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SUMMARY The volume of digital information is growing at an ex-
tremely fast pace which, in turn, exacerbates the need of efficient mech-
anisms to find the presence of a pattern in an input text or a set of in-
put strings. Combining the processing power of Graphics Processing Unit
(GPU) with matching algorithms seems a natural alternative to speedup the
string-matching process. This work proposes a Parallel Rabin-Karp imple-
mentation (PRK) that encompasses a fast-parallel prefix-sums algorithm to
maximize parallelization and accelerate the matching verification. Given
an input text T of length n and p patterns of length m, the proposed im-
plementation finds all occurrences of p in T in O(m + q + n

τ +
nm
q ) time,

where q is a sufficiently large prime number and τ is the available number
of threads. Sequential and parallel versions of the PRK have been im-
plemented. Experiments have been executed on p ≥ 1 patterns of length
m comprising of m = 10, 20, 30 characters which are compared against a
text string of length n = 227. The results show that the parallel imple-
mentation of the PRK algorithm on NVIDIA V100 GPU provides speedup
surpassing 372 times when compared to the sequential implementation and
speedup of 12.59 times against an OpenMP implementation running on a
multi-core server with 128 threads. Compared to another prominent GPU
implementation, the PRK implementation attained speedup surpassing 37
times.
key words: Rabin-Karp algorithm, prefix-sums, pattern matching,
GPGPU, CUDA

1. Introduction

String or pattern matching algorithms are used to find the
occurrences of a pattern in a text or a set of input strings [2].
The task of finding strings that produce a complete or a par-
tial match to a given pattern has many practical applications,
such as plagiarism detection, DNA sequencing, text min-
ing, spam filtering, intrusion detection systems, virus scan-
ning, and so on [2]–[4]. Given a pattern P and a string T of
length m and n (m � n), respectively, the pattern match-
ing is a task that asks to find all occurrences of the pat-
tern P in T . A naive strategy is to perform character-by-
character comparisons between the text substring and the
complete pattern P and then shift T one position to the right.
Clearly, this strategy runs in O(nm) time [5]. Popular string
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searching algorithms such as Boyer-Moore (BM) [6], Aho-
Corasick (AC) [7], Rabin-Karp (RK) [8] and Knuth-Morris-
Pratt (KMP) [9] reduce the computing time by avoiding to
re-scan the input string T to find a match. The Rabin-Karp
algorithm, for instance, solves the pattern search problem,
with high probability, in O(n) time.

Aiming at accelerating the pattern matching compu-
tation, GPU (Graphics Processing Unit) implementations
have been considered in the literature [10]. Initially, GPUs
have been designed to serve as specialized circuit to accel-
erate computation for manipulating and rendering 3D im-
ages [11]. Latest GPUs are designed for general purpose
computing (a.k.a. GPGPU) and can perform computation in
applications traditionally handled by the CPU. GPU maxi-
mizes processing efficiency by offloading some of the oper-
ations from the CPU to the GPU. Zha and Sahni [12] imple-
mented the AC and BM algorithms on the GPU and com-
pared the results to a single and multi-threaded implemen-
tation. The implementation showed a speedup for the AC
algorithm up to 9 times as compared to a sequential algo-
rithm and speedup for the BM algorithm up to 3.2 times on a
multi-thread CPU. Pattern matching algorithms tailored for
intrusion detection (IDS) systems implemented on the GPU
have been proposed in [13]–[15]. Jacob et al. [13] demon-
strate that offloading the IDS computation to the GPU pro-
vides higher packet-processing rates. They showed that an
open source IDS running on the GPU provides up to 40%
improvement as compared to the conventional IDS on the
CPU. Lin et al. [14] reported that a direct GPU implementa-
tion of a string-matching algorithm may fail to detect pat-
tern matching in certain cases. The proposed alternative
improves over the AC algorithm and showed better perfor-
mance on the GPU as compared to a traditional AC imple-
mentation. Sharma et al. [15] present a Rabin-Karp pattern-
matching algorithm for Deep Packet Inspection implemen-
tation on the GPU. The proposed CUDA-based implementa-
tion outperformed a quad-core processor providing speedup
of up to 14 times. Kouzinopoulos et al. [16] evaluated sev-
eral multiple pattern matching algorithms on the GPU. They
reported that even a basic implementation of these algo-
rithms in the GPU were between 2.5 and 10.9 faster than
a single core CPU implementation. Similarly, Ashkiani
et al. [17] analyzed different string-matching approaches,
namely cooperative, divide-and-conquer and a hybrid ap-
proach. The results showed that the divide-and-conquer per-
formed better on shorter patterns while the cooperative ap-
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proach was superior on lengthy patterns. The results showed
speedup of 4.81 times compared to traditional CPU meth-
ods. Shah and Oza [18] proposed a CUDA implementation
of the Rabin-Karp algorithm. The computation of the hash
values is performed by left shifting each character and add
it to previously computed hash values. The paper compares
the implementation of CUDA and serial versions of the pro-
posed Rabin-Karp string matching algorithm. CUDA imple-
mentation presented speedup of 23 times over the sequential
version running on the CPU. Dayarathne and Ragel [19] pro-
posed a Rabin-Karp implementation on the GPU and evalu-
ated its runtime to a sequential and parallel implementation
on the CPU. The experimental results showed speedup gains
up to 15.68 times compared to a serial implementation. A
peculiarity of this implementation is that the GPU perfor-
mance degrades rapidly as m increases.

This paper presents a prefix-sum-based Rabin-Karp
implementation (PRK, for short) that encompasses a novel
mechanism to speedup the computation of intermediate
hash values. PRK uses a fast-parallel prefix-sum algorithm
that includes a look-up table to improve parallelization and
speedup the matching process. More precisely, the PRK im-
plementation on the GPU adapts the prefix-sum presented
in [20] to improve parallelization. Furthermore, PRK ex-
plores atomic operations to control hash collisions that may
occur when considering multiple patterns p. For an input
text T of length n and p patterns of length m, the proposed
PRK algorithm finds the matching positions of p in T in
O(m+ q+ n

τ
+ nm

q ) time, where q is a sufficiently large prime
number and τ is the available number of threads. To evalu-
ate the performance of the proposed algorithms, sequential
and parallel versions have been implemented on a multi-core
CPU. The experimental results have been executed on input
text string T of length n = 227 with p = 1, 4, 16, 64, 256
patterns of length m = 10, 20, 30 characters. Experimental
results show that the proposed PRK parallel implementa-
tion on NVIDIA V100 GPU provides speedup surpassing
372 times and 12.59 as compared to a serial implementa-
tion and OpenMP implementation on a multi-core server,
respectively. The proposed PRK implementation is com-
pared to the GPU implementation proposed by Dayarathne
and Ragel [19]. Experimental results show that the PRK at-
tained speedup of 1.13 for p = 1 and surpassing 37 times
for p = 256.

The rest of this paper is organized as follows. Section 2
defines the pattern search problem, presents a simple match-
ing function and provides an overview of the Rabin-Karp al-
gorithm. Section 3 presents an intuitive parallel Rabin-Karp
for multiple patterns and lays the foundation for the pro-
posed parallel algorithm. Section 4 presents the proposed
parallel Rabin-Karp algorithm on the GPU. Experimental
results are shown in Sect. 5. Finally, Sect. 6 concludes this
work.

2. Rabin-Karp Algorithm

In this section we present an overview of the Rabin-Karp

Algorithm 1 Function Match(i, j)
1: for l = 0 to m − 1 do
2: if t j+l � pi,l then
3: return false
4: end if
5: end for
6: return true

algorithm [8], which is a hash-based, string-matching algo-
rithm used for detecting plagiarism, virus scanning, intru-
sion detection systems, among other applications. We begin
by presenting a simple matching function that is used in the
proposed-prefix-sums based Rabin-Karp algorithm that will
be presented in the next subsections. For this purpose, let
T = t0t1 . . . tn−1 be a string of n characters (8-bit unsigned
integers). Also, let P0, P1, . . . , Pp−1 be p patterns, such that
each pi,0 pi,1 . . . pi,m−1 (0 ≤ i ≤ p − 1) is a string of m char-
acters. The pattern search problem asks to find all matching
positions in T for all p patterns. More precisely, the pattern
searching finds all pairs (i, j) of position j and pattern Pi

such that

t jt j+1 . . . t j+m−1 = pi,0 pi,1 . . . pi,m−1. (1)

A naive pattern matching implementation may use a sliding
window of length m and move it one position to the right
of the text T after each attempt. Let Match(i, j) be a func-
tion such that it returns true if and only if Eq. (1) is satisfied.
Algorithm 1 shows a possible implementation of function
Match(i, j). Let us assume that p = 1, that is, we have a
single pattern P = p0 p1 . . . pm−1 comprising of m characters
for the pattern search problem. This straightforward imple-
mentation can compute Match(i, j) in O(m) time. Clearly,
the pattern search problem, for p = 1, can be solved by call-
ing Match(i, j) for all j (0 ≤ j ≤ n −m), which takes O(mn)
time.

The idea of the Rabin-Karp algorithm is to use a hash
function to compute Match(i, j) in O(1) time. The computed
hashes reduce the number of executed logical operations by
resorting to numerical operations. The hash used in Rabin-
Karp algorithm is also known as rolling hash. Rabin-Karp
algorithm works by computing the hash of each pattern p
and then storing it. One character of the text T is hashed
at a time and compared to the computed hashed patterns.
Spurious hits may occur as two distinct strings may have the
same hash values. Hence, when a match is found, a brute-
force match verification is necessary to verify whether it is
a correct hit or a spurious hit. Gonnet et al. [21] showed
that hash collisions are infrequent, making the overhead for
verification acceptable.

Let h be a hash function for string s0s1 . . . sm−1 such
that

h(s0s1 . . . sm−1) = (dm−1s0 + dm−2s1+

· · · + d0sm−1) mod q,
(2)

where d and q are appropriately selected prime numbers.
We choose d = 2, which is the alphabet size, and q =
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13 to explain the examples in this paper. In actual im-
plementations, q must be a larger prime number such as
q = 65521, because q corresponds to the size of the hash
table to compute the hash function. In the Rabin-Karp
algorithm, h(p0 p1 . . . pm−1) is computed in advance. For
each j (0 ≤ j ≤ n − m), h(t jt j+1 . . . t j+m−1) is computed
to determine if it is equal to h(p0 p1 . . . pm−1). Note that
if they are not equal, then Match(i, j) never returns true.
Match(i, j) may return true only if they are equal. Us-
ing this idea, the Rabin-Karp algorithm solves the pattern
search problem in O(n) time with high probability. Algo-
rithm 2 shows the Rabin-Karp algorithm for a single in-
put pattern. Note that Hp stores h(P) = h(p0 p1 . . . pm−1).
Also, Ht initially stores h(t0t1 . . . tm−1). They are com-
puted in O(m) time. After the first iteration of the second
for-loop, Ht stores (((dm−1t0 + dm−2t1 + · · · + d0tm−1) mod
q − dm−1t0) · d + tm) mod q = (dm−1t1 + dm−2t2 + · · · +
d0tm) mod q, which is equal to h(t1t2 . . . tm). Hence, it
should be clear that Ht stores h(t jt j+1 . . . t j+m−1) after the
j-th iteration. Thus, condition Ht = Hp is equivalent
to h(p0 p1 . . . pm−1) = h(t jt j+1 . . . t j+m−1) and this algorithm
solves the pattern search problem correctly. If Ht = Hp is
false, Match(i, j) is not executed and this iteration of the
for-loop takes O(1) time. If Ht = Hp is true, Match(i, j)
executed and it takes O(m) time. However, the probability
that Ht = Hp is very small [21]. Since the values of them are
in range [0, q−1], we assume that the Match(i, j) is executed
with probability 1

q . Under this assumption, the Rabin-Karp
algorithm runs in O(m + n + nm

q ) time. Since m ≤ n usually
holds, the Rabin-Karp algorithm runs in O(n + nm

q ) time.

Algorithm 2 Rabin-Karp Algorithm [Single Pattern]
1: Hp = Ht = 0;
2: for j = 0 to m − 1 do
3: Hp = (Hp · d + p j) mod q
4: Ht = (Ht · d + t j) mod q
5: end for
6: for j = 0 to n − m − 1 do
7: if Ht = Hp then
8: if Match(i, j) then
9: output(i, j)

10: end if
11: end if
12: Ht = ((Ht − dm−1t j) · d + t j+m) mod q
13: end for

The above Rabin-Karp algorithm for single pattern can
be extended to handle multiple patterns. In the Rabin-Karp
for a single pattern, h(P) is computed in advance. For mul-
tiple patterns P0, P1, . . . , Pp−1, we compute h(Pk) for every
k, (0 ≤ k ≤ p − 1). This takes O(mp) time. After that,
each iteration of the for-loop determines if Ht = h(Pk)
holds for every k(0 ≤ k ≤ p − 1). Each iteration takes O(p)
time, thus the for loop takes O(np) time. Hence, in total, it
takes O((n+m)p) time to perform the matching verification
of p patterns. We can accelerate the Rabin-Karp algorithm
for multiple patterns using a hash table. Consider p patterns

Algorithm 3 Rabin-Karp Algorithm [Multiple Patterns]
1: Ht and HT are computed beforehand
2: for j = 0 to n − m do
3: if HT (Ht) � −1 then
4: if Match(i, j) then
5: output(i, j)
6: end if
7: end if
8: Ht = ((Ht − dm−1t j) · d + t j+m) mod q
9: end for

P0, P1, . . . , Pp−1 and let HT be a hash table of q entries such
that

HT (r) =

⎧
⎪⎪⎨
⎪⎪⎩

k if h(Pk) = r,

−1 otherwise.
(3)

The Rabin-Karp algorithm for a single pattern can
be modified to run for multiple patterns as follows. If
HT (Ht) = k � −1 then Ht = h(Pk). Thus, this algorithm
works correctly. Let us evaluate the computing time. The
values of h(Pk) for all k can be computed in O(mp) time.
After that the hash table HT is computed in O(q) time. Al-
gorithm 3 shows the Rabin-Karp algorithm for comparing
multiple patterns. Note that each iteration of the for-loop
takes O(1) time if HT (Ht) = −1. Otherwise, Match(i, j) is
executed in O(m) time. Since the size of the hash table is q
and p entries of them have non −1 value, we can assume that
the probability that Match(i, j) is executed is p

q . Thus, the
total computing time for p patterns is O(mp + q + n + nmp

q ).

3. Intuitive Parallel Rabin-Karp Implementation

This section presents an intuitive parallel Rabin-Karp (In-
tuitivePRK, for short) algorithm capable of handling mul-
tiple patterns. The IntuitivePRK is based on the mul-
tiple patterns’ version shown in previous section. The
details of the IntuitivePRK is presented in Algorithm 4.
The IntuitivePRK separates the calculation of the hash
pattern and the pattern matching in two distinct func-
tions, called calculateHashPattern and FindMatches,
respectively. To simplify the discussion, in what fol-
lows we assume that the number of available threads τ is
greater than or equal to the number of patterns p. Func-
tion calculateHashPattern compute the hash of each
pattern Pi (0 ≤ i < p) in parallel using a single thread per
pattern. The results of each hash is then written in HP array.
The for-loop in function calculateHashPattern runs
in O( mp

τ
).

Once the HP array is computed, function
FindMatches divides the text T into S parts, s0, s1, · · · ,
sτ−1, each containing n

τ
characters. Each thread γl (0 ≤ l <

τ) is responsible for the processing part of si. The initial
hash of the fist m characters for each part si (0 ≤ i < τ) is
computed in the first for-loop of function FindMatches
in parallel. In the second for-loop, the hash is recalculated
at each iteration using one thread per part si. More pre-
cisely, at each iteration of the second for-loop, the thread
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Table 1 Modules for d = 2 and q = 13.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
di mod q 1 2 4 8 3 6 12 11 9 5 10 7 1

i 12 13 14 15 16 17 18 19 20 21 22 23 24
di mod q 1 2 4 8 3 6 12 11 9 5 10 7 1

Algorithm 4 Intuitive Parallel Rabin-Karp
1: function calculateHashPattern(P[p][m])
2: hsh = 0
3: for i = 0 to m − 1 do
4: hsh = (d · h(hsh) + P[γl][i]) mod q
5: end for
6: HP[γl] = hsh
7: end function
8: function FindMatches(T,HP[p],P)
9: h(t) = 0

10: s = n
τ

11: start = γl · s
12: for i = 0 to m − 1 do
13: h(t) = (d · h(t) + T [i]) mod q
14: end for
15: for j = start to start + s do
16: for i = 0 to p − 1 do
17: if h(t) = HP[i] then
18: if P[i][1] .. P[i]][m]=T[j] .. T[j+m] then
19: Match in position j pattern i
20: end if
21: end if
22: end for
23: end for
24: t = (d(t − T [ j + 1]dm−1) + T [ j + m + 1]) mod q
25: end function
26: HP = calculateHashPattern(P)
27: FindMatches(T,HP,P)

γi moves one character to the right. The inner loop checks
whether h(t j · · · t j+m−1) equals to h(Pi). Clearly, the first
for-loop in runs in O(m) time, while the second for-loop
runs in O( np

τ
+

np
τ
· mp

q ). The whole algorithm runs in

O( mp
τ
+

np
τ
+

nmp2

qτ ). As p ≤ τ ≤ n usually holds, then the
computing time becomes O(m + n + nmp

q ).
The IntuitivePRK presents a loss in performance for

an increasing number of patterns p. The loop of line 15 is
the main bottleneck. In this algorithm, a new comparison
of hashes for all p patterns is performed at each iteration.
Clearly, to improve the performance, ways to parallelize it
must be devised. In the next section we present an alterna-
tive to circumvent this problem.

4. Prefix-Sum-Based Parallel Rabin-Karp Implemen-
tation

This section presents the main contribution of this paper,
that is a Prefix-Sum-Based Parallel Rabin-Karp (PRK, for
short) implementation for computing multiple patterns. As
a key ingredient, we proposed a mechanism to improve the
computation of the intermediate hash values. For later refer-
ence, we note the following well-known theorem in number

theory:

Theorem 4.1: For any two prime numbers d and q,
dq−1 mod q = 1 always holds.

For example, for d = 2 and q = 13, dq−1 mod
q = 212 mod 13 = 1. From this theorem, di mod q =
di+(q−1) mod q holds. Thus, we have the following corollary:

Corollary 1: For any two prime numbers d and q, and an
integer i, di mod q = di mod (q−1) mod q always holds.

For example, for d = 2, i = 15, and q = 13,
d15 mod q = 8 and d15 mod (13−1) = 23 mod 13 = 8. For
T = t0t1 . . . tn−1 let ai = dn−i−1ti for all i(0 ≤ i ≤ n − 1) and
âi = a0+a1+ · · ·+ai be the prefix-sum of a. In other words,
âi = dn−1t0+dn−2t1+ · · ·+dn−i−1ti. If we have all prefix-sums
â0, â1, . . . , ân−1, we can compute the value of hash function
h(t jt j+1 . . . t j+m−1) by the following formula:

h(t jt j+1 . . . t j+m−1) = (â j+m−1 − â j−1) · dm−n+ j. (4)

Since

â j+m−1 − â j−1 = a j + a j+1 + · · · + a j+m−1 (5)

= dn− j−1t j + dn− j−2t j+1+

· · · + dn− j−mt j+m−1 (6)

= (dm−1t j + dm−2t j+1+

· · · + d0t j+m−1) · dn− j−m (7)

= h(t jt j+1 . . . t j+m−1) · dn−m− j. (8)

Note that m − n + j may be non-positive.
Suppose that the value of d0 mod q, d1 mod q, . . . , dq−2

mod q are stored in an array of size q − 1. Once we have
this array, we can compute di for any integer i by virtue of
Corollary 1. Since 0 ≤ i mod (q−1) ≤ q−2, we can compute
di mod q by reading (i mod (q − 1))-th element of the array.
For example, if d = 2, q = 13 and i = 100, instead of
computing di mod q = 2100 mod 13, we can calculate i mod
(q− 1) = 100 mod 12 = 4 and access the position 4 of array
on Table 1 to get the final result 3. That is, the result of
di mod q can be obtained from the i mod (q − 1) position of
array. Note that the values of di mod q in Table 1 always
repeat for i > q − 1.

The description of the Parallel Rabin-Karp (PRK) algo-
rithm is presented in Algorithm 5. In what follows, we detail
the PRK steps. Our description focuses on a parallel imple-
mentation of the proposed algorithm in OpenMP [22] and
GPU. The first step loads the lookup table, which is com-
puted previously as explained before (see Table 1). Thus,
step 1 runs in O(q) time. In step 2, we calculate the Hash
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Algorithm 5 Parallel Rabin-Karp algorithm
1: Load a preprocessed lookup table for di mod q (0 ≤ i ≤ q − 1).
2: Compute the values of h(Pk) for all k (0 ≤ k ≤ p − 1) in parallel and

create the hash table HT using the calculated values.
3: Compute the a0, a1, . . . , an−1 in parallel.
4: Compute the prefix-sums â0, â1, . . . , ân−1.
5: For all j (0 ≤ j ≤ n − m), compute (â j+m−1 − â j−1) · dm−n− j, which

is equal to h(t jt j+1 . . . t j+m−1). If array control[h(t jt j+1 . . . t j+m−1)] � 0
then compare the characters of text and pattern with Match(i, j).

Fig. 1 An example denoting the insertion of 5 elements in the hash table.

Table (HT) considering that two different patterns can have
the same hash value. In this step the hashes of each pattern
h(Pk) are calculated in parallel. To ensure that the data is
correct, two arrays are used, one for control and one being
the HT itself. Figure 1 shows an example of insertion of
5 patterns. In the control array an atomic operation is per-
formed in the respective position to the hash of that pattern.
In such way, this instruction allows a thread to increment
the value of a variable and receives its old value atomically.
The control array is initialized with zeros and the Hash Table
initializes with −1. Figure 1 (a) shows the initialized arrays
and the inclusion of 3 hashes. Atomic addition is used in
the respective positions of the calculated hashes. As the re-
turn of the atomic operation in the 3 cases is 0, the threads
write the pattern ID in the same position on HT, as shown in
bold in Fig. 1 (b). In the same figure, two other hashes are
inserted, but the return of the atomic operation is different
from 0. In this case, the threads repeat the operation for the
next position of control array, as shown in Fig. 1 (c). In the
case of h(p3), the next position already returns 0 and the ID
3 is recorded in this position. For h(p4), we have a return
value different from 0 in the calculated hash and also in the
next position, so we have to write two positions ahead of the
calculated hash.

In step 3, each ai = dn−i−1 · ti is calculated in parallel.

Fig. 2 Match verification at positions te, t f and tg.

Next, in step 4, the prefix-sum of the values of the previ-
ous step are computed. A divide-and-conquer approach has
been used to compute the prefix-sums in OpenMP. In the
case of GPU, the CUDA UnBounded library (CUB) [23] is
used. CUB is a C++ library that provides efficient kernels
that can be used for different GPU applications and archi-
tectures. In this work, we use the “decoupled look-back”
algorithm to calculate the sum of global prefixes [20]. The
code was slightly modified so that the sum of two terms a
and b in the prefix-sum was calculated using (a + b) mod q.

In step 5, each thread is independent and the hash of
each part of the text h(t jt j+1 . . . t j+m−1) is calculated in par-
allel. This hash is computed through the Eq. (4) using the
prefix-sum calculated in step 4. With the hash calculated, it
is possible to check whether the value of the control array is
different from zero in that position. In case it is 1, we check
the HT only in that position. If it is greater than 1, we check
the pattern relative to that HT position and the process starts
again at the next position. In case the hashes are equal, the
Match() function is used to compare the characters to pre-
vent against false positives. Figure 2 illustrates this process.
In this example, the hash of position e of the text has value
equal to 0, which indicates there is no pattern occurrence
with this hash. For the hash position f , it is necessary to
check the calculated position and, as the return is greater
than 1 we also check the following position. The same logic
is applied to position g, where 3 positions must be checked.

Let us evaluate the execution time of Algorithm 5. Re-
call that step 1 runs in O(q) time. To compute the hashes
h(Pk) (0 ≤ k ≤ p− 1) and fill the HT, step 2 takes O( mp

τ
+ q)

time. Step 3 runs in O( n
τ
) since each term ai (0 ≤ i ≤ n−1) is

independent. Step 4 runs in O( n
τ
). In step 5, we have a main

loop with n iterations over τ threads, and within this loop we
call the Match function for p

q times, totalizing O( n
τ
+ n
τ
· mp

q ).
Thus, the complexity of all steps is O( mp

τ
+q+ n

τ
+

nmp
qτ ). Since

p ≤ τ ≤ n usually holds, then the computing time becomes
O(m + q + n

τ
+ nm

q ). The following theorem summarizes the
discussion above.

Theorem 4.2: Given a text of length n and p patterns of
length m, the proposed prefix-sum based Rabin-Karp algo-
rithm finds all occurrences of p in n in O(m + q + n

τ
+ nm

q )
time, where q is a sufficiently large prime number and τ is
the available number of threads.

5. Experimental Results

The main purpose of this section is to show the experimen-
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Table 2 Runtime (ms) results for the implementations of the IntuitivePRK and PRK as well as the
achieved GPU and OpenMP speedup in comparison to the sequential implementation.

Implementation IntuitivePRK PRK

CPU/GPU p m = 10 m = 20 m = 30 m = 10 m = 20 m = 30

1 712.96 725.56 720.58 1685.71 1868.27 1871.96
4 726.25 734.86 729.99 1704.31 1874.91 1854.88

Sequential 16 1925.76 1860.33 1,844.50 1711.93 1893.02 1881.48
64 4,679.32 4,343.91 4,607.87 1845.50 1883.84 1869.63
256 17505.80 17130.00 17085.70 2441.45 1968.87 1931.52

1 13.90 12.95 12.79 50.50 53.97 54.00
4 22.48 16.95 18.38 52.55 54.45 54.39

OpenMP 16 35.57 29.30 29.84 59.11 53.72 53.58
64 105.59 102.05 101.58 65.70 54.70 54.03
256 419.69 361.19 359.35 78.31 65.89 65.26

1 9.13 10.05 10.83 3.54 5.06 5.04
4 10.37 11.48 12.32 3.73 5.07 5.08

GPU 16 11.37 12.32 13.44 4.27 5.12 5.08
64 18.05 15.28 15.97 4.90 5.14 5.12
256 52.56 44.54 46.42 5.43 5.22 5.18

Speedup

OpenMP 1 51.29 56.03 56.34 33.38 34.62 34.67
Speedup 4 32.31 43.35 39.72 32.43 34.43 34.10

to 16 54.14 63.49 61.81 28.96 35.24 35.12
Sequential 64 44.32 42.57 45.36 28.09 34.44 34.60

256 41.71 47.43 47.55 31.18 29.88 29.60

GPU 1 78.09 72.20 66.54 476.19 369.22 371.42
Speedup 4 70.03 64.01 59.25 456.92 369.80 365.13

to 16 169.37 151.00 137.24 400.92 369.73 370.37
Sequential 64 259.24 284.29 288.53 376.63 366.51 365.16

256 333.06 384.60 368.07 449.62 377.18 372.88

tal results of the parallel Rabin-Karp presented in the pre-
vious sections. The experimental results have been carried
out on the NVIDIA Tesla V100, which comprises of 5120
processing cores, running at 1.380GHz with 16GB HBM2
memory. The source code programs of the GPU implemen-
tation are compiled using the nvcc version 9.2 with -O2 and
-arch=sm 70 options on Ubuntu release 16.04. For com-
parison purpose, the OpenMP and sequential versions of
the algorithms presented in the previous sections have been
implemented on a multi-core server with 4 icosa-core (20-
core) Intel Xeon E7 − 8870 v4 CPUs running at 2.10 GHz.
This multi-core server has 4 × 20 = 80 physical cores each
of which acts as 2 logical cores via hyper-threading tech-
nology. The OpenMP and sequential algorithms have been
executed on this machine. For the OpenMP experiments,
τ = 128 threads have been used. The proposed PRK GPU
implementation is also compared to GPU implementation
proposed in [19].

In the experiments and simulations, we considered
p = 1, 4, 16, 64, 256 patterns with m = 10, 20, 30 char-
acters each. The input string T has n = 227 characters
(≈ 128 Mbytes). The input string T and the p patterns
P0, P1, . . . Pp−1 are randomly generated over the alphabet
size d = 2. The results are averaged over 20 runs with differ-
ent seeds for each run. For both intuitivePRK (Algorithm 4)
and PRK (Algorithm 5), the input parameters are stored in
the global memory. For the PRK, these parameters also in-

clude the preprocessed lookup table of step 1.
Table 2 shows the execution time results for the intu-

itivePRK and PRK presented in previous sections. More
precisely, the table shows the runtime for the sequential,
OpenMP and GPU implementations as well as the GPU
and OpenMP speedup over the sequential implementations.
In what follows, let us analyze the runtime performance
of the intuitivePRK. As discussed in Sect. 3, the number
of patterns p was expected to have a stronger influence
on execution time. Comparing the results for p = 1 to
p = 256 with m = 30, sequential and OpenMP imple-
mentations increase the execution time on more than 23
times. In the GPU, the runtime increase for this case
is below 5 times. In terms of the number τ of threads,
Function calculateHashPattern uses one CUDA thread
per pattern to compute the values of h(Pk), while Func-
tion FindMatches uses 256 threads in 1024 CUDA blocks.
Note that an increase on the pattern size m may not increase
the computation time. Indeed, for p ≥ 16, the runtime re-
sults for m = 20 express better results than that of m = 10.
The reason behind it is mainly attributed to the number of
spurious hits and real matches. As the pattern size increases
from 10 to 20, the number of hits and matches reduces sig-
nificantly, which impacts the results. For the sequential re-
sults of the IntuitivePRK, the gcc optimization flag -O2 has
been used instead of the usual -O3 as it provided better re-
sults. Table 2 presents the speedup results for OpenMP and



2418
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Table 3 PRK and MatchStr [19] runtime results (ms) on the GPU with m = 30.

PRK
p Step 2 Step 3 Step 4 Step 5 Total MatchStr Speedup
1 0.08 1.17 1.17 2.62 5.04 5.69 1.13
4 0.08 1.18 1.17 2.65 5.08 5.90 1.16

16 0.08 1.18 1.16 2.66 5.08 12.60 2.48
64 0.08 1.17 1.16 2.71 5.12 49.16 9.60

256 0.08 1.17 1.16 2.77 5.18 193.46 37.35

GPU as compared to the Sequential implementation. Com-
paring the parallel implementation to the sequential one,
the results show a significant improvement of OpenMP and
GPU over the sequential. For p = 256 and m = 30, OpenMP
and GPU provided speedup surpassing 46 and 368 times, re-
spectively.

For the PRK, the parameters q = 65521, which is the
largest prime number less than 216, and d = 2 were used.
In terms of the number τ of threads, step 2 of the PRK uses
one CUDA thread for each pattern and compute the values
of h(Pk). In step 3, we use 256 threads in 128 CUDA blocks
to improve occupancy, which is defined as the ratio of ac-
tive warps on a stream multiprocessor (SM) to the maximum
number of active warps supported by the SM. In step 4, we
use the prefix-sum of the CUDA UnBounded (CUB) library
version 1.7.3 [23]. In step 5, we also used 256 threads with
128 blocks for best occupancy. Table 2 shows the runtime
results for the proposed PRK algorithm. As before, sequen-
tial and parallel versions of the PRK algorithm have been
implemented. Contrarily to the IntuitivePRK, the number
of patterns p has a minor impact on the PRK performance.
The pattern size m does not degrade significantly the perfor-
mance of the PRK both for the sequential and parallel im-
plementations. In fact, for m = 20 and m = 30, the sequen-
tial and parallel implementations have shown to be compet-
itive in performance. In terms of speedup, both OpenMP
and GPU provided speedups surpassing 29 times and 372
times over the sequential implementation, respectively, for
p = 256 and m = 30. Considering the parallel implementa-
tions for the PRK, the GPU provided speedup of 12.59 times
over the OpenMP implementation for p = 256 and m = 30.
Overall, the PRK implementation on GPU provided speedup
surpassing 10 times over the OpenMP implementation. The
PRK algorithm achieved an average occupancy of 0.94, 0.72
and 0.68 for steps 3, 4 and 5, respectively. These results
show that the PRK implementation attains a high level of
thread parallelism.

Comparing the results in Table 2 and considering p ≤
16, the intuitivePRK provided better results for the sequen-
tial and OpenMP implementations as compared to the PRK
implementation. This is due to the fact that the proposed
PRK requires more steps for computing the prefix-sum in
the sequential and OpenMP implementation as compared
to the IntuitivePRK. On the other hand, the GPU may use
optimized implementations for computing the prefix-sums,
such as the CUDA UnBounded library (CUB) [23]. Indeed,
the PRK, GPU implementation, provided better results than
that of the IntuitivePRK for all p and m values. Considering

the GPU implementations, the PRK provided gains surpass-
ing 2.14 times for p = 1 and m = 30 and 8.96 times for
p = 256 and m = 30 over the IntuitivePRK Implementation.

The PRK execution time for step 2 to 5 have been
recorded and averaged. The computing time for each step
of the PRK algorithm with m = 30 is shown in Table 3.
As can be seen in the table, steps 2 to 4 have similar ex-
ecution time independently of the number of patterns p. In
fact, the same occurs for other values of m, not shown due to
space limitation. Note that steps 3 and 4 have similar com-
putational complexity and their execution time on the GPU
was expected to be similar, particularly due to the use of the
CUB for computing the prefix-sums in step 4. Step 5 is more
sensitive to changes in pattern size and number of patterns.
Indeed, this step incurs in computing hash values as well as
to compare the characters to verify possible false positive
occurrence. Nevertheless, step 5 has an average runtime
of 2.77ms for p = 256 while the average execution time
for p = 1 is 2.62ms. That is, the average difference is less
than 6%, even though the number of input patterns increased
from 1 to 256. The table also shows comparison results of
the PRK to the GPU implementation proposed in [19], here-
after referred to as “MatchStr”. The latter has been reported
to perform well on shorter text patterns, which is the case in
our experiments, making it a reasonable choice for compar-
ison purposes. For the reader benefit, in what follows a brief
overview of the MatchStr is provided. At the CPU side, the
MatchStr algorithm arranges the input string T and pattern
strings p into string arrays. More precisely, the input text
string T is broken into n − m sub-strings of size m, which
are arranged in a two-dimensional array, called “textArr”.
Each column of the textArr holds a sub-string of T . Next,
these arrays are transferred to the GPU. To each column of
the textArr, a thread γl (0 ≤ l < τ) is assigned. Each thread
compares the characters in its column with those in the input
pattern P. If all characters match, the results are then reg-
istered into the result array and transferred back to CPU at
the end of the process. Clearly, MathSTR runs in O(nm/τ)
time. Note that, in this arrangement, MatchSTR performs
coalesced memory accesses and avoids memory block con-
flicts. Contrary to the PRK algorithm, the MatchStr does not
produce false positives, as the text to pattern match is per-
form character-by-character. In this work, MatchStr imple-
mentation has been adapted to handle multiple patterns (i.e.
p > 1) by issuing multiple kernel calls. Thus, the MatchStr
for handling multiple patters runs in O(pmn/τ) = O(mn), for
p ≤ τ. As can be observed in Table 3, PRK attains speedup
gains over the MatchSTR varying from 1.13 times for p = 1
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up to 37.35 times for p = 256. That is, even for the case of
p = 1, the proposed PRK implementation on GPU achieves
significant improvement over MatchStr.

6. Conclusion

This work addressed the problem of multiple-pattern match-
ing on GPUs. More precisely, we proposed a Prefix-Sum-
Based Parallel Rabin-Karp (PRK, for short) algorithm tai-
lored for parallel execution on the GPU. At its core, PRK
uses a fast-parallel prefix-sums algorithm to maximize par-
allelization together with a look-up table to accelerate the
task of matching on multiple patterns. The proposed PRK
algorithm finds all occurrences of p patterns of length m in
an input text T in O(m+ q+ n

τ
+ nm

q ) time, where q is a suffi-
ciently large prime number and τ is the available number of
threads. Both sequential and parallel versions of the PRK al-
gorithm have been implemented. Experimental results show
that the parallel implementation of the PRK algorithm on the
NVIDIA V100 GPU provides speedup surpassing 372 times
and 12.59 times as compared to the sequential and OpenMP
implementations, respectively. Compared to another promi-
nent GPU implementation, PRK attained speedup surpass-
ing 37 times. As future work, we plan to apply the insights
obtained in this work on correlated problems.
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