd, yp) respect to xd and xp using
the chain rule as follows:

∂L(I, yd, yp)
∂xd

=
∂Ld(I, yd)
∂xd

+ λ
∂LR(xd, xp)

∂xd

Fig. 4 The framework of training JMM-CNNs that are embed into the
face verification or identification pipeline.

= (Wd)Tδd + λ(
xp

‖xd‖2‖xp‖2 −
(xT

d xp)xd

‖xp‖2‖xd‖32
) (9)

∂L(I, yd, yp)
∂xp

=
∂Lp(I, yp)

∂xp
+ λ
∂LR(xd, xp)

∂xp

= (W p)Tδp + λ(
xd

‖xd‖2‖xp‖2 −
(xT

d xp)xp

‖xd‖2‖xp‖32
). (10)

3.5 Face Verification and Identification

To evaluate the proposed JMM-CNNs model, we embed
the feature learned by JMM-CNNs into the traditional face
verification or identification pipeline of facial landmark de-
tection, face alignment, feature extraction and face verifi-
cation or identification. The general framework to train
JMM-CNNs and the pipeline of face verification or iden-
tification are shown in Fig. 4. We first use TCDCN [38] to
detect the five facial landmarks. Then the face images are
aligned by an affine transformation matrix calculated using
the detected facial landmarks and these corresponding land-
marks on average face image. During the alignment proce-
dure, the facial landmarks are also projected to the aligned
image with the same affine transformation. After the face
alignment procedure, the aligned face images with five fa-
cial landmarks are used as inputs of the proposed feature
extraction model JMM-CNNs. And then the deep features
can be taken from the output of the fully connected layer for
face recognition task of the JMM-CNNs. Finally, we com-
pute the score by Cosine Distance of two features, and use
nearest neighbor classifier for face identification and thresh-
old comparison for face verification, respectively.

4. Experimental Results

In this paper, we evaluate the proposed method on both con-
strained and unconstrained datasets. For constrained evalua-
tion, we train and test the proposed model both on Multi-PIE
dataset. For unconstrained evaluation, we train our model on
CASIA-WebFace [39] dataset and test on three current pop-
ular and important unconstrained face recognition datasets:
LFW, YTF and MegaFace Challenge. We firstly evaluate the
effectiveness of the proposed model on Multi-PIE dataset.
The experiments present the role of the multiple patches and
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Table 2 Identification performance (%) on setting V of MultiPIE of each single CNN and the combi-
nations of different number of CNNs. H, le, re, n, lm, and rm indicate holistic image, patches centering
at left eye center, right eye center, nose tip, left corner and right corner of the mouth, respectively. Avg.
rank-1 denotes the average rank-1 identification rate among the pose interval [−90◦, 90◦].

Single CNN Patch Number Avg. rank-1 Combination with best performance Patch Number Avg. rank-1
CNN-H – 90.36 H+n 1 90.41–90.49
CNN-le 1 89.75 H+re+n 2 90.53–90.67
CNN-re 1 89.68 H+le+n+rm 3 90.75–90.84
CNN-n 1 89.59 except rm 4 90.89–90.96
CNN-lm 1 88.57 JMM-CNNs 5 91.85
CNN-rm 1 88.51 Randomly cropped 5 90.71

the multi-task learning. Then we evaluate face verification
accuracies of the proposed model on LFW and YTF dataset,
and our model achieves better results than traditional multi-
patch based CNNs and MTL-based CNNs. We also con-
ducted experiments on MegaFace Challenge, the largest face
recognition benchmark, and our model outperforms most of
the state-of-the-art models under the small training data pro-
tocol on MegaFace Challenge.

4.1 Datasets and Preprocessing

The proposed model is firstly trained on Multi-PIE dataset
for effectiveness evaluation of multi-patch and multi-task
learning, due to Multi-PIE has straightforward pose labels.
The Multi-PIE dataset is composed of 754,200 images of
337 identities. Each identity was imaged under 15 poses
including 13 raw angles from −90◦ to 90◦, 20 different illu-
minations, and 6 different expressions. We mainly focus on
yaw angle estimation, so the Multi-PIE setting V [40], which
includes totally 301,600 face images of 337 identities under
13 raw angles, 20 illuminations, 1 expression, and 4 ses-
sions, is selected to evaluate the proposed method. The first
200 identities (199,940 images) are used for training, and
the remaining 137 identities are used for testing, where one
image with frontal pose, neutral illumination and expression
for each identity is selected as the gallery set (137 images)
and the remaining as the probe set (101,523 images). We
use TCDCN to detect the five facial landmarks and align
each face to size 230 × 230 according to the detected five
facial landmarks.

For unconstrained evaluation, we train our model on
the publicly available CASIA-WebFace dataset. CASIA-
WebFace dataset contains 49,414 face images from 10,575
different identities, the faces in which are all centered on the
image. Since images in CASIA-WebFace dataset does not
have pose labels, we use PIFA [41] to estimate the yaw angle
as the pose label as in [15]. According to the yaw angle dis-
tribution on CASIA-Webface in [15], CASIA-Webface has
12% faces belong to large pose group, i.e. the pose group
[−90◦, −45◦] and [45◦, 90◦]. We use the same facial land-
mark detection and face alignment methods as described in
Sect. 3.5 to preprocess the set of training samples. After face
alignment, we obtain the normalized faces which are resized
to be 230 × 230.

For all models based on the modified AlexNet, the ini-
tial learning rate is set to 0.01 and decays by a factor of

0.5 for every 20,000 iterations. For the models based on
ResNet-18, the learning rate starts at 0.05 and reduces with
a factor of 0.5 for every 20,000 iterations. The pose degrees
number G is set to 13.

We use LFW, YTF and MegaFace Challenge dataset
as the unconstrained face recognition testing datasets. LFW
dataset is an image dataset containing 13,233 face images
with large variations in illumination, pose, expression and
occlusion of 5,749 individuals. YTF dataset is a video
database which includes 3,424 videos from 1,595 different
identities. All videos in YTF are collected from YouTube
and Face images in YTF dataset have larger variations in il-
lumination, pose and expression, and lower resolution than
those in LFW dataset. LFW and YTF are excellent bench-
marks for face verification and identification in image and
video. MegaFace consists of a gallery set and a probe set.
The gallery set includes more than 1 million face images
of about 690,000 identities. The probe set contains two sub-
sets, Facescrub and FGNet. Facescrube consists of 100k im-
ages from 530 different individuals, while FGNet includes
about 100 images of 82 different individuals. We use the
Facescrube dataset as the probe set. Compared with LFW
dataset, MegaFace is a more challenging database which in-
cludes images of richer scene and larger pose.

4.2 Effectiveness of Multiple Patches

To evaluate the effective of using multiple patches, we train
models with different number of patches as input of the
model on Multi-PIE dataset. In this experiment, the multi-
task learning is included in all trained models, the modified
AlexNet is used as the CNN network and we set the regular-
ization parameter λ = 0.1.

Table 2 shows the performance comparison of each sin-
gle CNN and combinations of different number of CNNs.
For the performance of the combination of different num-
ber of patches, we provide the range of the results of all
combinations and the combination with the best perfor-
mance. For example, combinations of 2 image patches with
ten kinds of combination achieve identification performance
from 90.53% to 90.67% and the best performance 90.67%
is the Avg. rank-1 identification rate of ‘H+re+n’, i.e. the
combination of the holistic image and the patches centered
at the right eye center and the nose tip. It can be seen from
Table 2 that the combination of the CNN features of multi-
ple patches with that from holistic image can obtain better
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Table 3 Performance comparison on setting V of Multi-PIE. FR rep-
resents the face recognition task that is singly used without MTL, while
Multi-task represents the proposed model with MTL of the two tasks.

Model Parameter λ Avg. rank-1 (%)
Single task: FR – 86.43
Multi-task λ = 0 88.01
Multi-task λ = 0.001 88.12
Multi-task λ = 0.01 89.06
Multi-task λ = 0.1 91.85
Multi-task λ = 1 89.97

performance than only extracting global features. Moreover
in our experiment, the identification performance increases
as the patches increase. We also train a model with ran-
domly cropped 5 patches, and as shown in Table 2, the pro-
posed method that uniformly samples patches with semantic
meaning outperforms the randomly cropping manner.

4.3 Effectiveness of Multi-Task Learning and Parameter λ

In this experiment, we train models with single task and
multi-task models with different regularization parameters
to analyze the effect of multi-task learning and parameter
λ on JMM-CNNs model. Here, we just change the latter
part of the architecture of JMM-CNNs (i.e. the multi-task
learning part) with the feature extraction part of 6 CNNs
and feature fusion part unchanged. The modified AlexNet is
also used as the CNN network here. Table 3 shows the per-
formance comparison of single-task learning and multi-task
learning with different regularization parameters. It can be
seen that adding the pose estimation task is helpful to im-
prove the performance of face recognition task, even in the
circumstance that regularization term is zero. It also can be
seen from Table 3 that the regularization parameter λ = 0.1
can achieve the best performance among the value interval
{0, 0.001, 0.01, 0.1, 1}. The result is reasonable as the reg-
ularization term cannot work when λ is too small and the
effect of the separate learning task will be weaken when λ is
large.

Combining Table 2 and Table 3, it can be concluded
that the combination of multi-patch and multi-task CNNs
(5 patches and λ = 0.1) can increase the identification
performance to 91.85% compared with the performance of
90.36% that singly uses multi-task CNN (λ = 0.1) or the
performance of 86.43% that singly uses multi-patch CNNs
(5 patches).

4.4 Performance on LFW and YTF Datasets

We retrain our model on CASIA-WebFace dataset and in
this section conduct unconstrained face verification on two
well-known datasets, LFW and YTF dataset. The proposed
model is evaluated by comparing with the state-of-the-
art CNN-based methods including VGGFace [42], Deep-
Face, DeepID, DeepID2, FaceNet, CenterFace [43], and
MultiBatch [44], etc. And to further evaluate the effec-
tiveness of the multi-patches feature fusion and multi-task
learning of the proposed JMM-CNNs to unconstrained face

Table 4 Verification rates of different methods on LFW and YTF
datasets. JMM-CNNs Res and JMM-CNNs Alex represent the proposed
JMM-CNNs based on ResNet-18 and the modified AlexNet respectively.
‘without MP’ denotes removing the CNNs corresponding to the image
patches in JMM-CNNs Alex, i.e. only including the CNN-H with multi-
task learning in JMM-CNNs Alex, and ‘without MTL’ denotes removing
the pose estimation task in JMM-CNNs Alex.

Method Data #Net Metric LFW (%) YTF (%)
DeepFace [13] 4M 3 Cosine 97.35 91.40
VGGFace [42] 2.6M 1 Euclidean 98.95 97.30
FaceNet [12] 200M 1 L2 99.65 95.10
MultiBatch [44] 2.6M 1 Euclidean 98.2 /
Xi Yin et al. [15] 0.49M 1 Cosine 98.27 /
DeepID2 [9] 300K 25 Joint-Bayes 98.97 93.20
CenterFace [43] 0.7M 1 Cosine 99.28 94.90
DeepID [8] 5.8M 100 Joint-Bayes 97.45 /
MMDFR [17] 0.47M 8 Joint-Bayes 99.02 /
without MP 0.49M 1 Cosine 98.59 93.09
without MTL 0.49M 6 Cosine 97.91 91.39
JMM-CNNs Alex 0.49M 6 Cosine 99.14 94.93
JMM-CNNs Res 0.49M 6 Cosine 99.76 95.74
JMM-CNNs Res 2.6M 6 Cosine 99.83 97.18

recognition, we also conduct experiments of removing the
multi-patches feature fusion or the pose estimation task of
JMM-CNNs Alex (JMM-CNNs based on the modified
AlexNet) on LFW and YTF datasets. Following the unre-
stricted with labeled outside data protocol, we evaluate our
model on 6000 face pairs from LFW dataset and 5000 video
pairs from YTF dataset.

From the results in Table 4, we conclude the follow-
ing three observations. First, JMM-CNNs Alex with multi-
patch feature fusing achieves better performance than using
the same model architecture but without multi-patch feature
fusing. The verification rates are improved from (98.59%
on LFW and 93.09% on YTF) to (99.14% on LFW and
94.93% on YTF) by local features fusing. Second, JMM-
CNNs Alex with multi-task learning beats the model with
same architecture but without multi-task learning, through
improving the performance by 1.23% on LFW and 3.54%
on YTF. These two observations show the advantage of
the combination of multi-patch and multi-task CNNs in the
designed JMM-CNNs. Finally, JMM-CNNs Res achieves
better performance than JMM-CNNs Alex and outperforms
most of the state-of-the-art methods including multi-patch-
based methods such as DeepID2 and multi-task-learning-
based methods like Xi Yin et al., except VGGFace, although
some of these methods apply larger training dataset or more
networks. Since VGGFace employs relatively larger train-
ing dataset, we also train the JMM-CNNs Res on a 2.6M
dataset for relatively fair comparison. The dataset used by
VGGFace is not publicly available, so we form a 2.6M train-
ing dataset by selecting about 2.11M images randomly from
MultiPIE and supplementing the CASIA-WebFace dataset
with these images. The results in Table 4 indicate that
the JMM-CNNs Res trained on the 2.6M dataset achieves
a comparable performance with VGGFace.
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4.5 Performance on MegaFace Dataset

To further evaluate the effectiveness of the proposed model,
we also execute experiments on the standard settings of the
MegaFace dataset, which is currently the largest face recog-
nition benchmark. MegaFace has several testing scenarios
(including identification and verification) under two proto-
cols, large and small training set protocol. Since our training
set is less than 0.5M images and 20K identities, it belongs to
the protocol of small training set. There are different distrac-
tors (from 10 to 1M) in MegaFace gallery, which increases
testing challenge. Here, we demonstrate the results on 1M
distracters.

We compare our method with the typical participat-
ing methods in MegaFace challenge 1, such as Google-
FaceNet v8, NTechLAB-facenx large, Barebones FR-cnn,
and SIAT MMLAB, etc., and three publicly released meth-
ods in recent years, CenterFace [43], Lightened CNN [46],
and Attr-constr CNN [14]. The results are given in Table 5
and Fig. 5. Table 5 shows face identification and verifica-
tion performance of methods including those under large

Table 5 Identification Accuracy (%) of different methods and Verifica-
tion TAR (%) of different methods at 10−6 FAR on MegaFace with 1M
distractors. Iden. Acc. indicates rank-1 identification accuracy, while Ver.
Acc. indicates verification TAR for 10−6 FAR.

Method Protocol Iden. Acc. Ver. Acc.
NTechLAB-facenx large Large 73.30 85.08
Google-FaceNet v8 [12] Large 70.50 86.47
Beijing FaceAll Norm 1600 Large 64.80 67.12
Beijing FaceAll 1600 Large 63.98 63.96
Barebones FR-cnn Small 59.36 59.04
NTechLAB-facenx small Small 58.22 66.37
3DiVi Company-tdvm6 Small 33.71 36.93
SIAT MMLAB [45] Small 65.23 76.72
Attr-constr [14] Small 77.74 79.24
CenterFace [43] Small 65.23 76.52
Lightened CNN [46] Small 67.11 77.64
without MP Small 74.71 77.94
without MTL Small 72.93 76.49
JMM-CNNs Alex Small 77.53 80.61
JMM-CNNs Res Small 78.22 81.53

Fig. 5 CMC and ROC curves of different methods on MegaFace Challenge under the small training
set protocol.

training set protocol on MegaFace challenge. From these re-
sults, we have the observation that the proposed model out-
performs most of the methods although it is trained under
the small training set protocol. These results also show the
advantage of the combination of multi-patch and multi-task
CNNs in the designed JMM-CNNs. In Fig. 5, we demon-
strate the results using Cumulative Match Characteristics
(CMC) curves for face verification and Receiver Operat-
ing Characteristic (ROC) curves for face identification, re-
spectively. It can be seen from Fig. 5, our method achieves
a competitive result compared with other results under the
small training set protocol of MegaFace dataset.

5. Conclusions

In this paper, we propose a joint multi-patch and multi-
task CNNs model which combines multi-patch CNNs and
multi-task learning CNN in one framework. The proposed
model can extract more descriptive and robust facial fea-
ture for face recognition by fusing global and local features
and multi-task learning of face recognition and pose esti-
mation. To make the proposed model have an end-to-end
architecture, we use a simple patch sampling strategy that
crop the image patches only depending on the facial land-
marks. Meanwhile, we propose a regularized loss function
to further enhance the pose insensitiveness of the extracted
facial feature. Experiments on Multi-PIE, LFW, YTF and
MegaFace dataset prove the advantage and effectiveness of
the proposed model which outperforms most of the existing
state-of-the-art face recognition models.
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