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PAPER

Native Build System for Unity Builds with Sophisticated Bundle
Strategies

Takafumi KUBOTA†a), Nonmember and Kenji KONO†, Member

SUMMARY Build systems are essential tools for developing large soft-
ware projects. Traditionally, build systems have been designed for high
incremental-build performance. However, the longer build times of recent
large C++ projects have imposed a requirement on build systems: i.e., unity
builds. Unity builds are a build technique for speeding up sequential com-
pilation of many source files by bundling multiple source files into one.
Unity builds lead to a significant reduction in build time through removal
of redundant parsing of shared header files. However, unity builds have
a negative effect on incremental builds because each compiler task gets
larger. Our previous study reported existing unity builds overlook many
better bundle configurations that improve unity-build performance with-
out increasing the incremental-build time. Motivated by the problem, we
present a novel build system for better performance in unity builds. Our
build system aims to achieve competitive unity-build performance in full
builds with mitigating the negative effect on incremental builds. To ac-
complish this goal, our build system uses sophisticated bundle strategies
developed on the basis of hints extracted from the preprocessed code of
each source file. Thanks to the strategies, our build system finds better bun-
dle configurations that improve both of the full-build performance and the
incremental-build performance in unity builds. For example, in comparison
with the state-of-the-art unity builds of WebKit, our build system improves
build performance by 9% in full builds, by 39% in incremental builds, and
by 23% in continuous builds that include both types of the builds.
key words: build systems, unity builds, C++

1. Introduction

Build systems [1]–[10] are considered essential to devel-
oping large software projects. They orchestrate thousands
of order-dependent commands including compiling source
files, linking object files, and testing output binaries, to en-
sure that target programs are built correctly. Since develop-
ers execute a build system whenever they modify the source
code, the performance of build systems directly affects the
efficiency of developing cycles.

Build systems provide incremental builds [5] for high
efficiency when rebuilding software projects with small up-
dates. Incremental builds mean small partial rebuilds, where
few source files need to be recompiled. For efficiency of in-
cremental builds, the build systems calculate the minimum
amount of commands necessary to generate a target binary
that reflects the changes made to the source code. For exam-
ple, when one source file is to be updated, the build system
recompiles only that source file; it does not recompile any
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other source files.
However, since the code size of software projects has

increased, the full build times and even incremental build
times have become longer and problematic [11]–[14]. Full
builds mean building the whole of target projects, in which
many source files are compiled. For example, WebKit [15],
which is the web browser engine used by Safari, takes 56
minutes to full-build with 18 threads on our Dell Power
Edge R430 server. Chromium [16], an open-source browser
project that forms the basis for the Chrome web browser,
takes two and a half hours to build. Furthermore, incre-
mental build times have become longer as well because of
the many recompilations needed for updating the source
and header files. According to the logs of the build bot of
WebKit [17] collected from March 17 and August 3 in 2018,
build tasks taking more than 15 minutes were submitted 164
times on 61 out of 75 days.

To accelerate builds, large C++ projects have started to
apply a new build technique, called unity builds [18]–[24].
In unity builds, multiple source files are bundled into one
unity file like in Fig. 1. Then, the unity file is passed to
the compiler instead of the bundled source files. As a re-
sult, the compiler can eliminate the redundant processing of
the header files commonly included in bundled source files.
In so doing, the build times of large C++ projects can be
dramatically reduced; for example, full build times can be
decreased by 53% in WebKit and by 63% in Chromium.

However, unity builds negatively impact incremental
builds [14]. They enlarge each compiler task by bundling
multiple source files. For example, in unity builds, unity
files are compiler tasks that are independently passed to
the compiler as its input. However, since a unity file
#includes multiple source files, not only updated source
files but also non-updated source files are recompiled in
incremental builds with unity builds. For example, when
API/JSBase.cpp in Fig. 1 is updated, seven other source
files have to be recompiled as well. These unnecessary

Fig. 1 Example of unity files in WebKit.
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recompilations result in large slowdowns in incremental
builds.

In existing unity builds [18]–[24], they simply bundle a
fixed number of source files in alphabetical order, as shown
in Fig. 1. However, this simple strategy ignores character-
istics of the source files to be bundled (e.g., which header
files are #included in the source files) so that undesired
source files are likely to be bundled together. In our previous
study [14], we investigated the unity builds of the WebKit
and revealed some better bundle strategies that improve both
the full-build performance and the incremental-build perfor-
mance in unity builds.

Based on the results, this paper presents a novel build
system that supports unity builds using the sophisticated
bundle strategies. It automatically collects hints for find-
ing better bundle configurations during the build. Then,
it bundles source files based on the sophisticated bundle
strategies by using the collected hints. As a result, our
build system achieves better build performance in large
C/C++ projects including WebKit, LLVM [25], and the
Mesa 3D library [26], compared with existing unity builds
such as WebKit-unity builds [18], CMake-unity builds [27],
and Meson-unity builds [20].

This paper makes the following contributions.

1. It proposes a new build system for unity builds using
sophisticated bundle strategies.

2. It evaluates the build system on three large C/C++
projects, showing that it outperforms existing unity
builds.

The rest of this paper is organized as follows. Section 2
provides background information. Section 3 describes the
bundle strategies used in our build system. Section 4 out-
lines the design of our build system. Section 5 demonstrates
the build performance. Section 6 covers related work. Sec-
tion 7 concludes this paper.

2. Background

2.1 Build Systems

Build systems [1], [2], [4]–[7], [9], [10], [28]–[31] automate
the execution of order-dependent tasks to generate target
programs. A build system takes source files and build rules
as inputs, constructs a dependency graph from the rules, and
appropriately executes build commands.

A dependency graph consists of nodes and edges. Each
node represents files and internal states of build systems.
Edges show input and output dependencies among nodes.
Build commands are set to edges. They include not only
compiling and linking but also other commands such as
changing directories and archiving files. When a build sys-
tem tries to process a build command for an edge, it first
confirms all input nodes are ready, then executes the com-
mand.

Figure 2 shows an example of the dependency graph

Fig. 2 Example of the dependency graph in build systems.

for generating an executable file of main.exe. Here, nor-
mal rectangles show nodes of the files (i.e., header, source,
object, and executable files). Double-lined rectangles indi-
cate nodes of the internal states in the build system for issu-
ing build commands. Then, arrows are the edges to specify
dependencies and build commands.

To understand how the build system deals with this de-
pendency graph, let us discuss a case, when a user runs
the build system specifying main.exe as the desired out-
put without any previous compile result. The build system
first finds the linking edge from LINK main as the required
task. However, it figures out the two dependent object files
(main.o and lib.o) are not ready for this task. So, it it-
erates back in the dependency graph to find the edges for
creating these object files. Then, it eventually finds the two
compiling edges from COMPILE main and COMPILE lib. It
confirms that all dependent input files exist and starts to is-
sue the build commands at first. As a result, it will first build
lib.o and main.o, in any order since these tasks are inde-
pendent, and then build main.exe.

Build systems are essential tools for developing large
software systems. Whenever developers modify the source
code, they have to re-execute a build system to synchro-
nize their modification to the target programs. This build
method means the performance of build systems directly
affects the productivity of typical developing cycles. As a
result, the build systems must have high performance and
efficiency [32].

2.2 Incremental Builds

Traditionally, build systems have been designed for high
efficiency when rebuilding target programs with small
changes. Incremental builds [5] are a build technique to
avoid unnecessary build tasks when rebuilding programs. In
incremental builds, build systems track dirty source files and
calculate the minimum amount of build tasks from the de-
pendency graph. This build method reduces the build time
when a developer updates a small number of source files, be-
cause most of the build tasks can be skipped in incremental
builds.

Many of the existing tools and studies aim at



128
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021

improving the performance of incremental builds. For ex-
ample, Ninja [7] is a state-of-the-art build system that fo-
cuses on very fast incremental builds by forbidding users to
express complex build rules. Compile caching tools such
as CCache [33] and cHash [34] enhance incremental build
performance by avoiding redundant compilations via textual
hashing or AST hashing. Precompiled headers [35]–[37] are
useful for saving unnecessary header recompilations.

2.3 Long Build Times of Large C++ Projects

However, the build times for large C++ projects have be-
come unacceptably long [11]–[14]. System software has
continuously and rapidly evolved, and code sizes have
reached thousands of source files and millions of lines of
code (LOC). This evolution has increased the build time for
full and incremental builds in C ++ projects. For instance,
a full build of WebKit [15] takes 56 minutes with 18 threads
on our DELL Power Edge R430 server. Chromium [16]
takes two and a half hours to build on the same server. Such
long build times are problematic for individual developers in
open source projects who compile and build their projects
on a standard laptop [38]. The build times of incremental
builds are also problematic because source-code modifica-
tions are no longer small in large open-source projects. For
example, a recent study [14] has pointed out that build tasks
taking more than 15 minutes were submitted to build bots of
WebKit almost every day from March 17 and August 3 in
2018. In such build tasks, 1,030 source files were recom-
piled on average.

To confirm that the problem is not limited to WebKit,
we analyzed the logs of build bots of LLVM [25], [39],
which is an open-source compiler framework written in
C++, from March 9 to August 1 in 2018. The number of
build tasks submitted during the period was 1,146. Build
tasks consuming more than 15 minutes happened 227 times
on 74 out of 81 days when the build bot was active. Thus,
long build times for large C++ projects are commonplace.

Note that the build bots of both projects mentioned
above use CCache. CCache is a compile caching tool, which
saves and reuses previous compiled results indexed by the
hash of the preprocessed code. However, the benefit of the
compile caching tool is limited because many developers
change different source and header files at a time in large
open-source projects. Such updates easily change the pre-
processed code so that CCache cannot reuse previous com-
piled results. As a result, many recompilations happen. Pre-
compiled headers do not work well because header files are
often updated in such long builds. For example, accord-
ing to the build bot logs of both projects, the average num-
ber of modified header files was 11 in LLVM and seven in
WebKit. Updating even one header file makes the precom-
piled headers obsolete so that they have to be recompiled.

2.4 Unity Builds

The problem of long build times highlights a new

Fig. 3 How much time does the compiler spend parsing? Here, the x-
axis shows source-file indexes for each project. The y-axis shows parse
ratios for each source file. The parse ratio indicates the occupancy of pars-
ing time during the compile time. The times are measured by using the
timer report functionality of GCC (-ftime-report). The x-axis is sorted in
ascending order of the parse ratio.

requirement for build systems that need to speed up sequen-
tial compilation of many source files.

One of the main reasons why build times are so long
in large C++ projects is redundant header processing [11]–
[14]. In large C++ projects, much of the compilation time
is spent parsing. For example, Fig. 3 a and Fig. 3 b show the
distribution of times in which the compiler performs pars-
ing. According to these figures, parsing occupies a majority
of the compilation time (60%>) in many source files (56%
in LLVM and 80% in WebKit). This high ratio stems from
shared header files that are included in multiple source files.
The compiler repeatedly reads the shared headers, parses
them, and instantiates the same template bodies across dif-
ferent source files.

To eliminate redundant header processing in multiple
source files, developers have started to use a new build
technique, called unity builds; there are several project-
specific names for this technique such as unified builds in
WebKit [18]. Unity builds are designed for achieving high
build performance in large C++ projects. In a unity build, a
bunch of source files are #include’d in a single unity file
(as shown in Fig. 1) which is then compiled. In current unity
builds, the bundle strategy, which is how to select source
files to be bundled together, is simply bundling a fixed num-
ber of source files in alphabetical order. The limit of bun-
dle size, which is the number of #include’d source files, is
project-specific value. However, it is often set to eight based
on developers’ experience [11], [18], [27]. In unity builds,
bundle configurations, which are rules of source files bun-
dled together, are decided by the bundle strategy and the
maximum bundle size.

Unity builds accelerate both compiling and linking.
Compilers parse and compile commonly included headers
among the bundled source files only once and make fewer
instantiations of the same templates among the source files.
Linkers also receive the benefits of unity builds by reducing
redundant processing in linkers. For example, linkers do not
have to remove N − 1 copies of the same weak symbol de-
fined in a shared header included in N source files (N is the
bundle size). As a result, unity builds have dramatically re-
duced build times of large C++ projects. For instance, they
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have been shown to reduce the full build times in WebKit by
53% (56 minutes→ 28 minutes) and in Chromium by 66%
(2 hours 34 minutes→ 52 minutes).

However, unity builds have the disadvantage of in-
creasing incremental build times. Since unity builds enlarge
each compiler task by bundling multiple source files, an in-
cremental build of one updated source file involves N − 1
non-updated source files bundled into the same unity file.
Developers have recognized this downside, but they under-
estimate its negative effect. The WebKit project reports that
the worst slowdown is 20% in a typical scenario where one
or two files are touched [40]. However, our previous study
exposed a slowdown in incremental builds of one source file
of 479% (19 seconds→ 110 seconds) in the worst case [14].

3. Bundle Strategies in Proposed Build System

3.1 Problem in Naive Bundle Strategy

While unity builds are considered as useful for reducing
the build times of C++ projects and are being used in real
projects [18], [19] and build systems [20]–[24], all of their
approaches are inadequate. In particular, the current bun-
dle strategy is simple and ignores the characteristics of the
bundled source files. This means that bundle configurations
that may achieve higher build performance and cause less
incremental build slowdown are likely to be overlooked. To
address this problem, we use sophisticated bundle strategies
introduced by our previous study [14].

3.2 Sophisticated Bundle Strategy

Before we describe the bundle algorithm, let us describe
our bundle strategies. In our previous study, we investi-
gated the unity builds of WebKit and suggested some bundle
strategies that improve the build performance of the unity
builds [14]. However, in the previous study, we just inves-
tigated the potentiality of how much sophisticated bundle
strategies improve unity-build performance and showed an
empirical study only in WebKit. We did not integrate the
strategies into build systems, did not discuss whether they
are able to be integrated or not, did not show the over-
head for applying them, and did not evaluate them on other
projects. In this paper, our build system uses two of the four
strategies proposed in that study. Here, we introduce the
employed strategies.

Strategy: bundling source files with high header-file
similarity. Since unity builds cut off the redundant process-
ing of shared header files, they work well when most of the
included headers overlap among the bundled source files. To
quantify the overlap of the included header files, the Jaccard
index [41] is used to gauge the similarity of two sets. It is
defined as the size of the intersection divided by the size of
the union of the two sets; here, each set indicates the header
files included in a source file.

Here, unlike existing unity builds, we bundle source

files regardless of the directories they are in. WebKit bun-
dles source files only in the same directory. The reasons why
WebKit developers made this decision are not explained, but
it is speculated as follows. Developers often place related
source files in the same directory whose name reflects the
usage. For example, according to Fig. 1, source files for
implementing APIs are in the same directory. As a result,
source files often include common header files where basic
classes and function prototypes are defined. So, the header-
file similarity seems to be high among source files in the
same directory. However, we found many source files in dif-
ferent directories have high header-file similarities. Based
on the result, our build system tries to bundle source files in
different directories if the header-file similarity is high.

Strategy: bundling source files with similar compile
time. The compile time of each bundled source file is sen-
sitive to the unity-build performance. The imbalance in the
compile times of bundled source files causes significant per-
formance degradation in incremental builds. For example,
when we bundle source A whose compile time is one sec-
ond with source B whose compile time is 10 seconds, the
build time of unity builds cannot be under 10 seconds be-
cause the compile time of source B becomes a bottleneck.
In such a situation, the slowdown of the incremental build
of source A will be dreadful. The minimal overhead is esti-
mated to be 9 seconds (10x slowdowns), which is definitely
unacceptable for any developer updating source A.

However, this strategy is hard to be applied straight-
forwardly, because accurate compile times are not available
before the build. We initially tried to use a machine learning
technique to estimate compile times from the preprocessed
code. However, we eventually gave up this approach be-
cause most of the techniques use information obtained by
parsing source files [42]. Parsing the source files takes up
a significant portion of the compilation time and adds over-
head, as described in Sect. 2. Thus, we decided to use the
word count of ‘;’ to estimate compile times. Figure 4 shows
the relationship between the number of ‘;’s and the com-
pile times in LLVM and WebKit. We performed polyno-
mial regression on these data and calculated an approximate
expression that our build system uses to estimate the com-
pile times. Note that although this estimation is simple and
not accurate completely, it is still effective in increasing the
unity-build performance as described in Sect. 5.

Fig. 4 Compile time estimation
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4. Design of Our Build System

In this section, we describe the design of our build system,
which uses sophisticated bundle strategies to achieve better
unity-build performance.

4.1 Meta Build System vs. Native Build System

When we embarked on the design of our build system, we
made an essential design choice, as follows.

Current build systems can be classified into two types.
Native build systems (e.g., Make [5], Ninja [7], llbuild [4],
and so on) automatically issue build commands to gener-
ate target programs. On the other hand, meta build systems
(e.g., CMake [3], Meson [6], Waf [24], and so on) do not
build directly, but instead, generate build rules to be used by
a native build system.

Unity builds are usually implemented as a module of a
meta build system or a configuration of an integrated devel-
opment environment (IDE) [18]–[24]. Despite this, we de-
cided we should take the native build system approach, for
the following reason. To apply sophisticated bundle strate-
gies, our build system has to extract hints for bundling from
the preprocessed code of each source file. However, it is dif-
ficult to complete the preprocessing of all source files when
meta build systems are run. This is because not all of the
header files are prepared before the build.

In large projects, developers sometimes use simple de-
scriptions for defining similar data structures. The actual
header files are generated from the descriptions during the
build by using specific tools (e.g., llvm-tblgen in LLVM)
or script languages (e.g., ruby in WebKit), as shown in
Fig. 5. Thus, during the execution of the meta build sys-
tem, preprocessing fails for some source files because of the
missing header files.

To deal with this problem, our build system needs a
scheduling feature to run the preprocessor at the appropri-
ate scheduling point during the build. To clarify this re-
quirement, we describe the build behavior using the depen-
dency graph depicted in Fig. 6. Here, our build system tries
to bundle Attributes.cpp that include Attributes.inc.
Attributes.inc is a header file dynamically generated
from Attributes.td by llvm-tblgen. In short, our build
system runs the preprocessor for Attributes.cpp just be-
fore it processes the compiling edge for Attributes.o (the
highlighted arrow in the figure). This is because, when it
starts to deal with the edge, it has already confirmed that all
inputs (i.e., Attributes.cpp and Attributes.inc) are
ready. Thus, the preprocessing does not fail due to the lack
of the dependent header file.

Note that our build system does not run the prepro-
cessor just after the creation of Attributes.inc, because
the number of dynamically generated header files is not al-
ways one. Waiting until the processing of the compilation
edge begins is a promising way to confirm all required input
nodes are ready.

Fig. 5 Example of the header files dynamicallygenerated by
llvm-tblgen

Fig. 6 Dependency graph including the dynamically generated header
file

4.2 Overview

An overview of our build system is shown in Fig. 7. The
design and implementation are based on a state-of-the-art
native build system called Ninja [7]. To clarify our contri-
butions, they are highlighted in the figure with double-lined
boxes.

First, our build system takes source files and build man-
ifests as its inputs and generates the dependency graph, just
as Ninja does. Next, it analyzes the dependency graph for
tracking updates to the file organization. It tracks additions
and removals of source files by comparing the analysis re-
sult with the previous one. When it detects any change
that affects the bundle configurations, it invalidates the af-
fected configurations and reconfigures them in subsequent
bundling steps.

After the dependency graph analysis, our build system
starts its bundling steps. The bundling steps consist of two
parts: ahead-of-time (AOT) and just-in-time (JIT). In AOT
bundling, it bundles source files whose dependent header
files exist before the build. It runs the preprocessor for the
source files and gets hints for bundling from the prepro-
cessed code. After bundling the source files, it modifies the
compile commands for compiling the unity files. Then, it
starts to schedule the build tasks.

When our build system starts the compilation of the
source file whose dependent header files are not ready be-
fore the build, it interrupts the processing and performs JIT
bundling. At this moment, it is confirmed that all header
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Fig. 7 Overview of the work-flow

files for this compilation are ready so that it can execute the
preprocessor and bundle the source file. After it bundles the
source files and modifies the compile commands, it resumes
the build schedule. Once it finishes a unity build, it saves
the bundle configurations for reuse in future builds.

4.3 Dependency Graph Analysis

During software development, source files are added and re-
moved. To reflect such updates to the file organization, our
build system keeps track of the updates and modifies the
previously created bundle configurations. It accomplishes
these tasks by tracking changes in the dependency graph.

Our build system analyzes the compiling edges and
linking edges in the dependency graph and determines sets
of source files that can be bundled together. In this pa-
per, we call such source-file sets bundle-sets. For exam-
ple, source files that are compiled with different flags or that
are linked to different target programs cannot be bundled to-
gether. When a developer adds a new source file, it analyzes
the corresponding edges for the new source file and registers
the source file to an appropriate bundle-set. As a result, it
can bundle the source file in subsequent unity builds. It does
not bundle a new source file immediately because changing
the bundle configurations will cause additional recompila-
tions of other source files or unity files. It only reconfigures
the bundle configurations when all of the source files in the
bundle-set are to be compiled.

When a source file is removed, our build system ex-
cludes the source file from the bundle-set where the source
file is. It also checks whether an existing unity file includes
the removed source file. If it does, the source file is removed
from the unity file and from the bundle configuration. It also
makes sure the unity file is recompiled to avoid inconsisten-
cies in the output programs.

4.4 Bundling Source Files

Now, let us describe how our build system bundles source
files. As mentioned above, it performs two types of
bundling: ahead-of-time (AOT) and just-in-time (JIT). Af-
ter the dependency graph analysis, it gets information on the
source file set that can be bundled together (i.e., bundle-set).
When all of the source files in a bundle-set are ready for
preprocessing before the build, it bundles the source files by
using AOT bundling. On the other hand, if the set contains
source files that include dynamically generated header files,
it performs JIT bundling on the set. In the JIT bundling, our
build system waits until all source files in the set are ready

for preprocessing; then it bundles the source files. In par-
ticular, our build system waits for all of the inputs for com-
piling edges in the dependency graph are ready. Although
AOT and JIT bundling have different timings for bundling
the source files, their bundlings consist of three common
steps.

First, our build system runs the preprocessor for the
source files in order to extract two pieces of information. To
compute the header file similarity, it collects the dependency
of header files by using a general compiler feature (e.g., -M).
To estimate the compile time for each source file, it counts
the number of ‘;’s and calculates the compile times by us-
ing the approximate expression as we described in Sect. 3.2.
We show the overhead of this additional preprocessing in
Sect. 5.1. This overhead typically happens only at the first
unity builds because our build system saves generated bun-
dle configurations and reuses them in subsequent builds.
Bundle-hints are managed by timestamps of their creation
and will be updated only when reconfiguring bundle config-
urations.

Once our build system finishes gathering bundle-hints
of all the source files that can be bundled together, it starts to
bundle the source files. Note that bundling source files into
unity files with the highest header-file similarity and with
the highest compile-time similarity is a knapsack problem
which is NP-hard. So we decided to use a simplified algo-
rithm to avoid large overhead in computing which source
files are bundled together.

Algorithm 1 shows an algorithm overview. First, to
bundle the source files with high header-file similarity, it cal-
culates the similarities among the source files by analyzing
the file dependency and saves the result as a sorted-list (line
1-2). Then, it bundles each two source files in order of those
with the highest header-file similarity (line 3-15). To keep
the header-file similarity in unity files high, it stops bundling
source files if the similarity falls below 90% (line 4). To
bundle source files with similar compile times, it does not
bundle source files whose compile times have a 50% differ-
ence, even the header-file similarity is high (line 5). These
thresholds are set according to the results of the previous
study [14].

There are three ways to bundle the two source files.
First, if both of these source files have not been bundled yet,
our build system bundles them into a new unity file (line 6-
9). Second, if one of the source files has not been bundled
and the other one has already been bundled in a unity file,
our build system checks whether the unbundled source file
can be added to the unity file. In particular, it checks that
the bundle size does not exceed the maximum bundle size
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Algorithm 1: Bundling source files
Data: S: source file set, H: list of header-file similarity data

(srci, srcl, similarity)
Result: U: Unity files

1 H ← calculate header-file similarities among S;
2 Sort H by the similarity;
3 foreach Entry (srci, srcl, similarity) ∈ H do
4 if similarity < 0.9 then break ;
5 if Compile times have a huge difference then continue ;
6 if Both of the source files are not bundled then
7 Allocate a new unity file u;
8 Bundle srci and srcl to u;
9 Add u→ U;

10 else if Only one of the source files is bundled then
11 Bundle the unbundled source file, if can;
12 else if srci and srcl are bundled in different files then
13 ui, ul ← get unity files of srci and srcl;
14 Merge the two unity files, if can;
15 end

Fig. 8 Compilation of B.cc will be finished before A.cc and B.cc are
bundled

and whether the compile times of all bundled source files
are similar. If both checks pass, it adds the source file to the
unity file (line 10-11). Here, the similarity of header files
is not checked. This is because, even if the header-file sim-
ilarity is unchecked, the header-file similarity of unity files
is kept high. Our build system finishes the bundling when
if the similarity falls below 90% (line 4). As a result, even
if unchecked source-file pairs are in unity files, the header-
file similarity is kept high; the average similarity of header
files for each unity file is never below 87% in our evalua-
tion. Third, when two source files are bundled in different
unity files, our build system merges these two unity files af-
ter checking the maximum bundle size and the differences
in compile times (line 12-14).

After bundling the source files, our build system mod-
ifies compile commands to compile unity files instead of
bundled source files. In JIT bundling, it sometimes finishes
compiling source files before bundling them because it waits
for dependent header files to be generated for other source
files. For example, Fig. 8 shows two order-independent

compilations of A.cc and B.cc. Based on the dependency
graph analysis result, our build system tries to bundle the
two source files. Since A.cc includes header.h that is a
dynamically generated header file, our build system has to
wait for bundling until the header file is created.

However, the compilation of B.cc does not depend on
the header creation. As a result, the compilation of B.cc
may be done before A.cc and B.cc are bundled. In such
cases, our build system just creates a bundle configuration
and does not modify the compile commands to avoid double
compilations, which cause symbol redefinition errors.

5. Evaluation

We evaluate our build system with existing unity builds of
CMake, Meson, and WebKit, focusing on the build per-
formance in continuous builds, the incremental-build per-
formance, and the full-build performance. This evaluation
shows that:

• Our unity builds have better build performance in con-
tinuous builds (Sect. 5.1).

• Our build system decreases the overhead in incremen-
tal builds (Sect. 5.2).

• Our build system achieves competitive full-build per-
formance (Sect. 5.3).

We perform the evaluation on our DELL Power Edge
R430 server that has a Fedora 29 server installed. The
server consists of 8-core 2.1 GHz Xeon E5-2620V4 proces-
sor, 128 GB of RAM, and a 1TB SATA HDD disk. All
source files are resident in the disk.

We choose three real C/C++ projects for evaluat-
ing our build system, including LLVM (git-commit-id:
ca1e713fdd4), WebKit (git-commit-id: ec4eb02a9e2),
and Mesa 3D library (v18.3.6) [26]. In the evaluations, we
use GCC v8.3.1 and LLVM/Clang v9.0.0 as compilers but
only show the results of the GCC, because the results of the
Clang are similar to those of the GCC. The linker is GNU ld
v2.31.1.

We evaluate the unity builds of WebKit [18], CMake-
unity builds [27], and Meson-unity builds [20] for compar-
ison. The maximum bundle size of each unity file is set
to eight, which is the default value of the unity builds of
WebKit and CMake-unity builds. Note that, there is no limit
on the bundle size in Meson-unity builds. However, this un-
limited bundle size causes a terrible overhead in incremental
builds (Sect. 5.2).

5.1 Build Performance in Continuous Builds

To evaluate how well unity builds of our build system per-
form in continuous builds, we analyze the build times of
sequential git commits in LLVM and WebKit. The build
performance in continuous builds is important in using con-
tinuous integration and automated test tools, such as build-
bot [17], [39]. In this evaluation, we use CCache because it
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Fig. 9 Build performance during 101 builds of real git commits: LLVM

is enabled in the build bots of the two projects.
First, we discuss the results of LLVM. Here, we use the

git commit ca1e713fdd4 (Feb. 6 2019) as the first full build
and use the continuous 100 commits from e9f465a6a80 to
2e390e6fde4 (Feb. 6-8 2019) for this evaluation. 27,552
LOC in 306 files were updated during the commits.

Figure 9 a shows changes in the total build time during
the 101 builds. Figure 9 b depicts the performance gain/loss
of our build system for each build, compared with the exist-
ing unity builds of the CMake. According to the figures, our
build system has better build performance in many builds.
This results in that our build system reduces the total build
time by 20% and saves 13 minutes in total.

For example, our build system achieves the highest per-
formance gain in the 92nd build. This is because our build
system reduces unnecessary recompilations in unity builds.
In unity builds, the number of source files to be recompiled
is increased because of bundling multiple source files into
one unity file. Our build system avoids bundling unrelated
source files together by checking the similarities in included
header files and compile times. This enables our build sys-
tem to efficiently recompile the smaller number of source
files in partial rebuilds. As a result, our build system ex-
cludes 176 unnecessary recompilations for unrelated source
files (404 files→ 228 files).

The reason why our build system takes a longer time
in the first full-build than the CMake-unity build is the
overhead in bundling source files. Since our build system
requires the additional preprocessing to extract hints for
bundling source files, the first full-build time includes the
overhead. The overhead of the additional preprocessing is

10% (33s) in LLVM. However, this overhead is only in-
cluded in the first full-build because our build system reuses
the bundle configuration for subsequent builds.

Figure 10 shows the results of WebKit. Here, the git
commit ec4eb02a9e2 (Feb. 8 2019) is used for the first
full-build and the continuous 100 commits 85f3eaeb98f
to f7a11be17a9 (Feb. 6-12 2019) are used for this evalua-
tion. 15,515 LOC in 624 files were changed during the git
commits.

The figure shows similar results to LLVM. Our build
system achieves large performance gains in many builds and
improves the total build time by 23% and saves one hour and
24 minutes in total. The overhead of the additional prepro-
cessing in the first full-build is 33% (6m 29s).

In particular, our build system achieves the highest
performance gain in the 12th build. This is because the
git-commit (404c727821a) corresponding to this build in-
cludes a file addition and an update on a configuration file
of WebKit-unity builds for the added files. As a result,
many unity files are regenerated and recompiled. However,
our build system avoids such bursts of recompilation by
lazily updating the bundle configuration when source files
are added. It only updates the configuration only when all
of the source files in a bundle-set are to be compiled, as
described in Sect. 4.3. Thus, our build system avoids the
update on bundle configuration due to the file addition and
reduces unnecessary recompilations.

In summary, unity builds with the sophisticated bundle
strategies and our native build system approach succeed in
reducing the total build time of the continuous builds, which
include both large partial rebuilds (like full builds) and small
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Fig. 10 Build performance during 101 builds of real git commits: WebKit

partial rebuilds (like incremental builds). The unity-build
performance in continuous builds is important when unity
builds are employed in continuous integration, automated
testing, and daily development.

5.2 Incremental-Build Performance

Now let us discuss the incremental-build performance of our
unity builds. To evaluate the overhead of incremental builds
caused by unity builds, we measured the slowdowns of re-
building the projects when one source file was updated. The
reason why we used this methodology is that it emphasizes
the disadvantage of unity builds. The slowdowns are eval-
uated by the absolute difference of the build times rather
than the ratio. This is because the ratio does not represent
the developer’s response to the build times. For example,
doubling a slowdown of 0.5 second to 1 second is more ac-
ceptable than a 50% slowdown of 10 seconds to 15 seconds.
Here, we did not use CCache in this experiment. This is
to facilitate the recompilation of each source file. In other
words, we only update source-file timestamps to trigger
recompilations.

Figure 11 shows the overall results: CDFs of the
incremental-build overheads. Table 1 shows notable num-
bers in the overall results. In summary, our unity builds have
better incremental-build performance in terms of the aver-
age and the 90th percentile slowdowns for these projects.
This is because our build system utilizes the similarity of
compile times in its bundle strategy and mitigates the nega-
tive effect on incremental builds in unity builds.

For example, the average slowdown is reduced from

Fig. 11 CDF of incremental-build overheads (seconds) caused by unity
builds. The x-axis shows the overheads in seconds for all figures. The
y-axis shows the cumulative probability.

Table 1 Notable results on incremental build overheads (seconds). The
results of existing unity builds are shown in parentheses.

mean median 90th the worst case
percentile

WebKit 1.91 (3.11) 1.09 (1.97) 4.98 (9.17) 38.0 (29.64)
LLVM 6.97 (9.62) 4.83 (8.49) 15.77 (18.60) 44.25 (57.14)
Mesa 1.69 (6.96) 1.56 (1.40) 3.93 (19.85) 8.80 (35.71)
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Fig. 12 Patch (git-commit-id: 418f6e0edf4) in order not to bundle
source files taking a long compilation time in WebKit.

3.11 seconds to 1.91 seconds (by 39%) in WebKit. The 90th

percentile slowdown is also improved by 46% (from 9.17
seconds to 4.98 seconds). In the case of the worst overhead,
our unity builds improve the overheads in the LLVM and
the Mesa, except for the WebKit. The reason why existing
unity builds of WebKit achieves the smaller overhead is that
the developer of WebKit excludes the source files that cause
unacceptable overhead in incremental builds, by applying a
patch as shown in Fig. 12. Here, the @no-unify is an at-
tribute for CMake to exclude a source file from unity builds.

According to Fig. 11 c, the Meson-unity build signifi-
cantly worsens the overhead of incremental builds for many
source files. This is because there is no limit in the max-
imum bundle size in the Meson-unity build. For example,
108 source files are bundled together in the Meson-unity
build. As a result, the unlimited bundle size causes a terrible
overhead in incremental builds so that setting the maximum
bundle size is necessary for reducing the incremental-build
overhead in unity builds.

Note that some of the incremental-build slowdowns are
below zero. This means that for some source files, unity
builds outperforms non-unity builds even in incremental
builds. This is because unity builds can accelerate link pro-
cessing because the input size of link operations is reduced.
As a result, unity builds constantly improves the I/O per-
formance of the link processing even in incremental builds.
For example, when the static library libWebCoreGTK.a is
created in WebKit, 3,667 object files are linked in non-unity
builds. By comparison, only 580 object files are processed
in unity builds of our build system.

5.3 Full-Build Performance

Here, we shall focus on the full-build performance to evalu-
ate the impact of our bundle strategies. In this evaluation, we
exclude the overhead of bundling source files (such as com-
puting header similarities, estimating compile times, choos-
ing source files that should be bundled together, and creating
unity files) are excluded. We showed the pure impact of us-
ing sophisticated bundle strategies in terms of source files
bundled together. Table 2 describes the overall results. In

Table 2 Full-build performance

Our build system Existing Unity builds

WebKit 19m 53s 21m 51s
LLVM 5m 16s 5m 9s
Mesa 2m 9s 2m 11s

Table 3 The number of unity files and bundled source files in our unity
builds. The results of existing unity builds are shown in parentheses.

# of unity files # of bundled Avg. bundle size
source files

WebKit 748 (660) 4,959 (5,027) 6.6 (7.6)
LLVM 234 (349) 1,284 (1,735) 5.5 (5.0)
Mesa 142 (81) 818 (905) 5.8 (11.0)

short, the unity build of our build system achieves competi-
tive build performance, compared with existing unity builds.
For example, the full build time is decreased by 9% (from
21m 51s to 19m 53s), compared with the unity builds of
WebKit. In LLVM and Mesa 3D library, the build times
are similar to existing unity builds. The reason why only
the full-build performance for WebKit using our method is
better than using the existing one is that bundle configura-
tions become much different. Since WebKit contains more
source files than the other two projects, the configuration of
which source files are bundled together becomes more dif-
ferent when changing bundle strategies. As a result, the ben-
efit of using sophisticated bundle strategies becomes larger.

To explore the impacts of using our bundle strategies,
we examine the number of unity files and the number of
bundled source files as shown in Table 3. According to the
table, our unity builds do not increase the number of bundled
source files, compared with all of the existing unity builds.
However, the full-build performance of our unity builds is
better or similar to the existing unity builds as shown in Ta-
ble 2. In general, if the number of bundled source files is
decreased, the full-build performance is degraded because
fewer source files benefit from unity builds. However, our
unity builds provide the competitive full-build performance
thanks to our bundle strategies, even though fewer source
files are bundled than existing unity builds.

6. Related Work

Zapcc: Zapcc [43] is a caching C++ compiler based on
LLVM/Clang, designed to perform faster compilations.
Zapcc has an in-memory compilation cache in the client-
server architecture for remembering all of the compilation
information (e.g., ASTs, IRs, and so on) between runs. As
a result, Zapcc can reduce redundant header processing, as
unity builds do.

Our build system with GCC outperforms Ninja with
Zapcc in building LLVM. Note that we only discuss the
result of building LLVM because Zapcc (git-commit-id:
09cb4f07d) cannot build WebKit, as it lacks support for
some compilation flags. The full build time when using
Zapcc is 6 minutes 49 seconds; this compares with 5 min-
utes 49 seconds for our build system. Zapcc is slower be-
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cause its clients randomly send compile requests to free
servers. As a result, the compiling servers often fail to reuse
compile caches, so that they clear the compile caches and
restart the compiling tasks. For example, the full build of
LLVM entails clearing caches 52 times.

C++ Modules: The module system for C++ [44] is
designed to deal with the serious degradation of compile-
time scalability incurred by header file inclusion. In
C++ modules, a binary representation of the correspond-
ing header is imported instead of copying and parsing the
header code. Since the module is only compiled once, im-
porting the module into a translation unit is a constant-time
operation. To reduce the cost of template specialization, de-
velopers can pre-compute commonly used instantiations by
exporting explicit instantiations in module definitions.

C++ modules and unity builds share certain motiva-
tions and goals. Both approaches try to reduce redundant
compilation tasks caused by the header code. However,
unity builds could be still effective even after C++ mod-
ules become standard. For example, when multiple source
files import the same module, there are redundant module
reads and deserializations. By bundling such source files
into one file as unity builds, the compiling throughput is im-
proved for the same reason that unity builds reduces the re-
dundant header inclusion and parsing. In terms of template
instantiation, unity builds could be still effective in C++
modules. To completely exclude the redundant template in-
stantiation by C++ modules, developers have to explicitly
instantiate all possibly used template bodies in module defi-
nitions [44]. This method is not practical and requires devel-
opers not to instantiate templates implicitly in source files.
Unity builds can reduce the redundant implicit instantiations
in each unity file.

Cross-Module Optimizations: Cross-module opti-
mization (CMO) [45]–[52] is an effective way to improve
runtime performance. Since unity builds accelerate the link
processing, they also have a positive effect on CMO. For
example, it decreases the first link-time optimization (LTO)
time of LLVM is decreased from one hour 12 minutes to one
hour six minutes. We plan to evaluate the incremental LTO
times when using unity builds in future.

7. Conclusion

Unity builds have been identified as a useful technique to
improve build times in large C++ projects. However, the
downsides of unity builds have been underestimated and
overlooked. This paper has presented a novel build sys-
tem focusing on the trade-off between incremental builds
and unity builds. We evaluated our proposal on three large
projects: LLVM, WebKit, and the Mesa 3D library. We
showed that it achieves better build performance in contin-
uous builds. It also achieves the competitive full-build per-
formance in unity builds and mitigates the slowdown caused
by unity builds in incremental builds. We hope that our de-
sign and evaluations will serve as a basis of discussion on
future build systems, compilers, and module systems that

cooperatively generate efficient compiler tasks.
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