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SUMMARY Network throughput has become an important issue for
big-data analysis on Warehouse-Scale Computing (WSC) systems. It has
been reported that randomly-connected inter-switch networks can enlarge
the network throughput. For irregular networks, a multi-path routing
method called k-shortest path routing is conventionally utilized. However,
it cannot efficiently exploit longer-than-shortest paths that would be detour
paths to avoid bottlenecks. In this work, a novel routing method called k-
optimized path routing to achieve high throughput is proposed for irregular
networks. We introduce a heuristic to select detour paths that can avoid
bottlenecks in the network to improve the average-case network through-
put. Experimental results by network simulation show that the proposed
k-optimized path routing can improve the saturation throughput by up to
18.2% compared to the conventional k-shortest path routing. Moreover, it
can reduce the computation time required for optimization to 1/2760 at a
minimum compared to our previously proposed method.
key words: interconnection networks, warehouse-scale computing, data
centers

1. Introduction

Recently, the size of data centers for big-data processing
has grown rapidly. They form a new computer class called
warehouse-scale computers which will provide more than
hundreds of thousands of nodes. Conventional interconnec-
tion networks for such a huge scale system is difficult to
be formed with economic commodity switches. Also, large
throughput to cope with a large request level parallelism is
difficult to be satisfied.

Novel-class random networks have been proposed
for such warehouse-scale computers. Since the through-
put is more important than the latency for homogeneous
warehouse-scale computers, interconnection networks us-
ing random regular graphs are efficient. Random topologies
such as ring networks with random short-cut links [1] and
Jellyfish topologies based on a random regular graph [2] can
exploit many alternative paths for each source-destination
pair, which leads to their larger throughput than that of Fat-
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Trees [3] commonly used in data centers.
These random graphs ensure their large throughput by

multiple paths between nodes. However, the throughput is
practically dependent on adopted packet routing algorithms.
Conventional equal cost multiple paths routing (ECMP) [4]
cannot make use of the variety of paths in the random graphs
to improve the throughput. A routing algorithm called k-
shortest path routing [5] has been proposed to utilize high
throughput of random regular graphs. This method uses the
shortest k paths between two nodes to achieve comparative
or better throughput than Fat-Trees using ECMP.

In this work, we consider the trade-offs between the
network performance and the required routing table size.
Although increasing the number of paths available for each
source-destination pair would relax the limitation of our pro-
posed algorithm to improve the network performance, the
increased number of paths enlarges the routing table size,
which leads to the difficulty of the implementation for large-
scale networks.

For example, on Infiniband networks, a packet only can
include the information of a destination node as a destina-
tion LID (Local IDentifier) in the header. One sub-set can
use approximately 48,000 LIDs (i.e. destinations) for each
intermediate switch at maximum. 3 paths available for each
source-destination pair can support about 48,000

3 = 16,000
nodes, while 10 paths can support about only 48,000

10 = 4,800
nodes.

In this work, we explore methods for choosing multi-
ple paths with their number fixed to maximize the through-
put for arbitrary traffics. There is a linear programming
model for obtaining the selection probability of paths which
can maximize the worst-case throughput [6]. Our previ-
ous work [7] obtained the maximum worst-case throughput
when m paths are used between two nodes with the linear
programming to select k paths with the highest probability.
We then used these k paths to achieve k-optimized path rout-
ing, which maximizes the worst-case throughput. The prob-
lem of our previous method is the huge computational cost
to obtain k paths, which makes it difficult to apply to large-
scale networks.

The difference of this paper from our previous work [7]
is that we introduce a new linear program to reduce the com-
putational complexity and increase the throughput. In this
program, disjoint perfect matchings are defined for the com-
plete bipartite graph of all source-destination pairs. The av-
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Table 1 Qualitative comparison of alternative solutions (‘+’: good,
‘o’: fair, ‘-’: poor).

Routing
k-shortest k-opt.-WC k-opt.-PM

[5] [7] (proposed)

Latency + o o
Throughput - + o

Computational cost + - o

erage throughput of traffics corresponding to the matchings
is then optimized to obtain the k paths. The number of the
traffics to be optimized can be significantly reduced while
considering all the source-destination pairs.

A qualitative comparison among conventional and our
proposed algorithms is summarized in Table 1. In this table,
our previous method to optimize Worst-Case throughput and
our proposed method in this work to optimize with Perfect
Matching are represented by “k-opt.-WC” and “k-opt.-PM”,
respectively.

The rest of the paper is organized as follows. Section 2
overviews conventional data center networks and high-
throughput routing methods. In Sect. 3, several network
measures are defined. Section 4 provides our two linear pro-
gram models to obtain the optimum routing paths. Section 5
describes our routing framework called k-optimized path
routing for high-throughput irregular networks. In Sect. 6,
our proposed methods are evaluated for network throughput
and computational complexity. Finally, we conclude this
paper in Sect. 7.

2. Related Work

In this section, we review existing methods for measuring
the throughput of the networks and routing methods for im-
proving the throughput.

2.1 High-Throughput Large-Scale Networks

Although large-scale data center networks generally use Fat-
Tree topologies [3], they are disadvantageous because there
exist many communication hotspots that decrease network
utilization [8]. One possible solution for eliminating such
bottlenecks is to design reconfigurable networks such as op-
tical wireless communications. However, they require high
costs, and thus they are not currently reasonable.

DLN [1] and Jellyfish [2] apply random graphs [9] to
the topology of interconnection networks. Slim Fly [10] and
Xpander [11] are semi-optimal network topologies for given
the number of switches and the number of ports per switch.
These four networks above achieve balanced throughput for
arbitrary traffics and communication loads. In particular, the
network topologies adopting random graphs are promising
because they make network sizes and the number of ports
flexible. By using a fluid-flow model, Jyothi et al. show that
such random topologies improve the throughput compared
with Fat-Tree topologies if we use the optimal routing be-
tween end nodes [12].

Fig. 1 Average throughput Θavg(R) achieved by k-shortest path routing
R (64 nodes, degree of 4).

2.2 Maximizing Throughput by Routing

Wang et al. propose the multi-path routing algorithm called
SCRAT [13], which increases the bandwidth compared to
the conventional multi-path routing. However, SCRAT con-
siders the bandwidth of an independent flow for each source-
destination pair and does not consider the multiple concur-
rent flows among multiple source-destination pairs.

For Jellyfish, the k-shortest path routing is proposed
to improve the network throughput [2]. Yuan et al. propose
the limited length spread k-shortest path routing (LLSKR),
which improves the k-shortest path routing by more effec-
tively exploiting path diversity [14].

Figure 1 shows the relationship between the through-
put and the number k of paths used in the k-shortest path
routing with 64 4-degree nodes. We show here the average
throughput, Θavg(R), by k-shortest path routing algorithm R
for randomly generated 1,000 traffic patterns. Note that the
strict definition of the throughput is shown in Sect. 3. The
throughput increases with the value of k.

The k-shortest path routing and LLSKR improve com-
munication throughput by reducing the number of occupied
channels. On the one hand, longer-than-shortest paths in-
crease the number of occupied channels, and consequently,
they decrease the throughput, as shown in [14]. On the other
hand, however, using longer paths instead of short paths
may avoid the bottleneck of specific channels along the short
paths to improve the network throughput.

This paper explores the use of longer-than-shortest
paths for improving network throughput. More specifically,
we measure the path utilization that maximizes network
throughput. Based on the utilization, we can generate rout-
ing paths that may include longer-than-shortest paths to im-
prove network performance.

3. Metrics for Measuring Network Throughput

Static routing algorithm design can be modeled as a multi-
commodity flow problem (MCF). In this model, communi-
cation flows on the network so that the load on each channel
does not exceed a certain capacity.

In this work, we explore a method for generating multi-
ple paths to improve network throughput. We use the frame-
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work of the existing method [6] to measure the throughput
under arbitrary traffics. In the same way as this framework,
we provide some definitions of a routing method and the
network throughput.

Definition 1. A link is a set of two uni-directional channels.

Definition 2. A path p is a set of channels {c1, . . . , c|p|} that
a packet uses for a source-destination pair.

First, a static routing algorithm defines a set of paths
available in the network for each source-destination pair. To
describe a routing algorithm R, we let R(p) be the probabil-
ity that a packet uses the path p with. Then, R can represent
a valid static routing algorithm as long as the following con-
ditions are satisfied.∑

p∈Ps,d
R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,

P and Ps,d represent the set of all paths and the set of paths
between source s and destination d, respectively. Each path
is a simple path that eliminates any loop and any revisit
channel. This formulation creates a commodity flow for
each of the |N|2 source-destination pairs in the network.

Using this multi-commodity flow formulation, several
network metrics can be defined. By our definition, the max-
imum throughput in a network can sustain under a given
traffic pattern. The throughput is determined by the channel
loads. That is, once the average load on a channel reaches
the channel’s capacity, that channel is saturated. The first
channel to saturate becomes a bottleneck and thus deter-
mines network throughput.

The expected number of packets that cross a particular
channel c for each cycle, referred to as the load γc, is the sum
of the loads contributed by each source-destination pair. In
terms of the traffic matrix π and the routing algorithm R,

γc(R, π) =
∑

s,d∈Nπs,d
∑

p:c∈p,
p∈Ps,d

R(p),

where πs,d is a binary value that represents whether commu-
nication exists for the (s, d)-pair.

In the traffic matrix π, each source node sends packets
to exactly one destination node, while each destination node
receives packets from exactly one source node. That is,

πs,d ∈ {0, 1} ∀s, d ∈ N,∑
d∈Nπs,d = 1 ∀s ∈ N,∑
s∈Nπs,d = 1 ∀d ∈ N.

Figure 2 (a) shows an example of a traffic matrix for
four nodes and Fig. 2 (b) shows the corresponding source-
destination pairs.

On typical networks, each channel’s capacity (i.e. the
maximum channel throughput rate) may be different from
each other. In this work, we set the value of each channel’s
capacity bc = 1, which is the same across all channels in
the network. The normalized channel load γc(R,π)

bc
is also the

Fig. 2 Traffic matrix π for 4 nodes.

same across all channels, i.e. ∀c ∈ C γc(R,π)
1 = γc(R, π). By

applying the above formulations to each channel load, we
define the maximum channel load across the whole network
as

γmax(R, π) = maxc∈C
[
γc(R, π)

]
.

This maximum channel load defines the maximum through-
put Θ(R, π) of the network under the traffic matrix π as

Θ(R, π) = γmax(R, π)−1.

Each source-destination pair can send and receive packets
at up this ratio of each channel’s capacity under the traffic
matrix π without saturating all channels in the network.

In the above formulations, the channel load γc is linear
in the routing algorithm R. Moreover, since it is the max-
imum value in a set of γc for all channels, the maximum
channel load γmax is convex in R. The existing method [6]
uses these properties to establish a linear program that can
obtain the optimal channel load for a routing algorithm R
and an arbitrary traffic matrix π.

4. Optimization of Throughput with Linear Program

In this section, we propose two linear program models that
minimize the channel load to extract the utilization ratio of
each path. Considering the trade-off of the achieved network
performance and the algorithmic computational complexity,
we propose two different definitions of throughput to opti-
mize.

4.1 Worst-Case Throughput

Firstly, we consider the problem of designing a routing al-
gorithm R with the optimal worst-case throughput under ad-
versarial traffic. The maximum channel load for R under any
traffic is defined as γwc(R). For some channel c and traffic
matrix π, γc(R, π) = γwc(R) is satisfied. This equality in-
duces a new variable w that satisfies w ≥ γwc(R). This vari-
able is used as an objective function in the following linear
program:

minimize w
subject to

∑
p∈Ps,d

R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,
γc(R, π) ≤ w ∀c ∈ C, π ∈ Π,
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where a set of traffic matrices Π is |N|-permutations for a set
of nodes N. The size of Π becomes |N|!, which makes the
linear program difficult to solve in a practical time.

In order to reduce the number of constraints to a
polynomial number, the Lagrange dual function and the
Birkhoff–von Neumann theorem can be utilized [6]. We in-
troduce new variables v and u to reformulate the problem.
The resulting linear program is:

minimize w

subject to
∑

p∈Ps,d
R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,

∑
p:c∈p,
p∈Ps,d

R(p) ≤ vd,c − us,c
∀s, d ∈ N,
c ∈ C,∑

d∈Nvd,c −∑s∈Nus,c = w ∀c ∈ C.

4.2 Average-Case Throughput under Traffics of Disjoint
Perfect Matchings

Although the linear program shown in Sect. 4.1 can be exe-
cuted with the polynomial time and memory, the computa-
tional complexity is still large. In this section, we will con-
sider not only all possible source-destination pairs but also
the reduced number of traffics to be optimized.

We start from generating a vector of nodes (n1, n2, . . . ,
n|N|) and randomly shuffle the elements to get a new vector
L. From this vector L, we can obtain the following set of
traffic matrices X,

X := {πi | i ∈ {1, 2, · · · , |N| − 1}}.
Each traffic matrix is defined as

πi
s,d =

{
1 (if L−1(d) = L−1(s) + i mod |N|),
0 (otherwise),

where L−1(s) denotes the index of the source node s in the
vector L.

Figure 3 shows an example of traffic generation. We
start from the complete bipartite graph with a set of source
nodes and another set of destination nodes†. The alignment
for each source-destination pair is changed along with the
traffic index i to generate disjoint perfect matchings {πi | i ∈
{1, 2, · · · , |N| − 1}}.

For this set of traffic matrices X, the average-case
throughput is optimized by the following linear program
model.

Fig. 3 Example of traffic generation for 4 nodes.

†We eliminate edges between the nodes of the same index.

minimize 1
|X| ·
∑
π∈Xwπ

subject to
∑

p∈Ps,d
R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,

γc(R, π) ≤ wπ ∀c ∈ C, π ∈ X.

Note that we approximately maximize the average-case
throughput by minimizing the average channel load under
the traffics. Compared with the optimization of the worst-
case throughput in Sect. 4.1, we can reduce the number of
traffics to be optimized from |N|! to |N| − 1.

5. Generating k-Optimized Paths

In this section, we introduce k-optimized path routing that
can replace the conventional k-shortest path routing. The
proposed method uses the linear program shown in the pre-
vious section. In a similar way to the k-shortest path routing,
the resulted routing uses k paths for each source-destination
pair. To determine the k paths, firstly we generate m-shortest
paths, where the number m is enough larger than the number
k. Then, we obtain k paths that can maximize the throughput
from these m paths.

Definition 3. The utilization ratio of each path p ∈ P is
equal to the resulted variable R(p) (i.e. the probability that
a packet uses the path p with) that maximizes the network
throughput in the linear program shown in Sect. 4.

By introducing the definition above, a path search with
linear programming is performed by the following proce-
dures.

(i) For a set of available paths P, the maximum channel
load is calculated using the linear program shown in
Sect. 4.

(ii) The utilization ratio of each path is extracted in the
optimization result. The top k paths for each source-
destination pair are then selected from the m paths.

The top k paths may include longer-than-shortest paths that
are not in k-shortest paths. These paths can improve the net-
work throughput by using them as substitutes for the short-
est paths with low utilization.

Figure 4 shows an example of the path selection. The
step (i) obtains the channel loads when using m-shortest
paths for each source-destination pair. At the same time,
the utilization ratio of each path is calculated in the opti-
mization. The step (ii) extracts detour paths that can avoid
bottlenecks. These paths are included in k available paths to
generate routing optimized for the network throughput. In
the example of Fig. 4, the k = 3 paths that have the highest
utilization ratio are selected from the m = 8 paths.

In the optimization step (ii), we adopt one of the
two linear program models shown in Sect. 4 to gener-
ate k-optimized paths. Hereinafter, the resulted rout-
ing by optimizing the worst-case throughput (Sect. 4.1) is
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Fig. 4 Example of path selection (m = 8, k = 3).

Fig. 5 Example of paths (k = 3).

called k-optimized-WC. Similarly, the routing by optimiz-
ing the average-case throughput of disjoint perfect match-
ings (Sect. 4.2) is called k-optimized-PM.

Figure 5 shows an example of paths generated by k-
shortest path routing and k-optimized path routing. When
k = 3, the maximum path length between nodes #7 and #15
used in the k-shortest path routing is 3 (7-10-1-15, 7-14-9-
15). On the other hand, the maximum path length between
nodes #7 and #15 used in the k-optimized path routing is
4 (7-10-13-0-15, 7-12-5-1-15). By using these non-shortest
paths, it is possible to prevent load congestion on specific
channels to improve the overall throughput.

6. Evaluation

The proposed k-optimized path routing introduced in Sect. 5

Fig. 6 Average throughput for degree-8 64 nodes.

is compared with the conventional k-shortest path routing.
Gurobi [15] is used as a linear program solver. A barrier
method is used for the optimization method in the linear pro-
gram.

Our two routing methods k-optimized-WC and k-
optimized-PM are compared with the conventional k-
shortest path routing. We set the default number of paths
for each source-destination pair to be searched to m = 10,
while we set the default number of paths used in the resulted
routing to k = 3.

6.1 Average Throughput on Random Regular Graphs

In this section, we apply the conventional k-shortest path
routing and the proposed routing methods k-optimize-WC
(k-opt.-WC) and k-optimize-PM (k-opt.-PM) to random reg-
ular graphs that have the same degree of each node. We then
evaluate the average throughput for 1,000 randomly gen-
erated traffic matrices. We evaluate routing algorithm on
64-node degree-8 and 256-node degree-16 random regular
graphs.

Note that as mentioned in Sect. 1, we assume our pro-
posed algorithm can be applied to warehouse-scale comput-
ing systems that have hundreds of thousands of nodes. Al-
though we set the evaluated network size to 256 at most, we
can fill the gap by utilizing commodity high-radix switches
to aggregate a large number of computing hosts. For exam-
ple, 256 48-port switches can configure degree-16 random
regular graphs where each switch has 32 computing hosts.
In this case, the resulted system size can be 32×256 = 8,192.

Figure 6 (a) shows the evaluation results of the aver-
age throughput when the parameter k is varied for 64 nodes.
As shown in this figure, k-opt.-WC, which optimizes the
worst-case throughput, achieves the best average through-
put. When k = 3, it improves the throughput by up to 24.3%
compared to the conventional k-shortest path routing.

On the other hand, k-opt.-PM, which optimizes the
average-case throughput by perfect matching, slightly de-
grades the average throughput compared to k-opt.-WC. This
is because the number of traffics to be optimized is reduced.
Nevertheless, by considering all source-destination pairs by
disjoint matchings, it improves the average throughput by
up to 15.8% compared to the k-shortest path routing when
k = 3.

Figure 6 (b) shows the evaluation results of the aver-
age throughput when the parameter m is changed for 64
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Fig. 8 Average throughput on conventional non-random topologies with different k (m = 10).

Fig. 7 Average throughput for degree-16 256 nodes.

nodes. Ideally, as the number m of paths to be searched
increases, the average throughput also increases. However,
as shown in this figure, the average throughputs do not in-
crease monotonically in both the k-opt.-WC and k-opt.-PM
methods. This is because both methods heuristically select
k paths that have the highest utilization ratio among m paths
in the optimization phase.

For m = 15, k-opt.-WC and k-opt.-PM degrade the
average throughput by 41.4% and 45.6% compared to m-
shortest path routing, respectively. These results show that
increasing the number of available paths is significantly
more effective for improving the throughput than optimizing
the available paths with the number of paths fixed. Com-
pared to the conventional k-shortest path routing, the max-
imum improvement rates of the average throughputs of k-
opt.-WC and k-opt.-PM are 24.8% and 16.6%, respectively.

As shown in Fig. 7 (a) and 7 (b), the same tendency can
be seen for degree-16 256-node networks. Note that k-opt.-
WC is not evaluated in this section because as shown in
Sect. 6.3, the calculation cost for optimizing k-opt.-WC is
impractically large. When k = 3 and m = 10, the average
throughput is improved by 45.5% compared to the conven-
tional k-shortest path routing. When k = 3 and m = 15, the
average throughput degrades 59.7% compared to m-shortest
path routing.

6.2 Average Throughput on Conventional Non-Random
Topologies

In this section, we apply the conventional k-shortest path
routing and the proposed routing method k-optimize-PM (k-
opt.-PM) to conventional non-random topologies as follows:

• 3-D Torus (degree 6, 64 switches) [16]

• 12-ary Fat-Tree (degree 12, 72 edge switches) [17]

• Dragonfly (degree 8, 114 switches) [18]

• Slim Fly (degree 11, 98 switches) [10]

It is notable that 12-ary Fat-Tree is an indirect topol-
ogy, which contains 72 edge switches that hosts are directly
connected to and 108 intermediate switches that hosts are
not connected to (180 switches in total).

Figure 8 shows the evaluation results. In a quasi-
optimal diameter-2 Slim Fly topology, using the shortest
paths directly improves the throughput. The performance
improvement rate of the k-opt.-PM compared to the k-
shortest is suppressed to 20.6%. On the other hand, in the
other topologies Torus, Fat-Tree, and Dragonfly, there is
comparatively large room for routing optimization. Espe-
cially in an indirect Fat-Tree topology, there are many al-
ternative paths via intermediate switches, The k-optimized
path routing can improve the network throughput by 91.8%
compared to the k-shortest path routing.

6.3 Computational Costs

In this section, we evaluate the memory size and the exe-
cution time required for the two linear program models in-
troduced in Sects. 4.1 and 4.2. The Barrier method is used
in a linear programming solver Gurobi. The specification
of the machine for the evaluation is Intel R© Xeon R© CPU E5-
2470 @ 2.30 GHz (2 Sockets × 8 Cores, 32 Threads) with
128 GB Memory.

Note that in this evaluation we assume that the m-
shortest paths are given before the optimization phase. The
calculation time to generate m-shortest paths is not included
in this evaluation. This is why k-shortest path routing and
m-shortest path routing are not evaluated in this section.

Figure 9 shows the evaluation results of the relationship
between the network size (i.e. the number of nodes) and the
required computation cost for the degree-8 random regular
graphs with k = 3 and m = 10. As shown in Fig. 9 (a), k-
opt.-WC that optimizes the worst-case throughput exceeds
16 GB of the required memory size for preserving variables
and constraints on a linear program for the network size of
128 nodes. Besides, as shown in Fig. 9 (b), it takes more
than 3 hours of the calculation time for 96 nodes. These
high computational costs are mainly due to a large number
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Fig. 10 Network performance of k-optimized path routing for 64 nodes.

Fig. 11 Network performance of k-optimized path routing for 256 nodes.

Fig. 9 Calculation costs for degree-8 random regular graphs (k = 3,
m = 10).

of inequalities, O(|N|3), under the constraints of the linear
program introduced in Sect. 4.1.

On the other hand, as shown in Fig. 9 (a), k-opt.-PM,
which optimizes the average throughput by perfect match-
ings, achieves a significant reduction in the required mem-
ory size by reducing the constraints in the linear program
model in Sect. 4.2. A similar tendency is observed in
Fig. 9 (b) for the execution time. k-opt.-PM reduces the
memory size to 1/240 and the computation time to 1/2760
compared to k-opt.-WC at a minimum. We can conclude
that k-opt.-PM that is newly proposed in this paper can
achieve both high throughput and reduced computation cost.

6.4 Network Performance

A cycle-accurate network simulator Booksim [21] is used
for evaluation. Network parameters for the simulation are
shown in Table 2. In order to avoid deadlocks, Duato’s
protocol [19] is used. In this protocol, we adopt the
up*/down* routing [20] with the spanning trees optimiza-
tion method [22] as the escape paths. In the simulation, we
adopt uniform random traffic and three kinds of synthetic
traffic of transpose, shuffle, and reverse traffic. For compar-

Table 2 Network parameters.

Simulation period 10,000 cycles
Packet size 1 flit

Number of VCs 2
Buffer size per VC 8 flits

Router latency 4 cycles/hop
Escape path [19] up*/down* routing [20]

ison with the conventional k-shortest path routing, we eval-
uate the proposed k-opt.-WC and k-opt.-PM for 64 nodes,
while we only evaluate k-opt.-PM for 256 nodes because of
the memory size limitation of the machine for the optimiza-
tion.

Figure 10 shows the network performance of the k-
shortest path routing and the proposed k-opt.-WC and k-
opt.PM routing methods. As seen in this figure, both
of the proposed routing methods achieve higher saturation
throughput than the k-shortest path routing regardless of
adopted traffic. Especially in reverse traffic, the throughput
is improved by 14.3% and 9.6%, respectively.

These improvement rates are smaller than the rates
of the average throughput shown in Fig. 6. This is be-
cause Duato’s protocol induces another deadlock-free net-
work layer for up*/down* routing. That is, the result values
of the bandwidth are raised by that of the deadlock-free net-
work.

It is also notable that both of the proposed k-optimized
path routing methods achieve almost the same network la-
tency at the low accepted flit rate as the conventional k-
shortest path routing. This is due to Duato’s protocol applied
in this simulation. The proposed k-optimized path rout-
ing degrades the network latency because of longer-than-
shortest paths as default, while the conventional k-shortest
path routing also degrades the network latency when the ac-
cepted rate is comparatively high because of longer-than-
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shortest deadlock-free paths in the up*/down* routing.
In the three kinds of synthetic traffic, the saturation

throughput by k-optimized path routing is deteriorated by
4.8% compared with m-shortest path routing. On the other
hand, in uniform traffic, the deterioration rate of the satura-
tion throughput is suppressed to 1.0%.

Similarly, as shown in Fig. 11, especially in transpose
traffic, k-opt.-PM improves the throughput by 18.2% com-
pared to the conventional k-shortest path routing for 256
nodes. The k-opt.-PM with reduced number of traffic matri-
ces to be optimized can significantly improve the saturation
throughput compared with the conventional k-shortest path
routing. Compared with the m-shortest path routing, the de-
terioration rate of the saturation throughput is suppressed to
0.9%.

7. Conclusion

In this study, we explored multi-path routing methods to
maximize network throughput for high-performance ran-
dom regular graphs. We introduced k-optimized path rout-
ing that uses k-multiple paths that may include longer-than-
shortest paths for each source-destination pair.

The k-optimized path routing method that optimizes
the worst-case throughput had a problem in its feasibility
that the memory size and computation time required for the
linear program became quite large. In this research, a new
method called k-optimized-PM (Perfect Matching) was pro-
posed. It achieves both the same throughput as the previous
method and a drastic reduction in the required memory size.
This can be realized by reducing the number of traffics to be
optimized while considering all source-destination pairs.

The k-optimized-PM proposed in this paper has re-
duced the computation time required for optimization to
1/2760 at a minimum compared to our previously proposed
k-optimized-WC. Furthermore, evaluation results by net-
work simulation show that the saturation throughput has
been improved by up to 18.2% compared to the conventional
k-shortest path routing.
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