
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021
117

LETTER Special Section on Empirical Software Engineering

Quantitative Evaluation of Software Component Behavior
Discovery Approach

Cong LIU†a), Member

SUMMARY During the execution of software systems, their execution
data can be recorded. By fully exploiting these data, software practition-
ers can discover behavioral models describing the actual execution of the
underlying software system. The recorded unstructured software execution
data may be too complex, spanning over several days, etc. Applying ex-
isting discovery techniques results in spaghetti-like models with no clear
structure and no valuable information for comprehension. Starting from
the observation that a software system is composed of a set of logical com-
ponents, Liu et al. propose to decompose the software behavior discovery
problem into smaller independent ones by discovering a behavioral model
per component in [1]. However, the effectiveness of the proposed approach
is not fully evaluated and compared with existing approaches. In this pa-
per, we evaluate the quality (in terms of understandability/complexity) of
discovered component behavior models in a quantitative manner. Based on
evaluation, we show that this approach can reduce the complexity of the
discovered model and gives a better understanding.
key words: quantitative evaluation, component behavioral model, com-
plexity, software process mining

1. Introduction

Software systems form an integral part of the most complex
artifacts built by humans, and we have become totally de-
pendent on these complex software artifacts. Such complex
software systems are extremely difficult to maintain. Dur-
ing the execution of a software system, their execution data
can be recorded. By fully exploiting the recorded data, one
can discover behavioral models describing the actual exe-
cution [1] and [2]. The software behavioral model provides
insight regarding the real usage of the software, motivates
novel idea on model-based testing, enables software usabil-
ity improvements and redesign, localizes performance prob-
lems and architectural challenges [3] and [4].

With the great flush of process mining techniques [5],
[6] and [7] on the one hand, and the growing availability of
software execution data on the other hand, a new form of
software analytic is enabled, i.e., applying process mining
techniques to analyze software execution data. This inter-
disciplinary research area is called Software Process Min-
ing [8], [9] and [10], which aims to analyze software ex-
ecution data from a process-oriented perspective. Apply-
ing existing process mining techniques results in flat and
spaghetti-like models with no clear structure and no valu-

Manuscript received February 4, 2020.
Manuscript revised April 23, 2020.
Manuscript publicized May 21, 2020.
†The author is with School of Computer Science and Technol-

ogy, Shandong University of Technology, Zibo 255000, China.
a) E-mail: liucongchina@sdust.edu.cn

DOI: 10.1587/transinf.2020MPL0001

able information for comprehension and further anlaysis.
Given the observation that a software system typically

involves a set of interacted components. We proposed to de-
compose the behavior discovery problem into smaller inde-
pendent ones by discovering a behavioral model per compo-
nent in [1]. However, the effectiveness of the proposed soft-
ware component behavior discovery approach is not fully
evaluated and compared with existing approaches. In this
paper, we propose to evaluate the quality of the software
component behavior discovery approach by using a software
case study in a quantitative manner.

The remainder of this paper is organized as follows.
Section 2 review the basic idea of software component be-
havior discovery approach. Section 3 shows our quantitative
evaluation results. Finally, Sect. 4 concludes the paper.

2. An Overview of the Software Component Behavior
Discovery Approach

This section reviews component behavioral model discovery
from software execution data as proposed in [1]. The start-
ing point is software execution data, which can be obtained
by instrumenting and monitoring software execution. In the
following, the main steps are summarized.

• Component Execution Data Construction. Software
typically contains a set of components. By taking as
input software execution data and component configu-
rations, we first construct execution data for each com-
ponent. Note that the component configurations can be
obtained from development documents or identified by
clustering classes [11].
• Component Instance Identification. Starting from the

software execution data of each component, we pro-
pose to identify component instances. The identified
instances serve as the basic case notion to generate a
software event log for each component. Here, a com-
ponent instance refers to one independent instantiation
of a software component.
• Hierarchical Software Event Log Construction. Be-

cause a software system usually has a hierarchical
structure, the discovered component behavioral model
should depict this hierarchy nature. To achieve this,
we recursively transform the software event log of each
component to a hierarchical one using calling relations
among method calls.
• Component Behavioral Model Discovery. For each

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers

118
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021

component, we discover a hierarchical Petri net from
its hierarchical software event log. Note that we can
use the state-of-the-art process discover technique, i.e.,
Inductive Miner [12], in this step.

3. Quantitative Evaluation

In this section, we use an online bookstore software case to
show the approach which exploits both component informa-
tion and hierarchy structure helps to discover better behav-
ioral models in a quantitatively manner. This online book-
store software contains two components: OnlineBookStore
and OrderAndDelivery. The former consists of four classes,
i.e., BookstoreStarter, Catalog, BookSeller, Bookstore, and
the latter involves Orderclass and Delivery classes. We first
instrument its source code using the open-source Kieker
framework†. therefore, method invocations are stored as
software execution data in the XES-software format††.

Setup. To show the effectiveness of component be-
havior discovery approach, we conduct four groups of con-
trolled experiments and compare their results with regard to
the understandability using a group of quality metrics [13].
Our scope is to show to what extend the use of component
information and hierarchy helps to discover more under-
standable behavioral models. Detailed experiment settings
are illustrated in Table 1.

Experiment 1. The first experiment does not use
component information and only uses existing Inductive
Miner [12] to discover a flat Petri net by taking the whole
software execution data as input. The discovered behavioral
model of this software is shown in Fig. 1. It is a flat Petri net
where single-line transitions represent methods and places
represent method invocation relation.

Experiment 2. The second experiment does not use
component information but uses the hierarchy to discover
a hierarchical Petri net by taking the whole software ex-
ecution data as input. This approach is discussed in [3].
The discovered behavioral model of this software is shown
in Fig. 2 where: (1) single-line rectangles represent atomic
method calls; and (2) double-line rectangles represent
nested method calls which refers to another sub-net. It is
worth noting that two kinds of method relations, i.e., method
invocation flow relation for methods in the same level and
nested method calling relation for methods of different lev-
els, are contained in the behavioral model. For example,
Bookstore.init() is followed by Bookstore.searchBook() in
the second-level model and Bookstore.getOffers() is called
by Bookstore.searchBook().

The next two experiments use component information
to decompose the software behavior model into smaller in-
dependent ones by discovering a behavioral model per com-
ponent. To do so, we first identify component instances for
each component and transform the identified software exe-
cution data to a software event log. After identification and

†http://kieker-monitoring.net/framework/
††http://www.xes-standard.org/xesstandardextensions

Table 1 Experiment settings

Experiment Use Component Hierarchical Behavioral
Information Model

Experiment 1 No No
Experiment 2 No Yes
Experiment 3 Yes No
Experiment 4 Yes Yes

Fig. 1 Software behavior model without hierarchy

Fig. 2 Software behavior model with hierarchy

transformation, we get two software execution data for com-
ponents OnlineBookStore and OrderAndDelivery.

Experiment 3. The third experiment uses the compo-
nent information but only uses existing Inductive Miner [12]
to discover a flat Petri net for each component. The discov-
ered component behavioral models are shown in Fig. 3.

Experiment 4. The forth experiment uses both compo-
nent and the hierarchy information as introduced in [1]. The
discovered behavior model for component OnlineBookStore
is shown in Fig. 4. The OnlineBookStore component is used
to search book stock and get offer for each book. In the
main() method (left panel of this figure), a loop where each
iteration handles the search and get offer separately for each
book. The discovered behavior model for OrderAndDeliv-
ery is shown in Fig. 5. The OrderAndDelivery component
is used to generate book order and perform delivery. It de-
picts that this component will generate one book order and
perform one delivery for all ordered books in the Online-

LETTER
119

Fig. 3 Behavior of two components without hierarchy

Fig. 4 Behavior model of OnlineBookStore component

Fig. 5 Behavior model of OrderAndDelivery component

BookStore component.
In the following, we evaluate the quality of the discov-

ered behavioral models in terms of their structural complex-
ity. According to [14], we select the following quality fac-

Table 2 Quality results for Experiments 1-4

Experiment NoN NoA CFC ACD CNC Density
Experiment 1 44 50 14 3.17 1.14 0.03
Experiment 2 40 40 8 3.00 1.00 0.03
Experiment 3 45 50 13 3.17 1.18 0.04
Experiment 4 42 40 8 3.00 1.00 0.03

tors as they are regarded as the most convincing ones.

• Number of Nodes (NoN).
• Number of Arcs (NoA).
• Control Flow Complexity (CFC).
• Average Connector Degree (ACD).
• Coefficient of Network Connectivity (CNC).
• Density.

NoN gives the number of nodes in a process model.
NoN = |N| where |N| is the number of nodes. NoA gives
the number of arcs in a process model. NoA = |A| where |A|
denotes the number of arcs. The CFC metric evaluates the
complexity of the process model by XOR-split and AND-
split connector and is defined as:

CFC =
∑

c∈AND

1 +
∑

c∈XOR

|c•| (1)

where AND is the AND-split connector set and XOR is the
XOR-split set. The ACD measures the average number of
incoming or outcoming arcs an connector is connected to
and is defined as:

ACD =
1
|C|
∑

c∈C
|c•| + |•c| (2)

where C denotes the connector set, ∀c ∈ C, |c•| repre-
sents the number of out-coming arcs of c and |•c| represents
the number of in-coming arcs of c. The CNC gives the ratio
of edges to nodes and is defined as:

CNC =
|A|
|N| (3)

where |A| is the number of nodes and |N| is the number of
nodes. The Density gives the ratio of existing arcs to the
maximal number of arcs between the nodes in the model
and is defined as:

Density =
|A|

|N| × (|N| − 1)
(4)

The density ranges from 0 to 1. A density close to 1
means that the process graph is highly dense, i.e. all possible
connections between the nodes are present.

Table 2 summarizes the quality metrics for the discov-
ered behavioral models of Experiments 1-4. Note that Ex-
periments 3-4 result in two independent models each, and
we sum them up to get the overall quality factor values.

It is proved that all these factors point at a negative ef-
fect on the model’s understandability [14]. According to Ta-
ble 2, we observe that the model discovered by Experiment 1

120
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.1 JANUARY 2021

Table 3 Quality results for Experiments 2 and 4

Experiment NoN NoA CFC ACD CNC Density
Experiment 2 40 40 8 3.00 1.00 0.03
Experiment 4

(onlineBookstore)
30 30 8 3.00 1.00 0.03

Experiment 4
(orderAndDelivery)

12 10 0 1.00 0.83 0.07

has roughly the same structural complexity as the model dis-
covered by Experiment 3. Similarly, the model discovered
by Experiment 2 has roughly the same structural complex-
ity as the model discovered by Experiment 4. However, the
complexity values of Experiment 1 (Experiment 3) are big-
ger than those of Experiment 2 (Experiment 4), which indi-
cates that the use of hierarchy information greatly reduces
the complexity of the discovered model and gives a better
understanding of how software behaviors.

Different from Experiment 2, Experiment 4 decom-
poses the whole software behavior into smaller ones. To
show the use of component information improve the un-
derstandability of discovered models, we compare the qual-
ity metrics for the discovered behavioral models of Experi-
ments 2 and Experiments 4 (each per component) in Table 3.

According to Table 3, the complexity values of two
component behavioral models discovered by Experiment 4
are smaller than that of the model discovered by Experi-
ment 2. In this way, the complexity of the model is reduced
greatly, which indicates the use of component information
greatly reduces the complexity of the discovered model and
gives a better understanding of how software behaviors.

In summary, we demonstrate that the use of component
and hierarchy information improve the quality of discovered
models from an understandability point of view.

4. Conclusion

By exploiting software execution data, one can discover be-
havioral models describing the actual behavior of the soft-
ware system. However, applying existing discovery tech-
niques results in extremely complex models that are diffi-
cult for comprehension. A software system is usually com-
posed of a set of components. Starting from this observa-
tion, Liu et al. propose to decompose the discovery prob-
lem into smaller ones by discovering a behavioral model
per component in [1]. However, the effectiveness of the pro-
posed approach is not evaluated. In this paper, we evaluate
the understandability (or complexity) of discovered compo-
nent behavior models in a quantitative manner. By experi-
mental evaluation, we show that our approach reduces the
complexity of the discovered models and gives a better un-
derstanding of how software behaves.

Acknowledgments

This work was supported in part by National Natural Sci-

ence Foundation of China (61902222), and Taishan Scholars
Program of Shandong Province (tsqn201909109).

References

[1] C. Liu, B. van Dongen, N. Assy, and W. van der Aalst, “Com-
ponent behavior discovery from software execution data,” Interna-
tional Conference on Computational Intelligence and Data Mining,
pp.1–8, IEEE, 2016.

[2] C. Liu, B. van Dongen, N. Assy, and W. van der Aalst, “Software
architectural model discovery from execution data,” 13th Interna-
tional Conference on Evaluation of Novel Approaches to Software
Engineering, pp.1–8, 2018.

[3] C. Liu, “Automatic discovery of behavioral models from software
execution data,” IEEE Transactions on Automation Science and En-
gineering, vol.15, no.4, pp.1897–1908, 2018.

[4] C. Liu, “Software data analytics: Architectural model discovery and
design pattern detection,” Technische Universiteit Eindhoven, pp.1–
299, 2019.

[5] W. Van Der Aalst, “Process mining: discovery, conformance and
enhancement of business processes,” Springer Science & Business
Media, 2011.

[6] C. Liu, Y. Pei, Q. Zeng, and H. Duan, “Logrank: An approach to
sample business process event log for efficient discovery,” Interna-
tional Conference on Knowledge Science, Engineering and Manage-
ment, pp.415–425, Springer, 2018.

[7] C. Liu, H. Duan, Z. Qingtian, M. Zhou, F. Lu, and J. Cheng,
“Towards comprehensive support for privacy preservation cross-
organization business process mining,” IEEE Trans. Services Com-
put., vol.12, no.4, pp.639–653, 2019.

[8] C. Liu, J. Zhang, G. Li, S. Gao, and Q. Zeng, “A two-layered
framework for the discovery of software behavior: A case study,”
IEICE TRANSACTIONS on Information and Systems, vol.101,
no.8, pp.2005–2014, 2018.

[9] C. Liu, B. van Dongen, N. Assy, and W. van der Aalst, “Component
interface identification and behavioral model discovery from soft-
ware execution data,” International Conference on Program Com-
prehension, pp.97–107, ACM, 2018.

[10] C. Liu, S. Wang, S. Gao, F. Zhang, and J. Cheng, “User behavior dis-
covery from low-level software execution log,” IEEJ Transactions on
Electrical and Electronic Engineering, vol.13, no.11, pp.1624–1632,
2018.

[11] C. Liu, B.F. van Dongen, N. Assy, and W.M. van der Aalst, “A
general framework to identify software components from execution
data,” Proceedings of the 14th International Conference on Evalu-
ation of Novel Approaches to Software Engineering, pp.234–241,
SCITEPRESS-Science and Technology Publications, Lda, 2019.

[12] S.J.J. Leemans, D. Fahland, and W. van der Aalst, “Discovering
block-structured process models from event logs-a constructive ap-
proach,” Application and Theory of Petri Nets and Concurrency,
vol.7927, pp.311–329, Springer, 2013.

[13] J. Mendling, Detection and prediction of errors in EPC business
process models, Ph.D. thesis, Wirtschaftsuniversität Wien Vienna,
2007.

[14] J. Mendling, H.A. Reijers, and J. Cardoso, “What makes process
models understandable?,” Business Process Management, pp.48–63,
Springer, 2007.

http://dx.doi.org/10.1109/ssci.2016.7849947
http://dx.doi.org/10.1109/tase.2018.2844725
https://doi.org/10.1007/978-3-642-19345-3
http://dx.doi.org/10.1007/978-3-319-99365-2_36
http://dx.doi.org/10.1587/transinf.2017edp7027
http://dx.doi.org/10.1145/3196321.3196338
http://dx.doi.org/10.1002/tee.22727
http://dx.doi.org/10.5220/0007655902340241
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-540-75183-0_4

