
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020
2113

PAPER

Real-Time Detection of Global Cyberthreat Based on Darknet by
Estimating Anomalous Synchronization Using Graphical Lasso∗
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Jun’ichi TAKEUCHI††, Members, and Koji NAKAO†, Fellow

SUMMARY With the rapid evolution and increase of cyberthreats in
recent years, it is necessary to detect and understand it promptly and pre-
cisely to reduce the impact of cyberthreats. A darknet, which is an unused
IP address space, has a high signal-to-noise ratio, so it is easier to under-
stand the global tendency of malicious traffic in cyberspace than other ob-
servation networks. In this paper, we aim to capture global cyberthreats
in real time. Since multiple hosts infected with similar malware tend to
perform similar behavior, we propose a system that estimates a degree of
synchronizations from the patterns of packet transmission time among the
source hosts observed in unit time of the darknet and detects anomalies in
real time. In our evaluation, we perform our proof-of-concept implementa-
tion of the proposed engine to demonstrate its feasibility and effectiveness,
and we detect cyberthreats with an accuracy of 97.14%. This work is the
first practical trial that detects cyberthreats from in-the-wild darknet traf-
fic regardless of new types and variants in real time, and it quantitatively
evaluates the result.
key words: cyberthreat, malware, darknet, network security, synchroniza-
tion, outlier detection, real-time detection

1. Introduction

Network security threats (cyberthreats) by malware such as
worms, bots, and automated exploit tools send Internet-wide
scans to a large number of unspecified hosts on the Internet
and attempt to exploit vulnerabilities, attack and intrude into
targeted systems. When the malware succeeds in infecting
vulnerable hosts, the infected hosts will search for next vul-
nerable targets one after another, and the infection of the
malware will spread worldwide.

To minimize the impact of these threats, it is impor-
tant to understand and determine the behaviors of malware
on the Internet quickly and precisely. Many network intru-
sion detection systems (NIDS) and firewalls have already
performed access control functions that are signature-based,
but these cannot cope with zero-day attacks and brand-new
malware variants. Network security operators or analysts
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may also monitor the cyberthreats using heuristic and rule-
based systems, but these are costly, and human errors may
happen. Accordingly, a method that can catch cyberthreats
automatically, quickly and precisely is needed.

What data should we use to achieve this goal? Cy-
berthreats, including fast-moving worms, distributed reflec-
tion denial of service (DRDoS) attacks, routing exploits, and
network scanning and probing, are globally scoped, irre-
spective of geographic or topological boundaries. Passively
monitoring unused or dark address space (a darknet) is one
promising method of investigating these threats [2], [3], be-
cause there are no legitimate hosts there. Other than mis-
configuration, packets destined for the darknet are almost
always malicious [4]. In general, it is suitable for monitor-
ing explosions, not small events [5]. In short, to understand a
trend of global cyberthreats, darknet data is more useful than
other observations. However, it does not mean that it is easy
to capture cyberthreats accurately. Here, the difficulty lies
in how we distinguish the ill-intentioned traffic from others
(misconfiguration).

We consider the following approach to resolve the
above difficulty. There is no synchronization or coopera-
tion between the packet transmission time patterns of unre-
lated source hosts. On the other hand, a single host tends to
perform similar behavior at each darknet address [3], hence
we assume that when source hosts infected with similar
malware (such as IoT malware), the source hosts are syn-
chronizing with each other in the darknet. Also, the in-
fected hosts that form a botnet (such as IoT botnet) have
the characteristic of acting synchronously when they receive
commands from a command and control (C&C) server [6].
Moreover, we consider that if synchronization among source
hosts in a time slot is abnormally high compared to other
time slots, a cyberthreat event has occurred during that time
slot.

However, it is difficult for humans to check synchro-
nization among source hosts manually. To handle this issue,
we propose a system called the GLASSO engine∗∗, which es-
timates a synchronization of the source hosts in real time by
using a sparse structure learning algorithm called the graph-
ical lasso [8]. It also announces alerts in real time when
the estimated synchronization changes significantly. It can
detect a group of related campaigns by estimating synchro-
nization among many pairs of source hosts for each time

∗∗The engine is named after the library “glasso” of R [7].
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Fig. 1 An overview of the GLASSO engine

slot and by finding outliers in synchronization among dif-
ferent time slots. This method is resistant to noise; packets
that arrive accidentally in a darknet space due to miscon-
figurations will not show synchronization. Moreover, it is
able to ignore events with weak synchronization due to an
effect of �1 regularization penalty term of the graphical lasso
algorithm.

In the evaluation, we measure the performance of the
GLASSO engine with a demonstration experiment using in-
the-wild darknet traffic to show its feasibility. This ex-
periment, whose purpose is detection of anomalous syn-
chronization from darknet traffic, has broadly identified
three types: 1) large-scale cyberthreats by malware (for
example, IoT malware, worms, bots, and exploit tools),
2) survey scans by universities or other organizations, and
3) sporadically-focused traffic considered to be misconfig-
uration traffic. In this paper, we evaluate and analyze the
cyberthreats from malware. Then, a darknet analysis expert
gathers a cyberthreat list with relatively large host-scales in-
fection over a certain period for each destination port. This
is the most important task for operators to understand cy-
berthreats. We evaluate the detection results of the GLASSO
engine using the list as the ground truth. As a result, we con-
firm that the GLASSO engine can detect cyberthreats with
somewhat massive host-scale infection with high accuracy,
and which shows its effectiveness and usefulness. In other
words, the GLASSO engine can successfully identify global
cyberthreats in real time in the darknet that could lead to
serious security incidents.

This paper offers the following contributions:

1. We propose the GLASSO engine, as shown in Fig. 1,
which statistically estimates a synchronization between
the source hosts from traffic data and detects anomalies.
(Discussed in Sect. 3)

2. We perform a demonstration experiment of the
GLASSO engine in real time using in-the-wild dark-
net traffic and evaluate the detection performance of
cyberthreats using the prepared ground truth. We
also make a comparison with a conventional method
(ChangeFinder). As a result, we achieve a detection

accuracy of 97.1%, which is better than the conven-
tional method and describe the details of the detected
cyberthreats. (Discussed in Sect. 4)

3. Finally, as a discussion and a consideration, we investi-
gate the adverse effect of preprocessing on the accuracy
and describe the technical limitations of our method.
(Discussed in Sect. 5)

This paper is the first practical trial that detects global
cyberthreats in real time and early stage based on in-the-wild
darknet traffic regardless of already known or new types
or variants of threats. In addition, related works on dark-
net analysis discussed in Sect. 2 only described case studies
using their method, but this work is the first study where
we have quantitatively evaluated the detection accuracy of
cyberthreats during a certain period. We believe that this
is an innovative achievement that can significantly reduce
oversights, human-errors, and burdens on security operators
and incident response teams. Moreover, operators can uti-
lize the information about the source hosts that are detected
as synchronized by the GLASSO engine. In addition, we
publish the datasets used for demonstration experiment in
this paper on the web†.

2. Related Work

In this section, we review previous research about botnet de-
tection, darknet data analysis, including our achievement so
far. The BotSniffer [9] and the BotMiner [10] adopt C&C
traffic detection method based on the spatial-temporal cor-
relation approach, which is a similar approach to this pa-
per. However, their methods require traffic responses that in-
clude the payload of particular protocols (IRC, HTTP, P2P).
On the other hand, since the darknet does not return a re-
sponse, only the first packet can be observed in all proto-
cols. In other words, the GLASSO engine estimates a syn-
chronization between the source hosts with a small amount
of information that does not limit the port, protocol and does
not include the payload. Furthermore, the scale of the prac-
ticed observation sensors is thousands of times different,

†https://csdataset.nict.go.jp/darknet
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and the scale of observed scans is overwhelmingly large.
The GLASSO engine tackles the problem that scale, scope,
and amount of information are entirely different from the
BotSniffer and the BotMiner. Their method cannot be ap-
plied to darknet analysis of this scale.

The darknet has been attracting attention in the net-
work security field since 2000, and many researchers have
been actively studying its development, analysis, and vi-
sualization [11]. In [2]–[5], the basics of the darknet were
discussed, including its various configurations, deployment
technology, and sensor placement technology, and the effec-
tiveness of the darknet was clarified. In general, darknet data
is composed of scanning, backscatter, and misconfiguration
traffic. Research on profiling, filtering, and classification of
each type of traffic has been actively conducted as a darknet
analysis. Dainotti et al. developed and evaluated a method-
ology to remove spoofed traffic from both a darknet and a
live network and contributed to supporting census-like anal-
yses of IP address space utilization [12]. Durumeric et al.
analyzed the large-scale darknet to investigate scanning ac-
tivities and identify patterns in sizable horizontal scanning
operations [13]. Fachkha et al. devised inference and char-
acterization modules to extract and analyze cyber-physical
systems’ (CPS) probing activities toward sufficient CPS pro-
tocols by correlating and analyzing the various dimensions
of a large amount of darknet data [14]. Most of the analysis
research using a darknet is measurement analysis that in-
vestigates something in detail. Many studies not only use a
darknet but also honeypots and other trap-based monitoring
systems at the same time.

According to the paper [11], filtering misconfiguration
packets is still not thoroughly investigated and remains as
a gray area that requires more attention from the research
community. We believe that our method can avoid miscon-
figuration packets by detecting anomalies with the synchro-
nization of hosts. Furthermore, our method is unique in that
it can uniformly detect cyberthreats in real time in suspi-
cious scans that reach the darknet. There are several meth-
ods to detect change points of traffic transition on the dark-
net and detect anomalies [15]–[17]. In Network Incident
analysis Center for Tactical Emergency Response (NICTER)
project [15] conducted by NICT, they used a ChangeFinder
algorithm [18] to detect a rapid change in darknet traffic in
real time with a low computational cost. ChangeFinder al-
gorithm adopts the Sequential Discounting AutoRegressive
(SDAR) forgetting learning algorithm that improves the au-
toregressive model so that it can be learned online, calcu-
lates only new time-series data, and reduces the influence of
past data.

However, these change point detection methods have
many limitations in actual operation. For example, when
analyzing all TCP destination port numbers separately (216),
an enormous amount of alerts can be obtained, and multiple
high-performance servers are required. As an alternative,
it is conceivable to aggregate and analyze for each range
of the destination port number, but it is necessary to ad-
just the parameters according to the time when the traffic

volume changes dramatically or moderately. In the last few
years, the amount of traffic reaching a darknet has increased
sharply due to the sophistication of scanning tools such as
Masscan and Zmap, and the spread of malware targeting IoT
devices such as Mirai. For these reasons, a large amount
of constant and complicated traffic has arrived, and techni-
cal limitations such that no change point can be found have
been an issue in these studies [15]–[17]. We have started to
study the GLASSO engine, which is a method to detect cy-
berthreats using an approach that can avoid the problem of
change-point detection methods, as mentioned above. The
GLASSO engine detects anomalies based on more abundant
information, such as the synchronization of source hosts,
than the change point detection method. In addition, the
GLASSO engine performs analysis without separating the
traffic of all destination ports, so it is designed to achieve its
purpose even in constant and complicated traffic where there
is no change point.

3. GLASSO Engine

In this section, we describe the GLASSO engine that esti-
mates synchronization among source hosts reaching a dark-
net in real time and automatically, and determines the time
slots where there is an anomaly synchronization. By captur-
ing an anomaly in the synchronized time slots, the GLASSO
engine can automatically detect not only known cyberthreats
but also zero-day cyberthreats quickly and accurately.

Figure 1 shows an overview of the GLASSO engine,
and Algorithm 2 shows the pseudocode of the GLASSO en-
gine. First, we prepare T seconds of traffic data X every
darknet sensor. Here, the GLASSO engine can analyze re-
gardless of a protocol, but this paper deals only with the
TCP. Also, since packets other than the SYN flag on the
darknet are not considered as network scanning, we only
capture TCP-SYN packets. We transfer the traffic data X
to the GLASSO engine, preprocess traffic data according to
the situation†, and then process it using the following four
steps and issue an alert: creating the dataset, sparse struc-
ture learning, quantification, and outlier detection. The four
steps are described in the order below, and finally, the proce-
dure of online processing for operating the GLASSO engine
in real time is introduced.

3.1 Creating Dataset D

The GLASSO engine counts the number of packets from
traffic data X for every source host at regular intervals and
creates a dataset D. We then treat the source host as one
variable and apply a graphical Gaussian model (hereinafter,
“GGM”) in Appendix A to estimate dependencies among
source hosts. The procedure for creating a dataset is shown
concretely. We assume that there are N source hosts in the
preprocessed traffic data X. We also set the number of sam-
ples to M, and the counting (sampling) interval becomes

†Detailed settings for preprocessing are described in Sect. 4.1.



2116
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Algorithm 1 outlier-judgment-method
Input: d(r) ∈ RK , K, θ
Output: outliers or none
1: i, j← 0
2: while TRUE do
3: i← i + 1
4: d(i) ← order (d(r)) [i : K]
5: σ2

(i) ← var (d(i))

6: if σ2
(i+1)/σ

2
(i) < θ then

7: j← j + 1
8: else if i = 1 then
9: break

10: else
11: outliers← order (d(r))[1 : j]
12: return outliers
13: end if
14: end while

T/M (sec.). We then convert from the X to a dataset

D = [Dmn] ∈ RM×N , Dmn := log(x(m)
n ), x(m) ∈ NN

0 .

Here, x(m) means N-dimensional variables of the number of
samples M, and x(m)

n represents the number of packets at
the m-th point of the n-th source host. In addition, N0 =

{0, 1, 2, · · · }.
Since x(m)’s distribution is far from Gaussian, we trans-

form it by adapting a logarithmic function. This is a con-
ventional method to transform a positive random variable
concentrating zero so that it approximates a Gaussian ran-
dom variable. In particular, if the considered variable is an
exponential function of a Gaussian random variable, then
its logarithm is Gaussian. In our case, it does not hold, but
the graphical lasso algorithm works well in practice. Since
log transformations cannot be performed when x(m)

n = 0;
we change a value 0 to a small real number 0.1. Next, we
describe the graphical lasso (Appendix B), one of a sparse
structure learning algorithm, for estimating dependencies
and synchronizations among variables from the dataset D.

3.2 Sparse Structure Learning: Graphical Lasso

As described in Appendix A, the GGM that can show de-
pendencies and synchronizations among variables requires
a precision matrix that shows conditional independence
among all variables. The graphical lasso algorithm de-
scribed in Appendix B for estimating the precision matrix
is a well-known sparse structure learning algorithm.

We calculate a sample covariance matrix S from the
dataset D and substitute some positive real numbers r ∈ R
(= {r1, r2, · · · , rs} ⊂ [0, ∞)) and S into the graphical lasso
algorithm to obtain a sparsely estimated precision matrix
( ˆΣ−1)(r). Here, the adjustment of r is important, when the
larger the value of r, the precision matrix is estimated more
sparsely. In the next section, we introduce how to quantify
synchronizations among variables from the estimated preci-
sion matrix.

Algorithm 2 The GLASSO engine with online processing
Input: X, β, M, r ∈ R (= {r1, r2, · · · , rs}), d(r), K, θ
Output: alerts or none (per while-loop)
1: while X is updated newly do
2: preprocess X; and create D from X; and compute S from D
3: for r in R do
4: compute ( ˆΣ−1)

(r)
using the glasso (S , r)

5: compute d(r) from ( ˆΣ−1)
(r)

6: add d(r) to d(r)

7: if length (d(r)) = K then
8: call outlier-judgment-method (d(r), K, θ)
9: if there are outliers then

10: collect alert information from outliers
11: return alerts
12: delete all graph densities at the same time slots as the

outliers from d(r)

13: else
14: delete the oldest value from d(r)

15: end if
16: end if
17: end for
18: end while

3.3 Quantification: Graph Density

We can create the GGM undirected graph G from the esti-
mated precision matrix. This graph G = {V, E} has more
edges if there are many non-zero elements. Also, the pres-
ence or absence of an edge indicates the presence or absence
of synchronization between variables. However, since it is
difficult to handle the graph structure as it is, we define a
scalar value representing the overall degree of synchroniza-
tions among all hosts, a graph density d(r) = |E|/N(N − 1).
The graph density, also called a sparsity, is the ratio of the
actual number of edges to the number of edges in a complete
graph. By using this graph density value, it is possible to un-
derstand the degree of synchronizations among source hosts
in the time slot of data X. Since the graph density value
is closer to 1, it means that there is more synchronization
among source hosts in that time slot.

3.4 Outlier Detection

In this section, we consider outlier detection to catch time
slots in which the synchronization among source hosts is
abnormally high compared to other time slots. First, we
prepare K graph density values d(r) for each parameter
r. Next, we check the extent to which the largest ele-
ment occupies a total sample variance in d(r), and when
the largest element exceeds a criterion of an outlier judg-
ment formula, it is judged as an outlier. The pseudocode
of an outlier-judgment-method is shown in Algorithm 1.
Here, σ2

(i+1)/σ
2
(i) < θ is the outlier judgment formula, and

θ (0 ≤ θ ≤ 1) is a threshold value. In addition, the order( )
function returns a permutation that rearranges its first argu-
ment into descending order, and the var( ) function returns a
sample variance.

Up until now, we have been able to calculate a graph
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density value from traffic data X and determine outliers. In
the next section, we describe the steps for calculating the
above steps sequentially and issuing alerts in real time.

3.5 Procedure for Online Processing

The pseudocode for the GLASSO engine with online pro-
cessing is described in Algorithm 2. Here, the length( )
function obtains the length of the vectors. We execute the
process each time when new traffic data X is updated. Next,
we obtain a graph density value d(r) for each r. Thereafter,
d(r) is appended to an arrangement of the past graph den-
sity value d(r), and if the length of d(r) equals K, an outlier
detection is carried out.

Datasets judged as outliers are output as an alert and
are removed from graph densities in the same time slots as
the outliers from d(r) so that they will not be referred to in
subsequent outlier detection. In addition, if no dataset is
determined as an outlier, the oldest value is removed from
d(r). When the time has passed and a new X is updated,
by repeating the above steps, it is possible to process the
GLASSO engine sequentially while maintaining the number
of datasets used for outlier detection. From the above, the
GLASSO engine makes it possible to perform online pro-
cessing and detect time slots in which there is abnormally
high synchronization among source hosts in real time and
issue an alert.

4. Performance Evaluation

The alert issued by the GLASSO engine is when the time
patterns of packets sent from multiple source hosts for some
reason are strongly synchronized. What happens when the
source hosts observed in the darknet appear to be synchro-
nized? Among them are cyberthreats that launched large-
scale attacks/scanning. In this section, we give an overview
of the demonstration experiment we performed, analyze the
alerts detected by the GLASSO engine, and evaluate a quan-
titative detection accuracy of cyberthreats. Here, the con-
ventional method, ChangeFinder [18], is also tried and eval-
uated comparatively with our method.

4.1 Demonstration Experiment

In this section, we present the process of demonstrating the
feasibility of the GLASSO engine. We implemented a pro-
totype of the GLASSO engine using R language and a Linux
shell running on two machines, a 16 GB of memory and
a 3.3GHz Intel-Xenon-E3-1230. We used eight different
darknet sensors in parallel and operated the GLASSO engine
for one month in October 2018 in real time for each sensor.
The input parameters of the GLASSO engine used for the
operation were set to T = 600 (sec.), M = 12, K = 432,
θ = 0.98, r ∈ R (= {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}); details of
this parameter selection can be found in the paper [1].

Next, we describe the preprocessing of darknet traffic

performed in this demonstration experiment. In order to sta-
bilize the performance of the GLASSO engine, we filtered
out potentially adverse packets to the engine from traffic
data X in the preprocessing stage. First, we excluded des-
tination TCP ports that constantly received a large number
of packets and source hosts for a long time. Then, we ex-
cluded TCP ports 22, 23, 80, 81, 445, 1433, 2323, 3389,
5555, 8080, and 52869. Second, we regularly excluded the
packets addressed to the TCP ports that are intensively ob-
served as alerts. If such packets, the first and second cases,
are included in the model learning of the GLASSO engine,
they will massively increase the indicator of synchroniza-
tion among the source hosts to be estimated, and there is
concern that smaller but essential synchronization may be
overlooked. Such uninteresting packets that have an adverse
effect on model learning and that have already attracted
much attention should be regarded as noise and should be
excluded. These procedures should take place regularly.

Finally, in order to reduce the number of source hosts
N and gain a global understanding of cyberthreats, we ig-
nored the lower 16-bit of the source host’s IPv4 addresses,
which meant that the hosts with identical upper 16-bit of
IPv4 address were regarded as one host. In addition, when
the number of source hosts N exceeded the threshold β, β
source hosts were selected at random from the input X in or-
der to limit N. Because the complexity of the graphical lasso
is O(N3), in order to run this engine in real time, it is neces-
sary to limit N according to the hardware specifications. All
of the preprocessing described here is not compulsory and
can be adapted depending on the situation. However, limit-
ing the number of source hosts to β can degrade the accuracy
of the learning model, which we discuss in Sect. 5.1.

4.2 Analysis of Alert Result

Table 1 shows the number of observed IP addresses (IPs),
alerts and the number of unique ports for each darknet sen-
sor. The individual sensors are distributed and installed
in several countries in the world, where “GLASSO (ALL)”
means the aggregated sensor consisting of all the sensors.
Since one time slot was 10 minutes in this experiment, there
are 4,464 time slots in one month. Because it had been
demonstrated with eight sensors, 35,712 time slots were cal-
culated. Consequently, 1,293 time slots were obtained as
alerts. An alert identifies a target TCP port and source IP

Table 1 The number of observed IP addresses (IPs), alerts, and unique
ports for each darknet sensor

Sensor ID #IPs (/Mask) #Alerts #Ports

A 29,182 (/17) 118 33
B 14,593 (/18) 195 43
C 4,098 (/20) 111 42
D 4,096 (/20) 336 40
E 8,188 (/19) 187 44
F 16,384 (/18) 112 49
G 2,044 (/21) 66 32
H 2,045 (/21) 168 36

GLASSO (ALL) 80,630 1,293 152
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addresses that are considered to have been used as cy-
berthreats in the time slots determined to be outliers by the
GLASSO engine. Here, the target TCP port is the destina-
tion TCP port in which the number of source hosts that sent
packets to the port in that time slot is 20 or more, and the ra-
tio is 10% or more. One alert has multiple target TCP ports
and a list of source hosts for each target TCP port. Finally,
from the results of all sensors, we had 1,293 alerts and 152
unique destination TCP port among alerts.

In this paper, in order to facilitate analysis and eval-
uation, only the target TCP ports are investigated without
considering time information of alerts. It means if there is at
least one alert for a correct target TCP port during the entire
dataset, it will be counted as a true positive. The reason is
explained in Sect. 5.2. As a result of the analysis, 152 target
TCP ports are classified into the following three types.

1. Cyberthreats: network scans that indiscriminately at-
tempt attacks and intrusions through vulnerable TCP
ports in order for large-scale hosts already infected
with malware to search for the next infection targets—
e.g., IoT malware, bots, fast-moving worms, automated
exploit tools, etc.

2. Survey scans: network scans that indiscriminately at-
tempt surveys and academic research on TCP ports us-
ing multiple hosts by universities or organizations such
as Shodan, Censys, etc. This is a network scanning,
but not a cyberthreat.

3. Sporadically-focused traffic: a phenomenon in which
packets are suddenly concentrated from multiple
source hosts to one darknet destination IP address and
a TCP port. Most destination TCP ports are 5-digit un-
known ports. We consider it to misconfiguration traffic.

We are able to clearly divide all the target TCP ports into the
above three types.

First, the sporadically-focused traffic type can be eas-
ily identified by whether the destination IP address is con-
centrated at one point. Second, the survey scan type has
a smaller host size than large-scale cyberthreats, and more
than 50% of the hosts in the alert occupies known univer-
sities and organizations that conduct survey scans. In the
case of cyberthreats, only about 20% of hosts perform sur-
vey scans included in alerts. Consequently, out of the 152
target TCP ports, 34 were cyberthreats, 2 were survey scans,
and 116 were sporadically-focused traffic.

The survey scan type is classified by looking at how
many known scan organizations are included in hostnames
of source hosts which are estimated to be synchronized.
Also, they sometimes release scanning details on the orga-
nization’s web site. It is a heuristic method based on our
experience. However, the alerts of the two ports that are
considered to be survey scans were acquired only once for
53/TCP from sensor A and once for 11211/TCP from sensor
F, which are large observation scales of the sensor. In those
two alerts, the number of synchronized source hosts was 20,
21, and more than half of them showed the hostnames of
known scan organizations. At that time, no cyberthreat was

Table 2 Ground truth list of TCP ports used for cyberthreats observed
on our darknets in October 2018

Cyberthreat Type TCP Port

IoT Malware 82, 83, 84, 85, 88, 444, 2480, 5358, 5984,
(16 TCP ports) 7547, 8000, 8010, 8088, 8443, 8888, 9000

Router Vulnerability 21, 25, 110, 443, 5431, 8001, 8081,
(12 TCP ports) 8181, 8291, 23023, 37215, 65000

Other Vulnerability
1701, 2004, 5379, 5900, 6379, 7379, 49152

(7 TCP ports)

observed in these two ports. Probably, the number of hosts
for which scans were observed to 53, 11211/TCP coinci-
dentally increased in spaces where observation scales of the
sensor are large. As a countermeasure, the number of source
hosts for alert judgment is currently set to 20 for all sensors,
but it can be avoided by setting it for each sensor observation
scale.

4.3 Detection Performance

In this section, we quantitatively evaluate the performance
of the GLASSO engine in detecting cyberthreats and com-
pare it with a conventional method, ChangeFinder. First, we
prepared the ground truth for quantitative evaluation. Ta-
ble 2 shows the list of TCP ports used for cyberthreats ob-
served on our darknets in October 2018, as confirmed by a
darknet analysis expert in our organization. This list was
created in January 2020 by comprehensively examining in-
formation such as changes in traffic volume, SYN packet
characteristics, threat intelligence services, vulnerability re-
ports, security reports and data from honeypots. As a result,
35 TCP ports are classified into three types of cyberthreats:
IoT malware, router vulnerabilities, and other vulnerabil-
ities. Conventional darknet analysis studies only showed
case studies, but this work is the first attempt to create and
quantitatively evaluate a long-term ground truth. In order
to improve the reliability of this ground truth, we provide
details in Sect. 4.4. Note that zero-day threats may become
apparent in the future, and more ports may be added to the
list.

Next, we describe the setting of ChangeFinder in the
comparative experiment. ChangeFinder is a change point
detection method that runs in an online manner. In an en-
vironment equivalent to the GLASSO engine demonstration
experiment, ChangeFinder was applied to time-series data
of the numbers of unique source hosts and the numbers of
packets every 10 minutes with eight sensors. The param-
eters of ChangeFinder were set to 2 for the order of AR
model, 0.005 for the forgetting parameter, 10 and 5 for the
smoothing range in 2 steps, and 3 for the change point judg-
ment threshold. For details such as the meaning of these
parameters, see [18]. This setting was determined based on
our experience of using ChangeFinder for many years at the
NICTER [15]. As a result, we obtained 1,501 change points.
We processed the obtained change points in the same way
as the target TCP port acquisition manner in Sect. 4.2, and
obtained 25 unique ports.



HAN et al.: REAL-TIME DETECTION OF GLOBAL CYBERTHREAT BASED ON DARKNET USING GRAPHICAL LASSO
2119

Table 3 Evaluation results of the detection performance of the GLASSO engine and ChangeFinder

Sensor ID #Ports #Noises #TPs #FPs #FNs #TNs Accuracy [%] Precision [%] Recall [%] F-measure [%]

A 33 4 29 0 6 - 82.86 100.00 82.86 90.63
B 43 14 29 0 6 - 82.86 100.00 82.86 90.63
C 42 17 25 0 10 - 71.43 100.00 71.43 83.33
D 40 15 25 0 10 - 71.43 100.00 71.43 83.33
E 44 17 27 0 8 - 77.14 100.00 77.14 87.10
F 49 23 26 0 9 - 74.29 100.00 74.29 85.25
G 32 13 19 0 16 - 54.29 100.00 54.29 70.37
H 36 17 19 0 16 - 54.29 100.00 54.29 70.37

GLASSO (ALL) 152 118 34 0 1 - 97.14 100.00 97.14 98.55
ChangeFinder (ALL) 25 1 24 0 11 - 68.57 100.00 68.57 81.36

Table 3 shows the evaluation results of the detection
performance of the GLASSO engine and ChangeFinder. The
evaluation of the GLASSO engine for each sensor and all the
sensors are shown. The evaluation of ChangeFinder for all
sensors is also shown. Here, #Ports is the number of de-
tected target TCP ports, #Noises is the number of TCP ports
by survey scan or sporadically-focused traffic, #TPs, #FPs,
#FNs, and #TNs indicate the number of true positives, false
positives, false negatives, and true negatives, respectively.
Currently, we do not know how many true negatives there
are, so we did not care about them. Therefore, the usual ac-
curacy is (#TPs + #TNs) / (#TPs + #FPs + #FNs + #TNs),
but here we assume #TNs were zero. Precision, Recall, and
F-measure are obtained using the usual evaluation indices
as follows: #TPs / (#TPs + #FPs), #TPs / (#TPs + #FNs),
and 2#TPs / (2#TPs + #FPs + #FNs). Consequently, the
GLASSO engine achieved 97.14% accuracy and 98.55% F-
measure with 34 TPs, 0 FPs, and 1 FN. If we assume that
we could not separate the survey scan and the cyberthreat in
this experiment, #FPs will increase from zero to two, and the
accuracy will become 91.89% from 97.14%. On the other
hand, ChangeFinder achieved 68.57% accuracy and 81.36%
F-measure with 24 TPs, 0 FPs, and 11 FNs, showing a lower
level of performance than the GLASSO engine.

Below we summarize a tendency seen from the re-
sults. Since there were no false positives, all precision
were 100%. ChangeFinder had little noise but missed 11
ports. The GLASSO engine missed only TCP port 444,
while ChangeFinder missed TCP ports 444, 1701, 2004,
2480, 5358, 5379, 5984, 6379, 7379, 7547, and 8010.
Because TCP ports 2480 and 5358 are constant threats,
ChangeFinder seems to have missed the change points.
There are two reasons why ChangeFinder often missed the
change points: 1) Looking at the other nine ports individu-
ally, spikes are clearly present, but in most cases, they are
small; and 2) the smoothing function cannot respond to mo-
mentary events. Among them, 444/TCP, which the GLASSO
engine overlooked, had overwhelmingly few source hosts
compared to other ports. Our darknet analysts used the
NICTER’s 300,000-scale darknet, but this time the GLASSO
engine used the 80,000-scale darknet, so our method seems
to have missed the small event, 444/TCP. In contrast, there
were events that analysts missed (human error), in which
TCP ports 25 and 1701 were detected by the GLASSO en-
gine and added to the ground truth (Table 2).

Fig. 2 The number of source hosts per one hour in October 2018 at TCP
ports where Mirai-related cyberthreats were observed. (sensor A, part I)

Fig. 3 The number of source hosts per one hour in October 2018 at TCP
ports where Mirai-related cyberthreats were observed. (sensor B, part II)

Fig. 4 The number of source hosts per one hour in October 2018 at
TCP ports where Mirai-related cyberthreats were observed. (sensor A and
NICTER, part III)

4.4 Details of Detected Cyberthreat

We describe the details of the detected cyberthreats accord-
ing to the three attack types (IoT malware, router vulnera-
bilities, and other vulnerabilities) in Table 2. We refer to
security vendor articles related to threats on each TCP port.
If there is no reference, we provide an explanation based on
the observed features and the transition graph of the num-
ber of source hosts per one hour (Fig. 2 to 7) to improve the
reliability.

IoT Malware: Threats from Mirai, Hajime, and
HNS were observed on the 16 TCP ports of the IoT malware
type in Table 2. First, Mirai has a feature where a sequence
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Fig. 5 The number of source hosts per one hour in October 2018 at TCP
ports where router vulnerability-related cyberthreats were observed. (sen-
sor A)

Fig. 6 The number of source hosts per one hour in October 2018 at TCP
ports where other vulnerability-related cyberthreats were observed. (sensor
A, part I)

Fig. 7 The number of source hosts per one hour in October 2018 at TCP
ports where other vulnerability-related cyberthreats were observed. (sensor
A, part II)

number denotes a destination IP address converted to deci-
mal in SYN packets. Figure 2, 3, and 4 show the TCP ports
where such Mirai features were monitored. The 10 TCP
ports in Fig. 2 were regularly scanned from approximately
1,000 hosts, but on October 22, the number of source hosts
rapidly increased to approximately 6,000 and gradually de-
creased. In Fig. 3, we observed an abrupt scan from about
7,000 hosts to four TCP ports on October 20. It was dif-
ferent from the event in Fig. 2 that many hosts originated
in China and had a fixed window size of 14100. Figure 3
shows the results for sensor B because this threat could not
be observed with sensor A.

Figure 4 shows three TCP ports, which had relatively
few hosts, but carried Mirai features. Regarding 7547/TCP,
many hosts from Egypt targeted the vulnerability that was
published on October 20, 2016 [19]. The event towards
444/TCP, mainly by hosts from Greece on October 23, was
the only threat that the GLASSO engine overlooked. As de-
scribed in the previous section, approximately 500 source
hosts observed with 444/TCP when monitored from the
whole NICTER, but only about 200 hosts were observed from
sensor A, and the number of source hosts was small com-
pared to other threats.

Next, Hajime regularly scanned TCP ports 5358, 9000,

and other ports [20]. In Hajime, the window size is fixed at
14600, and one byte before and after the sequence number
is 0. Finally, HNS scanned TCP ports 23, 80, 8080, 2480,
5984, and other random ports [21].

Router Vulnerability: The 12 TCP ports of router
vulnerability types in Table 2 were divided into threats
against vulnerabilities presented in the router products from
five manufacturers. Figure 5 shows multiple scans from de-
vices that seem to be manufacturer A’s router products, and
they scanned the ports that are open by default [22]. The
window size was fixed at 1024 in all cases.

Second, 37215/TCP was scanned from router prod-
ucts of manufacturer B [23], 8181/TCP was scanned from
router products of manufacturer C [24], and 8001, 8081/TCP
(Fig. 2) were scanned from the router products of manufac-
turer D. The characteristics of Mirai were seen from the
scanning activity to these four ports. When we accessed
the observed source hosts through the HTTP, many login
screens for each router company were displayed. Finally,
using the vulnerability of manufacturer E’s Universal Plug
and Play (UPnP), multiple router products using manufac-
turer E’s UPnP were hijacked, and network scans were ob-
served from the infected routers (5431/TCP) [25].

Other Vulnerability: The seven TCP ports of the
other vulnerability types in Table 2 were broken down
into five threats to vulnerabilities of applications and ser-
vices. The three TCP ports 1701, 49152, 5900 in Fig. 6 are
scans targeting services such as L2TP VPN (Layer 2 Tun-
neling Protocol Virtual Private Network), Supermicro BMC
(Baseboard Management Controller), and VNC (Virtual Net-
work Computing).

1701/TCP was suddenly scanned from China on Octo-
ber 9. On October 14, Mirai-featured scans from Egypt
were observed for 49152/TCP. 5900/TCP gradually in-
creased the number of source hosts and peaked on Octo-
ber 29. The window size of these scan packets was fixed at
8192, and many hosts considered to be Windows OS were
observed. Next, although there are relatively few hosts in
Fig. 7, scans targeting NoSQL database service vulnerabili-
ties were observed on October 31 (TCP ports 5379, 6379,
and 7379). In 2004/TCP, the number of source hosts in-
creased from October 15, and the window size was 14600
or 29200. Many of the hosts were running WordPress.

Many of the cyberthreats in October 2018 were attacks
using known malware or known vulnerabilities that were ob-
served continuously or regularly before that time. In particu-
lar, Mirai-related threats were regular and complicated. On
the other hand, many of the ports without references above
are zero-day threats scanned from a large number of source
hosts such as manufacturers A, D, and some other vulnerabil-
ities. From this perspective, the GLASSO engine has shown
the possibility of detecting zero-day threats at an appropriate
time.
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Table 4 Average performance when the GLASSO engine was run five times for each β, using a con-
fusion matrix and five evaluation metrics

Sensor
β

#Unique
#TPs #FPs #FNs #TNs Accuracy [%] Precision [%] Recall [%] F-measure [%] FPR [%]

ID Alert-times

300 49 4.8 5.6 13.2 984.4 98.13 46.15 26.67 33.80 0.57

C
500 44 9.2 4.6 8.8 985.4 98.67 66.67 51.11 57.86 0.46
600 20 14.6 1 3.4 989 99.56 93.59 81.11 86.90 0.10
700 18 18 0 0 990 100.00 100.00 100.00 100.00 0.00

300 38 4.2 6.4 7.8 989.6 98.59 39.62 35.00 37.17 0.64

D
500 31 8.4 7.2 3.6 988.8 98.93 53.85 70.00 60.87 0.72
600 15 10.4 2.2 1.6 993.8 99.62 82.54 86.67 84.55 0.22
700 14 12 1.2 0 994.8 99.88 90.91 100.00 95.24 0.12

5. Discussion

In this section, we discuss the adverse effect of limiting the
number of source hosts and describe the technical limita-
tions of our method.

5.1 Limiting the Number of Source Host: β

Among the preprocessing of the GLASSO engine performed
in the demonstration experiment, we investigate how limit-
ing the number of source hosts to β affects the performance.
We set the β to 300, 500, 600, and 700 for darknet data of
sensors C and D for one week from October 1 to 7, 2018,
and ran the GLASSO engine five times, respectively. Here,
the GLASSO engine was set to the same conditions as in the
demonstration experiment. The minimum number of source
hosts in one time slot of sensors C and D was 497, 460, the
median was 579, 549, and the maximum was 1358, 1260
respectively. Further, we used the alerts obtained without
the host restriction of β as an answer label and examined a
change in performance. Consequently, 18 alerts were ob-
tained for sensor C and 12 for sensor D.

Table 4 shows the average performance when the
GLASSO engine was run five times for each β, using a con-
fusion matrix and five evaluation metrics. Also, it shows the
number of unique alert-times obtained in five trials for each
threshold β. The total number of samples in the confusion
matrix was 1,008 because there were 10-minute time slots
for one week. The metrics here are same as Table 3, but
this time #TNs can be counted, so the accuracy is (#TPs +
#TNs) / (#TPs + #FPs + #FNs + #TNs), and the false pos-
itive rate (FPR) is #FPs / (#FPs + #TNs). As a result, we
can see from Table 4 that if a large number of hosts were re-
moved, the performance was significantly reduced, and the
number of unique alert-times increased and varied greatly.
On the other hand, when a small number of hosts were lim-
ited, the performance was improved, and the dispersion be-
tween five trials was reduced.

In other words, we conclude that it is better not to limit
the number of hosts. Table 5 offers summaries on the num-
ber of source hosts and runtime per time slot for each sen-
sor (Min, Median, Mean, and Max) and the setting of β in
the demonstration experiment. The number of source hosts
and the runtime is calculated per time slot, and the runtime

Table 5 Summaries on the number of source hosts and runtime per time
slot for each sensor (Min, Median, Mean, Max), and the setting of β in the
demonstration experiment

Sensor
#IPs β

#Hosts, Runtime [sec]
ID Min Median Mean Max

A 29,182 1100
450, 1784, 1753, 5131,

48.88 309.22 286.49 839.56

B 14,593 1100
290, 962, 1011, 2999,

16.86 247.93 233.74 816.98

C 4,098 1300
144, 608, 565, 2475,
7.60 51.21 94.61 618.37

D 4,096 1300
74, 576, 541, 2457,
5.06 29.09 59.63 543.64

E 8,188 1300
212, 889, 871, 3403,
9.17 95.58 164.46 697.05

F 16,384 1100
307, 1307, 1270, 4177,

16.75 231.09 212.48 737.40

G 2,044 1300
90, 382, 359, 1774,
5.18 14.47 25.66 523.42

H 2,045 1300
93, 372, 342, 1242,
4.83 14.19 20.85 482.96

refers to the time from the start to the end of algorithm 2.
Sensors C, D, E, G, and H, which have small observation
scales, could be processed in most cases without randomly
selecting a host, and the performance is not considered to
have dropped significantly as a consequence.

We face a problem about sensors A, B, and F, which
have a large observation scale. While such sensors some-
times did not exceed the threshold β, in many cases the
source hosts were randomly selected. Note that in the
demonstration experiment in Table 5, the β was set to 1100
to 1300, but in the experiment in Table 4, β was set to 300 to
700, and strict evaluation was performed. As the sampling
rate increases, synchronizations that can be statistically es-
timated increase, and the reliability of random sampling im-
proves. Therefore, it is considered that the performance has
not dropped dramatically in the demonstration experiment
as compared to when β in Table 4 is 300. Moreover, look-
ing at the detection accuracy of each sensor in Table 3, the
sensor with the larger observation scale shows better detec-
tion accuracy. The reason is that the larger the observation
scale, the wider the range of cyberthreats that can be ob-
served. This random sampling is indispensable to maintain
real-time processing. Since the accuracy cannot be guaran-
teed by random sampling, running the same process several
times in parallel can be considered as one measure.
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5.2 Limitation

We describe two limitations that were difficult to evaluate in
this paper. First, it is difficult to evaluate whether the de-
tected alert time is correct or not. There is no quantitative
way to certainly prepare correct labels for this study as well
as for studies that detect anomalies through time-series data.
Then, we evaluated the performance in a relatively easy way
by examining only information on targeted TCP ports with-
out considering when alerts were detected. It means if there
were at least one alert for a correct target TCP port during
an entire dataset, it would be counted as a true positive. In
this work, we demonstrated the cases in which new threats
that occurred during the evaluation period could be detected
at an appropriate time, so we confirmed the possibility of
detecting cyberthreats promptly.

Second, it is difficult to assess whether the hosts with
the estimated synchronicity were actually infected the same
and behaved in the same way. By extracting and analyzing
those hosts that are assumed to be synchronized, more com-
plex knowledge may be obtained. The above two limitations
are related to the darknet constraints. Because our darknet
does not return a response, only the first SYN packet of TCP
arrives. Therefore, we can guess the threat, but we do not
completely know the intention of the scan on the darknet.
One promising measure to evaluate the above two limita-
tions is to use a darknet and a honeypot together. For ex-
ample, verifying that scans of the same features as alerts
obtained by the GLASSO engine have also been observed
in the honeypot will improve the reliability of the GLASSO
engine. In order to achieve this goal, it is necessary to con-
sider what kind of honeypots should be prepared and how to
integrate and analyze the darknet and honeypot information.

6. Conclusion

Early detection of cyberthreats is important to use the Inter-
net safely, and the darknet is suitable for observing global
cyberthreats. As a conventional method, there is a method
to find the change point of the traffic volume, but techni-
cal limitations have come in recent years. The proposed
GLASSO engine automatically detects a time slot where
the synchronization among source hosts is abnormally high
in real time. Using darknet data, the ground truth of cy-
berthreats during the test period is created, and a conven-
tional method, ChangeFinder algorithm, is compared with
the GLASSO engine. As a result, the detection accuracy
of cyberthreats of our method is about 29% better than the
conventional method. Through this work, it is possible to
quickly grasp global cyberthreats regardless of new types
and variants of malware, and this state-of-the-art engine can
substantially streamline security operations and reduce the
burden of network security operators and incident response
teams. The datasets we used in this paper are available on-
line at https://csdataset.nict.go.jp/darknet.
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Appendix A: Graphical Gaussian Model

A graphical Gaussian model is a probabilistic model for
which a graph expresses the dependence structure between
random variables given a multivariate Gaussian distribution.
To measure the dependency structure between random vari-
ables, there is a method of obtaining a precision matrix Σ−1

(the inverse of the covariance matrix Σ) from which the con-
ditional independence of a pair of random variables is able
to be estimated [26]. If and only if (Σ−1)i j = 0, then xi and
x j are independent, conditioned on all the other variables.

The definition of the graph in the GGM using the pre-
cision matrix Σ−1 ∈ RN×N of a sequence of random variables
following an N-dimensional multivariate Gaussian distribu-
tion is as follows—an undirected graph G = {V, E} in the
GGM is represented by node set V = {x1, · · · , xN} of N ran-
dom variables and edge set E = {(i, j)|( ˆΣ−1)i j � 0}. In other
words, the graph G shows the conditional independence of
all pairs of random variables.

Appendix B: Graphical Lasso

The maximum-likelihood estimate of a precision matrix Σ−1

is the inverse of the sample covariance matrix S. We ex-
pect the precision matrix Σ−1 to be a sparse matrix such that
for the variable pairs with essential dependencies, the corre-
sponding elements are nonzero, and for the weakly related
variable pairs, the corresponding elements are zero. In gen-
eral, however, the elements of the inverse of the sample co-
variance matrix S cannot be strictly zero.

Accordingly, the graphical lasso, which is a sparse
structure learning algorithm, optimizes the precision ma-
trix by solving a penalized maximum-likelihood equation
with �1 regularization term r

∑
i j |(Σ−1)i j| [8]. The input ar-

guments of the graphical lasso algorithm are the sample
covariance matrix S and the �1 regularization coefficient r
(≥ 0). Here, r is a hyperparameter for deciding how much
dependency is regarded as noise-derived, and it is possible
to adjust the sparsity of the precision matrix to be estimated.
From the above, the GGM graph using the precision matrix

ˆΣ−1 estimated by the graphical lasso algorithm expresses the
more essential dependencies of all variable pairs than the
maximum-likelihood estimate of the precision matrix.
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