
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020
2463

PAPER Special Section on Parallel, Distributed, and Reconfigurable Computing, and Networking

SENTEI: Filter-Wise Pruning with Distillation towards
Efficient Sparse Convolutional Neural Network Accelerators

Masayuki SHIMODA†a), Youki SADA†, Ryosuke KURAMOCHI†, Nonmembers, Shimpei SATO†,
and Hiroki NAKAHARA†, Members

SUMMARY In the realization of convolutional neural networks (CNNs)
in resource-constrained embedded hardware, the memory footprint of
weights is one of the primary problems. Pruning techniques are often used
to reduce the number of weights. However, the distribution of nonzero
weights is highly skewed, which makes it more difficult to utilize the un-
derlying parallelism. To address this problem, we present SENTEI∗, filter-
wise pruning with distillation, to realize hardware-aware network architec-
ture with comparable accuracy. The filter-wise pruning eliminates weights
such that each filter has the same number of nonzero weights, and retrain-
ing with distillation retains the accuracy. Further, we develop a zero-weight
skipping inter-layer pipelined accelerator on an FPGA. The equalization
enables inter-filter parallelism, where a processing block for a layer exe-
cutes filters concurrently with straightforward architecture. Our evaluation
of semantic-segmentation tasks indicates that the resulting mIoU only de-
creased by 0.4 points. Additionally, the speedup and power efficiency of
our FPGA implementation were 33.2× and 87.9× higher than those of the
mobile GPU. Therefore, our technique realizes hardware-aware network
with comparable accuracy.
key words: sparse convolutional neural network, filter-wise pruning, dis-
tillation, FPGA

1. Introduction

Convolutional neural networks (CNNs) [1] deliver state-of-
the-art performance in computer-vision tasks such as ob-
ject classification, object detection, and semantic segmen-
tation. They have been increasingly required in a variety
of embedded systems such as robots, self-driving cars, and
drones. However, CNNs involve too many parameters (es-
pecially weights) for resource-constrained embedded hard-
ware to store in its on-chip memory.

To address this problem, several network-compression
techniques have been proposed. Pruning [2] is a compres-
sion technique that eliminates unnecessary weights from
CNNs. Figure 1 details the procedure of pruning; it con-
sists of three steps: training weights, pruning unnecessary
weights, and retraining the remaining weights. Firstly, net-
work connectivity (weights) are trained with a dataset. The
resulting weight values indicate the magnitude of effect of
each connection on the accuracy. Secondly, pre-trained
weights below a threshold are pruned, and the unit is typ-
ically layer-by-layer. Finally, the remaining weights are re-
trained with the same dataset to achieve the original accu-

Manuscript received January 7, 2020.
Manuscript revised May 21, 2020.
Manuscript publicized August 3, 2020.
†The authors are with Tokyo Institute of Technology, Tokyo,

152–8550 Japan.
a) E-mail: shimoda@reconf.ict.e.titech.ac.jp

DOI: 10.1587/transinf.2020PAP0013

Fig. 1 Comparison with conventional unstructured pruning. Our filter-
wise pruning makes neurons in a layer have the same number of connec-
tions (weights) from neurons in the previous layer.

racy. The pruning technique leads to more than a 10-fold
reduction in the amount of parameters with comparable ac-
curacy [2]. However, as for the calculation latency, the uti-
lization of high-degree parallelism becomes more difficult
because the distribution of nonzero weights is skewed. The
hardware requires fine-grained data parallelism with a flexi-
ble data path, which leads to a significant overhead.

To address this problem, we propose SENTEI, filter-
wise pruning with distillation. At the pruning step, SENTEI
prunes weights such that each filter has the same number
of nonzero weights. Thus, each output neuron has the same
number of connections with the previous ones, which makes
it easier to utilize inter-filter parallelism. At the retraining
step, the remaining weights are retrained with a distillation
technique, where dense and sparse networks serve as the
teacher and the student, respectively. By using the dense
network’s training information, the sparse network’s accu-
racy can be increased and training convergence accelerated.
Additionally, we develop a zero-weight skipping inter-layer
pipelined accelerator on an FPGA. Because each filter has
the same number of nonzero weights, utilizing inter-filter
parallelism does not require complicated functions. There-
fore, our architecture achieves a high degree of parallelism
with simple hardware complexity.

The contributions of this study are summarized below.

∗SENTEI is a Japanese word that means pruning. SENTEI not
only trims a tree to make it look better, but also allows it to utilize
nutrients efficiently. We decided this name since the effect is very
similar to our technique’s effect to CNN.

Copyright c⃝ 2020 The Institute of Electronics, Information and Communication Engineers



2464
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

1. We propose SENTEI, filter-wise pruning with distilla-
tion. With comparable accuracy, it performs pruning
such that each filter has the same number of weights to
achieve a high degree of parallelism.

2. We develop a zero-weight skipping inter-layer pipelined
accelerator that utilizes inter-filter parallelism. The ac-
celerator realizes a high degree of parallelism while
maintaining hardware simplicity.

3. We evaluate SENTEI based on a semantic-segmentation
task. The results indicate that the accuracy is compara-
ble with those of its dense-network counterparts.

4. We compare our system on an FPGA with a mobile
GPU. The latency speedup and energy efficiency of the
FPGA were 33.2× and 87.9× better than those of the
mobile GPU.

This paper is an extension of a previous publication [3].
The rest of the paper is organized as follows: Sect. 2

provides motivation of our work. Section 3 explains a basic
knowledge used throughout this paper. Section 4 introduces
our proposed pruning technique, SENTEI (filter-wise prun-
ing with distillation). Section 5 explains our accelerator for
filter-wise pruned CNN. Section 6, 7, and 8 are experimental
results, related works, and conclusion, respectively.

2. Motivation

Pruning is often used to reduce the number of weights
for CNN implementation in resource-constrained embed-
ded hardware. The procedure of the typical pruning tech-
nique [2] is given below:

1 ) Train the network weights
2 ) Prune the small weights below a threshold
3 ) Retrain the remaining weights

After pruning, most weights become zero; the weights
are stored in a format such as the coordinate (COO) format
or the compressed sparse row (CSR) format. As an example,
we consider the pseudo-code shown in Fig. 2 for sparse con-
volution (CONV) with the COO format. The code consists
of four loops. In each loop, a weight and an address (row,
column, and channel values) are loaded, and the multiply-
accumulate (MAC) operation is performed as many times
as the number of non-zero weights. We categorize paral-
lelism into the following different types based on the un-
rolling strategies.

Fig. 2 Pseudo-code of sparse CONV with the COO format.

1. Spatial Parallelism, where loop L2, loop L3, or both
are unrolled

2. Inter-filter Parallelism, where loop L1 is unrolled
3. Intra-filter Parallelism, where loop L4 is unrolled

To realize high-speed calculation, we must utilize the
above three types of parallelisms flexibly based on network
architectures.

Figure 3 shows the nonzero-weight ratio of each
pruned filter in a customized AlexNet [4]. There is a sig-
nificant difference in the nonzero-weight ratios between a
certain pair of filters. Similar to the case in the example, cer-
tain pruned networks have highly skewed nonzero-weight
distributions [5]. Owing to the imbalance, it becomes more
difficult to utilize inter- and intra-filter parallelisms. To ad-
dress this problem, some studies have developed exclusive
compilers or accelerators. However, they incur high devel-
opment costs or feature complicated architecture. Our key
idea is to equalize the number of nonzero weights of each
filter during the training phase. This equalization makes it
easier to exploit the underlying inter- and intra-filter paral-
lelisms without complicated techniques.

3. Preliminary

3.1 Convolution (CONV)

Let Xi(w, h, ch) be an input feature map (IFM) value at
(w, h, ch) coordinates in i-th layer, W i(r, c, ch) be a weight
value, wbias be a bias, S i(w, h) be an intermediate variable,
fact(x) be an activation function, and Xi+1(w, h) be an (i+1)-
th IFM, or output feature map (OFM). The KWi × KHi 2D
CONV at (w, h) coordinates in (i+1)-th layer is as follows:

S i+1(w, h) = wbias

+

CHi∑
ch=1

KHi∑
c=1

KWi∑
r=1

Xi(w + r, h + c, ch) ×W i+1(r, c, ch)

Xi+1(w, h) = fact(S
i+1(w, h)),

where CHi is the i-th IFM channels, r, c, and ch are
coordinates of width-axis, height-axis, and channel-axis, re-
spectively. The input is multiplied by a weight and the re-
sulting sum is applied to the activation function. In this pa-
per, we use the rectified linear unit (ReLU) functions as the
activation function. When KHi = KWi = 1 (or pixel-wise
CONV), it plays the role of classification corresponding to
the part of input images.

3.2 Sparse CONV

After a pruning technique is applied, many weight values
become zero. To store such weight parameters formed in
the sparse matrix to block RAMs (BRAMs) efficiently, we
employ a coordinate (COO) format. The arrays, row, col,
ch, and weight store its row, column, channel indices, and
nonzero-weights of the sparse matrix, respectively. Since



SHIMODA et al.: SENTEI: FILTER-WISE PRUNING WITH DISTILLATION TOWARDS EFFICIENT SPARSE CONVOLUTIONAL NEURAL NETWORK ACCELERATORS
2465

Fig. 3 Non-zero weight ratio of pruned filters in the first layer in our AlexNet. The layer has 64
kernels in 11 × 11 size, and sparse ratio is set 94%.

pruning realizes a high-sparse matrix, the overhead of addi-
tional memory requirement (row, col, and ch arrays) is not
critical. When COO format is introduced, the sparse CONV
at (w, h) coordinates is formulated as follows.

S i+1(w, h) = wbias

+

N∑
j=1

Xi(w + r j, h + c j, ch j) ∗ w j

Xi+1(w, h) = fact(S
i+1(w, h)),

where N is the number of nonzero-weights, w j is a
weight value, and col j and row j are column and row indices,
respectively.

4. SENTEI

In this paper, we present SENTEI, a filter-wise pruning with
distillation. SENTEI consists of two steps: filter-wise prun-
ing and retraining with distillation. The procedure is de-
tailed below:

1 ) Train network weights
2 ) Sort the trained weights of each filter by their absolute

values
3 ) Prune the small weights by a preset percent filter-by-

filter
4 ) Retrain the remaining weights with distillation

By following the above procedure, each filter is the
same sparse ratio, which simplifies the pruned-CNN accel-
erator. Moreover, retraining the weights with distillation re-
tains the accuracy. We note that the retraining time does
not change from conventional pruning [2]. The distillation
scheme is detailed in the next section.

4.1 Distillation Scheme for Retraining Weights

Distillation [6] is a compression technique, where a net-
work (student network) is trained using the outputs of a
larger network (teacher network) to imitate the same out-
puts. The outputs of a teacher networks are used to improve
the accuracy of a smaller student network. This study ex-
ploits this concept to obtain a highly sparse network while
maintaining the accuracy. To the best of our knowledge,
this is the first study to implement the distillation tech-
nique for retraining weights. It accelerates the conver-
gence while increasing the accuracy of the sparse network.

Fig. 4 Distillation scheme.

Figure 4 presents an outline of the distillation scheme with
the AlexNet-based network that we have used. We assign
a dense network as the teacher and a sparse network as the
student. A training objective function Ltrain is written as:

Ltrain =
1
M

M∑
m=1

Lm
so f t + βLhard,

where M is the number of connections between the
teacher and the student networks (this paper sets M 3), β
is a hyper-parameter to balance their losses. Lm

so f t is the
m-th mean squared loss using both the network’s feature
map (FM), and Lhard is the pixel-wise cross entropy loss us-
ing ground truth. Lm

so f t is defined by

Lm
so f t =

αm

CHiHiWi

CHi∑
ch=1

Hi∑
h=1

Wi∑
w=1

(
Xi

s(w, h, ch) − Xi
t(w, h, ch)

)2
,

where αm is a hyper parameter to balance their losses,
Wi,Hi, and CHi indicate the i-th FM’s width, height, and
channel. Xi

s(w, h, ch) and Xi
t(w, h, ch) are the i-th FM values

at (w, h, ch) in the student and the teacher networks, respec-
tively. Lhard changes by a task, and in this paper we employ a
semantic segmentation task for evaluation. Therefore, Lhard

is pixel-wise cross entropy loss and defined by

Lhard = −
1

HinWin

#class∑
ch=1

Hin∑
h=1

Win∑
w=1

log (σ(w, h, ch)) p(w, h, ch),

where Hin and Win denote input image size, σ(w, h, ch)



2466
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

is predicted class probabilities, and p(w, h, ch) ∈ {0, 1} is the
ground truth class probabilities at (w, h, ch) coordinates.

5. Hardware Implementation

Figure 5 shows the overall architecture. The design con-
sists of buffer parts for parameters and the convolutional
block (CB) parts, which constitute the inter-layer pipelined
architecture. A combination of SENTEI and inter-layer
pipelining enables a high degree of parallelism, together
with architectural simplicity, because each layer has only
one filter loop count owing to SENTEI. All parameters, in-
cluding weights and biases, are loaded into on-chip buffers
from DDR3 memory. Thereafter, the processor sends an
input image to the design, and in the first CB, CONV opera-
tions are performed. The output feature maps are sent to the
ping-pong buffer in the next CB to be read to compute the
next layer operation. Finally, the outputs of the last CB (7-
th CB in this study) are sent to the ARM processor. Weight
matrices are stored in on-chip memory in the COO format.

5.1 Convolutional Block

Figure 6 shows the architecture of a convolutional
block (CB). It consists of a COO decoder, a COO counter,
a counter for convolutional operation, a ping-pong buffer
for feature maps (FMs), MAC units, and a processing ele-
ment (PE) for both BN and ReLU. The calculations of MAC
and PE are in the half-precision floating-point representa-
tion.

The COO counter counts the number of non-zero
weights of each filter; the COO decoder obtains the num-
ber and outputs the corresponding relative address or row,
column, and channel values. Next, to fetch the FM val-
ues, the absolute address is calculated using both the rel-
ative address and the convolutional counter, which indi-
cates the coordinates where the CONV operation is per-
formed. Figure 7 presents an example of the functional-
ity. The CONV coordinates are (w, h) = (1, 1), and the
relative address is (row, col, ch) = (1, 2, 0). Therefore, the
absolute coordinates of the corresponding FM value are
(w + row, h + col, ch) = (2, 3, 0). The fetched value and the
weight are fed into a multiply-accumulate (MAC) unit, fol-
lowed by PE for BN and ReLU. Finally, the output is stored
in the next ping-pong buffer in the next CB.

This study employs spatial and inter-filter parallelisms.
The parallelism improves throughput by at least 2× while
the utilization of BRAMs little increases. Since exploit-
ing inter-filter parallelism processes with two filters con-
currently, the expected improvement of throughput is 2× at
least, which implies that high-level synthesis may optimize
the inter-filter parallel architecture automatically. As for
BRAMs, there are two types of BRAMs in our architecture:
for FMs and COO formatted arrays. Using inter-filter par-
allelism does not change the number of BRAMs for feature
maps since we only change the BRAM configuration from
single-port mode to double-port mode. On the other hand,

Fig. 5 Overall architecture.

Fig. 6 Convolutional block architecture.

Fig. 7 Absolute and relative coordinates. The CONV counter has the
absolute coordinates of the top-left pixel in the kernel, such as (w, h) =
(1, 1) and the COO decoder contains relative coordinates (row, col, ch) =
(1, 2, 0).

since the previous architecture uses distributed single-port
LUTs to store COO formatted arrays, we change these LUTs
to dual-pot BRAMs, leading to an increase of the BRAM
utilization. Thus, we expect throughput is at least 2×, and
the BRAM utilization increases. From two coordinates of
nonzero weights in a certain pair of filters, several succes-
sive FM values along to the width-axis are fetched and sent
simultaneously. The corresponding weights are broadcast
to the corresponding MAC units. As for COO indices, we
used true dual port BRAMs as COO index buffers to read
two corresponding indices in one cycle.

6. Experimental Results

In our experiments, we used an AlexNet-based network
for the following reasons: 1) pruned AlexNet has a highly
skewed distribution of nonzero weights, which means that
filter-wise pruning without distillation leads to significant
accuracy degradation. By using AlexNet, we can evaluate



SHIMODA et al.: SENTEI: FILTER-WISE PRUNING WITH DISTILLATION TOWARDS EFFICIENT SPARSE CONVOLUTIONAL NEURAL NETWORK ACCELERATORS
2467

the effectiveness of SENTEI in preventing it. 2) AlexNet
is very useful for efficient edge-device implementation be-
cause big kernels in the first two layers reduce the input FM
resolution; buffer size of the FM is one of the primary prob-
lems in the implementation of resource-constrained hard-
ware. The network architecture is presented in Table 1. In
this study, the total sparse ratio was 93.6%, and sparse ratio
of the last layers was lower than that of the first layers to
maintain accuracy.

6.1 Semantic Segmentation

Semantic segmentation is a fundamental task in image pro-
cessing that performs pixel-wise classification, as shown in
Fig. 8. In this paper, we employ semantic segmentation
tasks to evaluate our proposal. We employ three metrics
that are often used to measure performance. Let ni j is the
number of pixels of class i predicted as class j. The metrics
are as follows:

1. Pixel-wise accuracy (PwiseAcc),∑#class
i=1 nii∑#class

i=1
∑#class

j=1 ni j
.

Fig. 8 Semantic segmentation.

Table 1 Sparse AlexNet-based network architecture.

Layer IFM OFM INF Kernel Stride Padding Zero-weight
type CH CH Size Size Ratio[%]

Hardware part:
CONV 3 64 480×360 11×11 4 0 94.2
MAXP 64 64 119×89 3×3 2 0 -
CONV 64 64 59×44 5×5 1 2 94.1
MAXP 64 64 59×44 3×3 2 0 -
CONV 64 128 29×22 3×3 1 1 94.1
CONV 128 128 29×22 3×3 1 1 94.0
CONV 128 128 29×22 3×3 1 1 94.0
CONV 128 128 29×22 1×1 1 0 80.5
CONV 128 11 29×22 1×1 1 0 75.8

Software part:
Resize 11 11 22×29 - - - -

Total - - - - - - 93.6

Table 2 Semantic segmentation result.

SpRatio PwiseAcc mClassAcc mIoU Sky Build. Pole Road Pavement Tree Sign Fence Car Ped. Bicyclist

Dense 0.0 78.2 66.3 45.3 85.8 55.5 9.0 86.7 63.8 58.5 12.8 17.3 63.3 21.0 24.3

Layerwise [2] 93.6 72.1 64.4 40.1 83.8 39.5 7.0 84.3 62.5 55.9 10.0 13.8 57.2 14.2 14.1

Filterwise 93.6 70.6 62.2 38.5 83.2 38.1 7.0 82.3 58.0 55.6 8.3 13.9 51.7 11.7 13.9

Filterwise+distil. 93.6 79.4 61.6 44.9 85.8 60.8 8.3 84.2 59.3 60.7 16.4 13.6 61.5 19.0 24.5

2. Mean class accuracy (mClassAcc),
1

#class

∑#class
i=1

nii∑#class
j=1 ni j

.

3. Mean intersection over union (mIoU),
1

#class

∑#class
i=1

nii∑#class
j=1 (ni j+n ji)−nii

.

6.2 Pruning Technique Evaluation

We used the CamVid [7] dataset, which is one of the popular
datasets for the semantic-segmentation task. The image size
is set as (width, height) = (480, 360), and the number of
the categories is 11. Our network cannot be compared with
other networks because there is considerable difference in
their network architectures. Therefore, we used the dense
AlexNet-based network in floating precision as the baseline
network.

Table 2 presents the results of an accuracy comparison.
Our sparse model delivered performance comparable to that
of a dense model. The results indicate that SENTEI realizes
a high-sparse network with negligible accuracy degradation.

6.3 Comparison of FPGA Implementation with Various
Image Sizes

We implemented our network for various image sizes on an
FPGA by using Xilinx Inc. SDSoC 2017.4 with a timing
constraint of 99.9 MHz. The FPGA board is a Xilinx Inc.
Zynq UltraScale+MPSoC zcu102 evaluation one, equipped
with a Xilinx Zynq UltraScale+ MPSoC FPGA (ZU9EG,
68,520 Slices, 269,200 FFs, 1,824 18Kb BRAMs, 2,520
DSP48Es). Table 3 presents the implementation results.
To increase the memory bandwidth, our architecture uses
array partitioning and ping-pong buffers for FMs; there-
fore, the utilization of the BRAM is dominant, and our ar-
chitecture cannot realize the implementation for an image
size larger than (300, 225). Additionally, inter-filter paral-
lelism replaces distributed LUTs with BRAMs, increasing
the BRAM utilization from the previous implementation.

6.4 Platform Comparison

We compared the performances of the FPGA and a Jetson

Table 3 Resource utilization on the zcu102 evaluation board using SD-
SoC 2017.4.

120 × 90 180 × 135 240 × 180 300 × 225
18Kb BRAM 13.38 25.88 44.96 72.26
DSP48E 12.10 18.13 24.68 30.36
FF 10.07 13.87 17.41 21.32
LUT 22.94 30.43 37.03 44.65



2468
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Table 4 Comparison with a mobile GPU with a image in 300× 225 size

Mobile GPU FPGA
Platform Jetson TX2 zcu102
Clock Freq. [GHz] 1.3 0.1
Speed [avg. FPS] 16.3 541.5
Power [W] 2.9 1.1
Efficiency [FPS/W] 5.6 492.3

TX2 GPU (NVIDIA Corp.). Note that we used the same
sparseness of CNN for both the platforms for a fair com-
parison, and the Chainer framework [8] was used for the
GPU implementation. Table 4 presents the performance-
comparison results. Power consumption is dynamic power
consumption. The inter-filter parallelism and auto optimiza-
tion of high-level synthesis improved throughput more than
2× from the previous implementation. In comparison with
the mobile GPU, FPGA reduced the power by 1.1 watts,
and increased the speed 33.2×, which meets the real-time
processing requirement (30 FPS). In terms of performance
per power consumption (FPS/W), the FPGA was 87.9 times
better than its mobile GPU counterpart.

7. Related Works

7.1 Sparseness Approach for Weight Memory Reduction

A modern CNN requires a large number of weight param-
eters, and an FPGA on-chip memory cannot store all the
parameters. To address this issue, there are two types of
sparseness (pruning) methods for after and during training.

As for pruning during training, [9] proposed a gradual
pruning method that increases the weight pruning ratio us-
ing a binary mask variable. In [10], various sparse dropout
strategies were used for both fully connected and convolu-
tional layers to realize high sparsity, and in [11], the rank of
the parameter matrix in each layer was reduced.

In contrast, there are many studies conducted on prun-
ing after training, and the representative one is deep com-
pression [2], which combines quantization, weight pruning,
and Huffman coding method to achieve a 3-4× speedup. For
the hardware of SIMD architecture, [12] proposed a SIMD-
aware weight pruning that provides high parallelism using a
specific format such as the compressed sparse rows (CSR)
format.

We propose SENTEI, which eliminates weights filter-
by-filter by a preset percent after training. From our prelim-
inary experiments, it makes training convergence faster than
those of pruning while training.

7.2 Sparse Convolutional Network Architecture

Our sparsity approach has attracted increasing interests as it
reduces the data footprint and eliminates computation, and
it achieves a good balance between compression ratio and
accuracy. The following are three types of architectures
based on the values that are skipped: weights, activations,
and both.

7.2.1 Zero-Weight Skipping Architecture

It eliminates the zero-weight calculations only. Cambricon-
X [13] allows weight buffers in different processing ele-
ments to load new data from the memory asynchronously to
improve the overall efficiency since the numbers of weights
of different neurons may differ significantly. J. Li, et al. [5]
proposed a concise convolution rule (CCR) that decomposes
sparse kernels into multiple effective non-zero sub-kernels
using triplet representation.

7.2.2 Zero-Activation Skipping Architecture

It skips zero-activation calculations only. CNVLUTIN [14]
architecture skips zero-activation multiplications to improve
both performance and energy efficiency.

7.2.3 Zero-Weight and -Activation Skipping Architecture

It skips all inefficient computations. The EIE [15] exploits
both sparsity and the indexing overhead. PermDNN [16]
outperforms the EIE by generating a hardware-friendly
structured sparse neural network using permuted diagonal
matrices. Cambricon-S [17] introduces block pruning to re-
duce the irregularity. The SCNN [18] achieves a perfor-
mance improvement of 2.7× with Cartesian product-based
processing. STICKER [19] applied two-way set associative
PEs to SCNN architecture, thereby reducing the memory
area to 92%. Wang, et al. [20] improved the hash-based ac-
celerator for SCNN using a load-balancing algorithm, and
SpAW [21] proposed a dual-indexing module to utilize the
sparsity more efficiently. For the efficient utilization of the
SIMD architecture, B. Lai et al. [22] proposed weight rear-
rangement that parses through the weights at compile time
and redistributes the nonzero weights to balance the compu-
tation.

We developed a zero-weight skipping architecture for
filter-wise pruned CNNs because the zero-weight skip-
ping architecture has achieved the best trade-off between
speedup and hardware-complexity as mentioned in [5].
The primary difference from conventional architectures is
not multiplexer-based architecture, but BRAM-based ar-
chitecture. While the accelerator proposed by [13] is a
multiplexer-based architecture, our accelerator is a BRAM-
based architecture for random access to corresponding
IFMs, which is an important contribution to efficient FPGA
implementation from the view point of area efficiency. Thus,
we decided that a pruning unit is a filter-wise unit to use
BRAMs efficiency, and our architecture is more optimal for
FPGA implementation of sparse CNNs.

8. Conclusion

We presented SENTEI, filter-wise pruning with distillation,
to realize hardware-aware network architecture while re-
taining a comparable accuracy. Equalizing the number of



SHIMODA et al.: SENTEI: FILTER-WISE PRUNING WITH DISTILLATION TOWARDS EFFICIENT SPARSE CONVOLUTIONAL NEURAL NETWORK ACCELERATORS
2469

non-zero weights in each filter allowed the easy utilization
of inter- and intra-filter parallelisms, and retraining weights
with distillation retained the accuracy. We believe that our
technique achieves a better trade-off between accuracy and
network complexity in comparison with conventional prun-
ing techniques.

Acknowledgments

This research is supported in part by the Grants in Aid
for Scientistic Research of JSPS, Industry-academia col-
laborative R&D programs centre of innovation (COI) pro-
gram, Core Research for Evolutional Science and Technol-
ogy (CREST), and the New Energy and Industrial Tech-
nology Development Organisation (NEDO). Also, thanks to
the Xilinx University Program (XUP), Intel University Pro-
gram, and the NVIDIA Corp.’s support.

References

[1] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol.521, pp.436–444, 5 2015.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Advances in neural infor-
mation processing systems, pp.1135–1143, 2015.

[3] M. Shimoda, Y. Sada, and H. Nakahara, “Filter-wise pruning ap-
proach to FPGA implementation of fully convolutional network for
semantic segmentation,” Proc. 15th International Symposium on
Applied Reconfigurable Computing , pp.371–386, Darmstadt, Ger-
many, April 2019.

[4] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Proc. 25th Int.
Conf. Neural Information Processing Systems - Volume 1, NIPS’12,
(USA), pp.1097–1105, Curran Associates Inc., 2012.

[5] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, “Ccr:
A concise convolution rule for sparse neural network accelerators,”
2018 Design, Automation Test in Europe Conference Exhibition
(DATE), pp.189–194, March 2018.

[6] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[7] G.J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” vol.30, no.2,
pp.88–97, Jan. 2009.

[8] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” Proc. Work-
shop on Machine Learning Systems (LearningSys) in The Twenty-
ninth Annual Conference on Neural Information Processing Systems
(NIPS), pp.1–6, 2015.

[9] M. Zhu and S. Gupta, “To prune, or not to prune: explor-
ing the efficacy of pruning for model compression,” CoRR,
vol.abs/1710.01878, 2017.

[10] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout
sparsifies deep neural networks,” arXiv preprint arXiv:1701.05369,
2017.

[11] J.M. Alvarez and M. Salzmann, “Compression-aware training of
deep networks,” Advances in Neural Information Processing Sys-
tems, pp.856–867, 2017.

[12] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware par-
allelism,” Proc. 44th Annual International Symposium on Computer
Architecture, ISCA ’17, (New York, NY, USA), pp.548–560, ACM,
2017.

[13] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,

and Y. Chen, “Cambricon-x: An accelerator for sparse neural net-
works,” 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp.1–12, Oct. 2016.

[14] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N.E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural net-
work computing,” 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA), pp.1–13, June 2016.

[15] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, and W.J.
Dally, “Eie: efficient inference engine on compressed deep neural
network,” 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), pp.243–254, IEEE, 2016.

[16] C. Deng, S. Liao, Y. Xie, K.K. Parhi, X. Qian, and B. Yuan, “Per-
mdnn: Efficient compressed dnn architecture with permuted diago-
nal matrices,” 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp.189–202, Oct. 2018.

[17] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L.
Li, T. Chen, and Y. Chen, “Cambricon-s: Addressing irregularity
in sparse neural networks through a cooperative software/hardware
approach,” 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp.15–28, Oct. 2018.

[18] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B.
Khailany, J. Emer, S.W. Keckler, and W.J. Dally, “Scnn: An accel-
erator for compressed-sparse convolutional neural networks,” 2017
ACM/IEEE 44th Annual International Symposium on Computer Ar-
chitecture (ISCA), pp.27–40, June 2017.

[19] Z. Yuan, J. Yue, H. Yang, Z. Wang, J. Li, Y. Yang, Q. Guo, X. Li, M.
Chang, H. Yang, and Y. Liu, “Sticker: A 0.41-62.1 tops/w 8bit neu-
ral network processor with multi-sparsity compatible convolution ar-
rays and online tuning acceleration for fully connected layers,” 2018
IEEE Symposium on VLSI Circuits, pp.33–34, June 2018.

[20] J. Wang, Z. Yuan, R. Liu, H. Yang, and Y. Liu, “An n-way group
association architecture and sparse data group association load bal-
ancing algorithm for sparse cnn accelerators,” Proc. 24th Asia and
South Pacific Design Automation Conference, ASPDAC ’19, (New
York, NY, USA), pp.329–334, ACM, 2019.

[21] C.-Y. Lin and B.-C. Lai, “Supporting compressed-sparse activations
and weights on simd-like accelerator for sparse convolutional neu-
ral networks,” Proc. 23rd Asia and South Pacific Design Automa-
tion Conference, ASPDAC ’18, (Piscataway, NJ, USA), pp.105–
110, IEEE Press, 2018.

[22] B. Lai, J. Pan, and C. Lin, “Enhancing utilization of simd-like accel-
erator for sparse convolutional neural networks,” IEEE Trans. Very
Large Scale Integration (VLSI) Systems, vol.27, no.5, pp.1218–
1222, May 2019.

Masayuki Shimoda received the B.E. and
M.E. degree in engineering from Tokyo Institute
of Technology, Tokyo, Japan, in 2018 and 2020,
respectively. In 2020, he joined NTT Network
Innovation Laboratories, Nippon Telegraph and
Telephone Corporation, Yokosuka, Japan. His
current research interests include Deep Neural
Network and FPGA.

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/978-3-030-17227-5_26
http://dx.doi.org/10.1007/978-3-030-17227-5_26
http://dx.doi.org/10.1007/978-3-030-17227-5_26
http://dx.doi.org/10.1007/978-3-030-17227-5_26
http://dx.doi.org/10.1007/978-3-030-17227-5_26
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.23919/DATE.2018.8342001
http://dx.doi.org/10.23919/DATE.2018.8342001
http://dx.doi.org/10.23919/DATE.2018.8342001
http://dx.doi.org/10.23919/DATE.2018.8342001
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1145/3079856.3080215
http://dx.doi.org/10.1109/MICRO.2016.7783723
http://dx.doi.org/10.1109/MICRO.2016.7783723
http://dx.doi.org/10.1109/MICRO.2016.7783723
http://dx.doi.org/10.1109/MICRO.2016.7783723
http://dx.doi.org/10.1109/ISCA.2016.11
http://dx.doi.org/10.1109/ISCA.2016.11
http://dx.doi.org/10.1109/ISCA.2016.11
http://dx.doi.org/10.1109/ISCA.2016.11
http://dx.doi.org/10.1109/ISCA.2016.30
http://dx.doi.org/10.1109/ISCA.2016.30
http://dx.doi.org/10.1109/ISCA.2016.30
http://dx.doi.org/10.1109/ISCA.2016.30
http://dx.doi.org/10.1109/MICRO.2018.00024
http://dx.doi.org/10.1109/MICRO.2018.00024
http://dx.doi.org/10.1109/MICRO.2018.00024
http://dx.doi.org/10.1109/MICRO.2018.00024
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1109/MICRO.2018.00011
http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1109/VLSIC.2018.8502404
http://dx.doi.org/10.1109/VLSIC.2018.8502404
http://dx.doi.org/10.1109/VLSIC.2018.8502404
http://dx.doi.org/10.1109/VLSIC.2018.8502404
http://dx.doi.org/10.1109/VLSIC.2018.8502404
http://dx.doi.org/10.1145/3287624.3287626
http://dx.doi.org/10.1145/3287624.3287626
http://dx.doi.org/10.1145/3287624.3287626
http://dx.doi.org/10.1145/3287624.3287626
http://dx.doi.org/10.1145/3287624.3287626
http://dx.doi.org/10.1109/ASPDAC.2018.8297290
http://dx.doi.org/10.1109/ASPDAC.2018.8297290
http://dx.doi.org/10.1109/ASPDAC.2018.8297290
http://dx.doi.org/10.1109/ASPDAC.2018.8297290
http://dx.doi.org/10.1109/ASPDAC.2018.8297290


2470
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Youki Sada received the B.E. degree from
National Institute of Technology Tokyo College
in 2018, and the M.E. degree from Tokyo In-
stitute of Technology in 2020. He is currently
working at NEC Corp. and his research inter-
ests include an image processing by Deep Neu-
ral Network and FPGA.

Ryosuke Kuramochi received the B.E.
degree in engineering from Tokyo Institute of
Technology, Tokyo, Japan, in 2020. He is cur-
rently a Master Student with the Department of
Information and Communications Engineering
of Tokyo Institute of Technology. His current
research interests include Deep Neural Network
and FPGA.

Shimpei Sato received the B.E., M.E.,
and D.E. degrees in engineering from Tokyo In-
stitute of Technology, Tokyo, Japan, in 2007,
2009, and 2014, respectively. He is currently an
Assistant Professor with the Department of In-
formation and Communications Engineering of
Tokyo Institute of Technology. From 2014 to
2016, he worked in High performance comput-
ing area as a post doctoral researcher, where he
investigated an application performance analy-
sis/tuning method. His current research interests

include approximate computing realization by architecture design and cir-
cuit design and their applications. He is a member of IEEE and IPSJ.

Hiroki Nakahara received the B.E.,
M.E., and Ph.D. degrees in computer science
from Kyushu Institute of Technology, Fukuoka,
Japan, in 2003, 2005, and 2007, respectively. He
has held research/faculty positions at Kyushu In-
stitute of Technology, Iizuka, Japan, Kagoshima
University, Kagoshima, Japan, and Ehime Uni-
versity, Ehime, Japan. Now, he is an asso-
ciate professor at Tokyo Institute of Technol-
ogy, Japan. He was the Workshop Chairman
for the International Workshop on Post-Binary

ULSI Systems (ULSIWS) in 2014, 2015, 2016 and 2017, respectively. He
searved the Program Chairman for the International Symposium on 8th
Highly-Efficient Accelerators and Reconfigurable Technologies (HEART)
in 2017. He received the 8th IEEE/ACM MEMOCODE Design Contest 1st
Place Award in 2010, the SASIMI Outstanding Paper Award in 2010, IPSJ
Yamashita SIG Research Award in 2011, the 11st FIT Funai Best Paper
Award in 2012, the 7th IEEE MCSoC-13 Best Paper Award in 2013, and the
ISMVL2013 Kenneth C. Smith Early Career Award in 2014, respectively.
His research interests include logic synthesis, reconfigurable architecture,
digital signal processing, embedded systems, and machine learning. He is
a member of the IEEE, the ACM, and the IEICE.


