
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020
2421

PAPER Special Section on Parallel, Distributed, and Reconfigurable Computing, and Networking

A Data-Centric Directive-Based Framework to Accelerate
Out-of-Core Stencil Computation on a GPU

Jingcheng SHEN†a), Nonmember, Fumihiko INO†, Member, Albert FARRÉS††,
and Mauricio HANZICH††, Nonmembers

SUMMARY Graphics processing units (GPUs) are highly efficient ar-
chitectures for parallel stencil code; however, the small device (i.e., GPU)
memory capacity (several tens of GBs) necessitates the use of out-of-core
computation to process excess data. Great programming effort is needed
to manually implement efficient out-of-core stencil code. To relieve such
programming burdens, directive-based frameworks emerged, such as the
pipelined accelerator (PACC); however, they usually lack specific optimiza-
tions to reduce data transfer. In this paper, we extend PACC with two
data-centric optimizations to address data transfer problems. The first is
a direct-mapping scheme that eliminates host (i.e., CPU) buffers, which in-
termediate between the original data and device buffers. The second is a
region-sharing scheme that significantly reduces host-to-device data trans-
fer. The extended PACC was applied to an acoustic wave propagator, au-
tomatically extending the length of original serial code 2.3-fold to obtain
the out-of-core code. Experimental results revealed that on a Tesla V100
GPU, the generated code ran 41.0, 22.1, and 3.6 times as fast as implemen-
tations based on Open Multi-Processing (OpenMP), Unified Memory, and
the previous PACC, respectively. The generated code also demonstrated
usefulness with small datasets that fit in the device capacity, running 1.3
times as fast as an in-core implementation.
key words: stencil computation, out-of-core computation, data-centric op-
timizations, GPU

1. Introduction

Stencil computation is one of the most important classes in
scientific computing with a key principle of iteratively up-
dating an input array by applying a fixed calculation pat-
tern (i.e., stencil) to all the elements of the array. Sten-
cil applications appear in a wide range of fields, including
geophysics simulations [1], [2], computational electromag-
netics [3], and image processing [4], [5]. Because compu-
tation time and memory consumption grow linearly with
the size of input arrays, parallel implementations of sten-
cil computation are of great importance [6]. Currently, the
graphics processing unit (GPU) is considered to be the most
efficient architecture for parallel stencil code [7]. Armed
with thousands of cores and 5–10 times higher memory
bandwidth than CPUs, GPUs provide powerful solutions
for both compute- and memory-intensive scientific prob-

Manuscript received December 24, 2019.
Manuscript revised May 24, 2020.
Manuscript publicized September 7, 2020.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The authors are with the Barcelona Supercomputing Center,

Barcelona 08034, Spain.
a) E-mail: jc-shen@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.2020PAP0014

lems [8]–[11]. However, there are two main challenges in
implementing GPU-accelerated stencil code: limited capac-
ity of device (i.e., GPU) memory and considerable program-
ming effort to implement GPU-accelerated code.

At several tens of GBs, the capacity of device mem-
ory is relatively small. Out-of-core methods are thus a
straightforward option to process excess data. Although
multi-node solutions are also used to handle large data, they
are complex due to the need to reconcile intra- and inter-
node programming models, such as Message Passing Inter-
face (MPI) [12] and Open Multi-Processing (OpenMP) [13].
Out-of-core methods decompose large data into smaller
chunks such that each chunk fits in the device memory. As a
result, out-of-core methods involve frequently moving data
between the host (i.e., CPU) and device. Therefore, the
programmer must deliberately organize data transfer to and
from the device; otherwise, the performance of parallel code
is limited by data transfer.

Significant programming effort is required for the
GPU-based parallelization of serial code, and the program-
ming effort further increases if out-of-core computation
needs to be implemented to handle excess data. Typi-
cally, the compute unified device architecture (CUDA) [14]
is used as a parallel programming framework for NVIDIA
GPUs. To develop efficient CUDA programs, programmers
must possess an in-depth knowledge of GPU-specific opti-
mization techniques that adapt serial code and data struc-
tures to the highly parallel device [15]. To reduce the pro-
gramming effort to develop GPU-based out-of-core code,
directive-based programming frameworks such as Open Ac-
celerators (OpenACC) [16] have emerged as alternatives to
CUDA. OpenACC provides users with a collection of com-
piler directives that can be simply inserted into the serial
code. Such directives instruct the OpenACC compiler to au-
tomatically offload parallelizable workloads from the host to
a parallel accelerator, such as a GPU. However, due to the
small device memory capacity, the simplicity of OpenACC
(i.e., sharing of identical code and data structures between
the host and device) can be problematic. For example, as-
sume that we use a 100 GB array in a CPU-based code. If
we naively insert OpenACC directives into this code, the
OpenACC compiler will fail to prepare an array of the same
size on the device due to device memory exhaustion.

Out-of-core computation is necessary to solve the
aforementioned memory exhaustion problems. Miki
et al. [17] proposed the pipelined accelerator (PACC),

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



2422
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

a directive-based framework that automatically generates
out-of-core OpenACC code for large stencil applications.
PACC decomposes large data into smaller chunks, overlaps
data transfer with kernel execution, and performs tempo-
ral blocking to process on-device data for multiple times.
However, the generated code failed to exploit the computa-
tional capabilities of state-of-the-art GPUs because the data
transfer limits the performance, especially when the gen-
erated code was high-order stencil computation in which
the calculation of an element relies on a wide neighboring
area. Although the latest Tesla V100 GPUs have notably
improved memory bandwidth (900 GB/s), host-device data
transfer consumes significantly more time than kernel exe-
cution due to relatively slow interconnects (e.g., bandwidth
of 16 GB/s for PCIe 3.0) and thus limits the performance.
Moreover, the gap between device memory bandwidth and
PCIe bandwidth widens over time [11]; therefore, we must
focus more on the optimization for data transfer than com-
putation. Thus, new data-centric optimizations are needed
to evolve the PACC framework on the latest GPUs.

In this paper, we extend the PACC framework [17]
with two data-centric optimizations to alleviate the perfor-
mance limitation imposed by heavy data transfer. The first
is a direct-mapping scheme that eliminates host buffers [17]
used to transfer decomposed data between the host and de-
vice. The second is a region-sharing scheme that signifi-
cantly reduces host-device data transfer by further reusing
on-device data. The experimental results demonstrate that
even a relatively small dataset that fits in device memory
benefits from the region-sharing scheme. This reveals the
efficacy of region-sharing scheme regardless of the data
size, as long as the data parallelism is sufficient for GPU
acceleration.

The main contributions of this paper are as follows:

1. Extension of the PACC framework with two data-
centric optimizations that benefit large and high-order
stencil applications.

2. Parallelization of a geophysics simulator [1]—a real
world application—with the extended PACC frame-
work.

The remainder of this paper is organized as fol-
lows. Section 2 introduces work related to GPU acceler-
ation of out-of-core stencil computation, whereas Sect. 3
presents details of stencil computation with a real-world
application—a geophysics simulator that was parallelized in
this study. Section 4 introduces the PACC framework [17]
that generates OpenACC-based out-of-core stencil code,
whereas Sect. 5 elaborates on work that extends the PACC
framework with data-centric optimizations. Section 6 pro-
vides the experimental results, whereas Sect. 7 concludes
the paper and provides suggestions for future work.

2. Related Work

Sourouri et al. [18] proposed a compiler framework for
three-dimensional (3D) stencil computation on GPU clus-

ters. They provided directives and a source-to-source
translator and thus reduced programming effort by automat-
ically generating out-of-core stencil code from serial code.
However, optimizations to reuse on-device data, such as
temporal blocking, were not implemented.

Miki et al. [17] proposed PACC, an extension of
OpenACC for out-of-core stencil computation on a GPU.
The PACC framework automatically generates out-of-core
code that decomposes the original data into chunks, each
of which fits in the device memory. In addition, the gener-
ated code implements temporal blocking to reuse on-device
data and performs pipeline execution to overlap data transfer
with kernel execution. However, an intermediate-copying
scheme is used in the generated code in which chunks are
first copied to host buffers and then transferred to the de-
vice. Furthermore, the generated code transfers extra data
(i.e., halo regions) to the device to perform temporal block-
ing. Therefore, the performance of the generated code de-
grades when the code handles high-order stencil computa-
tions and/or runs on the latest GPU due to the heavy data
transfer cost. To address the data transfer problem, we inte-
grated two data-centric optimizations into the PACC frame-
work. First, we adopted OpenACC APIs to map regions of
the original data to the device buffers, avoiding data copy-
ing between the original data and host buffers. Secondly,
we designed a region-sharing scheme for contiguous chunks
to share common regions, thus significantly reducing the
amount of data transfer between the host and device.

Jin et al. [19] proposed a multi-level optimization
method for stencil computation on the domain that is bigger
than memory capacity of GPU. In their method, they reused
the intermediate computation results to eliminate redundant
data (i.e., halo) transfers. Such a result-reusing scheme in-
volves storing and restoring the intermediate results on the
GPU for every two time steps, incurring more invocations
for memory copy APIs than our region-sharing scheme. In
our region-sharing scheme, one subdomain only needs to
copy the overlapped regions for the consequent subdomain,
before temporal blocking computations. The novelty of our
work is that the region-sharing scheme is more succinct
than the result-sharing scheme. That is, the region-sharing
scheme has (1) fewer source lines and (2) simpler control
that involves fewer invocations for CUDA APIs to copy data
on the device. Although the region-sharing scheme is more
succinct than the result-sharing scheme, the two schemes
have almost the same performance because they have the
same effect in reducing host-device data transfer that limits
the performance. However, we must admit that compared
to the region-sharing scheme, the result-reusing scheme re-
duces the size of device buffers by half the size of halo re-
gions, because it can reuse the previous intermediate com-
putation results in a shifting manner. The result-reusing
scheme can also eliminate the redundant computations.

Shimokawabe et al. [20] proposed a stencil framework
to realize large-scale computations beyond device memory
capacity on GPU supercomputers. For excess data, the
framework decomposes the entire domain stored in the host



SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2423

memory into subdomains and then transfers the subdomains
to the device for computation. However, this method trans-
fers each subdomain with all halos required for temporal
blocking to the device. Therefore, the cost of the data trans-
fer can be high, especially for high-order stencil code. In
contrast, our method allows a subdomain to share common
regions with contiguous subdomains to reduce the amount
of data transfer.

Reguly et al. [21] presented a cache-blocking tiling
technique that efficiently processes large scale stencil code.
Their implementations are based on OPS [22]–[24]—a do-
main specific language (DSL) that requires implementing
stencil code based on its syntax. Instead, the PACC frame-
work requires no modification aside from the insertion of di-
rectives into serial stencil code, thus reducing programming
effort.

Hou et al. [25] proposed a framework to automatically
generate stencil codes to access buffered data in the cached
systems of GPUs. In their work, 2.5D block was adopted
to decompose the original data; however, temporal block-
ing was not utilized for data reuse. In contrast, we adopted
a 1.5D block scheme to decompose the original large data
into blocks, fixing the sizes of blocks along the X and Y
axes and varying only the size along the Z axis. We adopted
the 1.5D block scheme for the convenience to apply tempo-
ral blocking because the scheme avoids discontinuous data
intervened by halo regions along X and Y axes. Discontin-
uous data involve multiple invocations of host-device data
transfer when the proposed region-sharing scheme is used
to reduce transfers of halo regions.

Endo [26] proposed a recursive temporal blocking al-
gorithm. Given multiple hierarchies of memory, he applied
temporal blocking with variable block sizes. Data transfer
and kernel execution did not overlap.

3. Acoustic Wave Propagator: Target Stencil Compu-
tation

In this section, we use the acoustic wave propagator [1] as
an example of a reputed stencil application that is widely
used for geophysics exploration in the petroleum industry.
Acoustic wave propagation is governed by the following
equation:

Fig. 1 3D acoustic wave propagation described as 25-point stencil computation.

1
V2x
∂2 p
∂t2
= ∇2 p, (1)

where p(x, y, z, t) is the acoustic pressure at time t and the
mesh specified by Cartesian coordination (x, y, z); V(x, y, z)
is the propagation speed, whereas ∇2 is the Laplacian
operator.

For our 3D application, ∇2 p can be replaced by the sum
of the second-order partial derivatives of p in each dimen-
sion. Therefore, we have

1
V2

∂2 p
∂t2
=
∂2 p
∂x2
+
∂2 p
∂y2
+
∂2 p
∂z2
. (2)

For the partial derivatives, we use a second-order central fi-
nite difference approximation [27] for time and an eighth-
order approximation for space. We thus have

1
V2

∂2 p
∂t2
≈

1
V2

p(x, y, z, t + 1) − 2p(x, y, z, t) + p(x, y, z, t − 1)
dt2

. (3)

With respect to the spatial terms on the right-hand side
of (2), take the first term for instance, we have

∂2 p
∂x2
≈ X

dx2
, (4)

where

X = − 1
560

(p(x + 4, y, z, t) + p(x − 4, y, z, t))

+
8

315
(p(x + 3, y, z, t) + p(x − 3, y, z, t))

− 1
5

(p(x + 2, y, z, t) + p(x − 2, y, z, t))

+
8
5

(p(x + 1, y, z, t) + p(x − 1, y, z, t))

− 205
72

p(x, y, z, t). (5)

The same procedure is then applied to the other two terms.
In this way, we can discretize (1); that is, we can describe
it in the form of a 25-point stencil computation (Fig. 1) in
which calculation of an element relies on 24 surrounding
elements (i.e., halo regions).



2424
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fig. 2 Sample code with PACC directives for four-point stencil computation, i.e., finite difference
solver for Laplace’s equation.

4. PACC-Based Out-of-Core Stencil Computation

As explained in Sect. 1, to process excess data, naively in-
serting OpenACC directives into serial stencil code leads
to device memory exhaustion. To avoid such failures, out-
of-core stencil computation requires modifying the original
code. A minimum modification includes data decomposi-
tion and host-device data transfer. In addition, optimizations
such as temporal blocking must be implemented to improve
performance. To reduce the programming effort caused
by these code modifications, the PACC framework [17] au-
tomatically generates OpenACC-based out-of-core stencil
code. In this section, we describe how the framework re-
alizes out-of-core stencil computation.

4.1 PACC Directives

The PACC framework provides OpenACC-like directives
(i.e., init, pipeline, and loop constructs) to describe an out-
of-core stencil code. Figure 2 presents an example of code
with PACC directives for four-point stencil computation.
Data decomposition and temporal blocking are not manually
implemented but are automatically generated by the PACC
framework. Brief descriptions for PACC directives are
follows:

• The init construct (Line 1). This construct preserves
variables used for out-of-core stencil computation such
as the number of time steps for temporal blocking.
• The pipeline construct (Line 3). This construct is lo-

cated directly before the outer loop which confines
all iterations of the stencil computation. The targetin
and targetinout clauses define read-only and read/write
datasets. The size clause defines the size of datasets
(i.e., range in each dimension) specified by the start in-
dex and length. The halo clause defines the size of halo

regions in each dimension.
• The loop construct (Lines 5, 7, 13, and 15). This con-

struct is located directly before each loop inside the
kernel. The dim clause indicates the level of the loop
inside the kernel. We decompose data at the top-level
loop.

4.2 Rule-Based Translator

The PACC framework provides a translator that automat-
ically generates out-of-core OpenACC code from a serial
code implemented with PACC directives, based on rewriting
rules. The translator was implemented with pure Python to
achieve high usability by avoiding any package dependency
issue. Code segments that perform data decomposition and
temporal blocking are added by the translator. The translator
functions as follows.

• Parses variables from the pipeline construct (e.g., the
names of arrays and the size of halo regions).
• Adds variables and methods used to perform out-of-

core computation (e.g., a method that maps data re-
gions in the host memory to the device buffers).
• Replaces the init construct with code that initializes

variables used to perform out-of-core computation
(e.g., memory allocation for the device buffers).
• Adds an outer loop to the code block confined by the

pipeline construct to control the chunk-wise out-of-
core process.
• Rewrites all kernels in the code block confined by the

pipeline construct (i.e., for each kernel, modifies the
loop constructs and translates the data indices to pro-
cess chunks rather than all of the data).

Figure 3 describes how the generated code is implemented
with OpenACC directives, OpenACC APIs, and CUDA
APIs.



SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2425

Fig. 3 A simplified description showing how PACC-generated code utilizes OpenACC directives,
OpenACC APIs and CUDA APIs.

4.3 Data Decomposition and Temporal Blocking

Because the OpenACC compiler prepares identical variables
for both the host and the device, a large host array can
cause runtime failures due to device memory exhaustion.
Therefore, the PACC framework decomposes excess data
into smaller chunks and move the chunks between the host
and device for out-of-core computation. To the best of our
knowledge, there are two explicit ways and an implicit way
to perform the chunk-wise process:

1. intermediate-copying. In the previous PACC frame-
work, Miki et al. [17] prepared host buffers. There-
fore, chunks are copied from the original data to the
host buffers and then transferred to the device buffers
with the update device directive. Once computation on
a chunk completes, the chunk is transferred back to the
host buffers with the update host directive.

2. Direct-mapping. In this study, we extend the PACC
framework with a direct-mapping scheme. This
scheme directly maps a chunk from the original data
to the device buffers with OpenACC map APIs. In this
way, data copying between the original data and host
buffers is eliminated.

3. Unified Memory [28]. This scheme relies on the
CUDA runtime to stream data to and from the device,
avoiding device memory exhaustion. However, this
scheme has two disadvantages that significantly impair
the performance of out-of-core code. First, the scheme
is unaware of the application-specific optimizations,
such as temporal blocking. Secondly, the scheme re-
sults in low host-device bandwidths due to a complex
page fault handling mechanism if prefetching hints are
not explicitly specified [29].

In most cases, stencil code is time-evolving, which
signifies that all of the data must be calculated for

Fig. 4 Data decomposition using 1.5D block scheme. The original data
are decomposed into chunks along the main axis. Note that halo regions are
required to be attached to each chunk for temporal blocking. In this figure,
k and h denote the number of temporal blocking time steps and the size of
halo regions, respectively.

multiple time steps; therefore, temporal blocking must be
implemented to reduce the amount of host-device data trans-
fer. As mentioned in Sect. 2, we decompose the original
data using a 1.5D block scheme for the convenience to im-
plement temporal blocking. For high usability, the previ-
ous PACC framework implemented temporal blocking with
a succinct overlapped tiling scheme. This scheme simply
wraps each chunk with halo regions (Fig. 4) and thus avoids
analyzing data dependencies across multiple arrays, which
must be performed if temporal blocking is implemented
using wavefront [23], [30]–[32], trapezoidal [33], and dia-
mond [34] tiling schemes.

However, halo transfer increases linearly with the num-
ber of time steps to update a chunk on the device. For high-
order stencil code that has a large halo area, transferring
extra data can be incredibly time consuming. To address
this problem, we improved the performance of the over-
lapped tiling scheme with a data reuse optimization scheme
that significantly reduces host-to-device (HtoD) data trans-
fer, which is described in greater detail in Sect. 5.2.

4.4 Pipeline Execution

At runtime, the process of a chunk has three stages: (1)
HtoD transfer, (2) kernel execution, and (3) device-to-host



2426
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fig. 5 Asynchronous CUDA streams used to overlap data transfer with
kernel execution. S0, S1, and S2 are streams used for the i-th, (i+ 1)-th, and
(i + 2)-th chunks, respectively. Bars marked as “HtoD,” “DtoH,” and “Ker-
nel” represent host-to-device data transfer, device-to-host data transfer, and
kernel execution, respectively.

(DtoH) transfer. The previous PACC framework [17] thus
adopted a three-stage pipeline to process three chunks in
parallel with asynchronous CUDA streams. For each chunk,
the framework submits operations to the corresponding
stream (Fig.5). In this way. data transfer is overlapped with
kernel execution.

5. Data-Centric Optimizations

As mentioned in Sect. 4.3, data transfer limits the perfor-
mance of high-order stencil code generated by the PACC
framework [17], because a large amount of halo data is
transferred between the host and device at runtime. This
limitation is more noticeable on new GPUs due to a widened
gap between device memory bandwidth and PCIe band-
width [11].

To alleviate this limitation, we extend PACC with
two data-centric optimizations—direct-mapping and region-
sharing—that notably reduce the amount of data transfer.
The direct-mapping scheme maps and transfers regions of
the original data to the device buffers, avoiding data copying
between the original data and host buffers. Furthermore, the
region-sharing scheme evolves the overlapped tiling scheme
used by the previous PACC framework by eliminating all
halo transfer between the host and device.

5.1 Direct-Mapping

The previous PACC framework uses an intermediate-
copying scheme that prepares host buffers that mediate be-
tween the original data and device buffers (Fig. 6). In con-
trast, the proposed direct-mapping scheme uses OpenACC
APIs (i.e., acc data map and acc data unmap) to map re-
gions of the original data to the device buffers (Fig. 7).
The mapped data regions are then transferred between the
host and device with OpenACC directives (i.e., data update
device and data update host). Thus, the direct-mapping
scheme avoids data copying between the original data and
host buffers.

Nevertheless, we take advantage of page-locked
(pinned) memory for high speed of data transfer between
host and device. Similar to the CUDA implementa-
tions [35]–[37], the direct-mapping uses pinned memory by
allocating the host datasets with CUDA API, but it differs

Fig. 6 intermediate-copying scheme [17]. Host buffers are used as
“transfer stations” between original data and device buffers.

Fig. 7 Direct-mapping scheme implemented with data mapping APIs
provided by OpenACC. This scheme eliminates data copying between the
original data and host buffers.

from [35]–[37] in using OpenACC APIs to map host data
to device buffers (Fig. 3). Moreover, because the gener-
ated code deploys OpenACC directives, we compiled the
generated code with the PGI compiler option to enable
pinned memory. Without the appropriate option, the direct-
mapping uses pageable memory. Note also that the direct-
mapping scheme consumes more pinned memory than the
intermediate-copying scheme does. In the intermediate-
copying scheme, only three host buffers, each with a size
of a chunk and corresponding halo regions, need to be allo-
cated with pinned memory. However, in the direct-mapping
scheme, all of the original data must be allocated with
pinned memory. This drawback thus requires dynamically
allocating pinned memory if the size of the original data is
beyond the host memory capacity.

5.2 Region-Sharing

The previous PACC framework performs temporal blocking
with the overlapped tiling scheme to avoid analyzing data
dependencies across multiple arrays. However, as we men-
tioned in Sect. 4.3, the overlapped tiling scheme requires at-
taching extra data (i.e., halos) to each chunk. The extra data
transfer increases with the number of time steps of tempo-
ral blocking and is time-consuming for high-order stencil
code due to large halo areas. We therefore propose a region-
sharing scheme to eliminate the extra data transfer, which



SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2427

Fig. 8 Regions shared by two contiguous chunks (a) Ci and (b) Ci+1,
Htop

i+1 ∪ Hbottom
i . Htop

i+1 denotes the top halo regions of Ci+1, whereas Hbottom
i

denotes the bottom halo regions of Ci. Note that the original data are de-
composed along the Z axis, and each chunk therefore has top and bottom
halo regions. Chunks and halo regions are outlined in red, whereas com-
mon regions are colored yellow.

constitutes a large proportion of the HtoD data transfer.
The region-sharing scheme takes advantage of the fact

that two contiguous chunks share common regions (Fig. 8).

We assume that a stencil has equal sizes of halo regions in
up and down directions, which is the most common case in
stencil computation. As a result, the region-sharing scheme
can copy the common regions of a chunk that has arrived
on the device to the device buffers that would store the next
chunk. The scheme then only needs to transfer the remnant
of the next chunk with corresponding halo regions. Note
that the size of the remnant equals that of a chunk without
halo regions; thus, the scheme effectively eliminates all halo
transfer between the host and device.

Theoretically, the more halo regions are used, the more
benefit can be drawn from the region-sharing scheme. That
is, more time can be saved that would otherwise be con-
sumed by data transfer. However, in practice, more halo re-
gions require larger device buffers; thus, the region-sharing
scheme is also subject to limitations of device memory
capacity.

The region-sharing scheme requires (1) copying com-
mon regions between chunks on the device and (2) main-
taining an inter-chunk execution order (i.e., computation on
a chunk must wait for the previous chunk to complete copy-
ing common regions). To fulfill the first requirement, we use



2428
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

cudaMemcpyAsync to perform data copying on the device.
To fulfill the second requirement, we control the pipeline ex-
ecution in smaller granularity than that used in the previous
PACC framework.

Algorithm 1 provides the details of out-of-core stencil
computation using the region-sharing scheme. We assume
that upper and lower halo regions have the same size. Six
streams are used for three chunks. Specifically, we use two
streams to perform operations for a chunk. The first stream
transfers the chunk from the host to the device and copies the
common regions of the chunk to the next chunk. The second
stream computes on the chunk and transfers the computation
results back to the host. Note that the inter-chunk execution
order requires extra synchronizations (Lines 16–18). For in-
stance, considering three contiguous chunks, C0, C1, and C2,
C1 must wait for C0 to complete copying common regions
before C1 can copy common regions to C2.

Algorithm 2 shows the details of a result-reusing
scheme [19] mentioned in Sect. 2. In the temporal block-
ing loops of this scheme, for every two time steps, a chunk
reads the intermediate results of common regions computed
by the previous chunk (line 22), and writes the intermediate
results of common regions computed by itself for the next
chunk (lines 23). In contrast, the region-sharing scheme is

more succinct (i.e., having fewer lines of source code) and
reduces the invocations of APIs to perform on-device copy,
which is because the region-sharing scheme avoids main-
taining additional device buffers to store intermediate results
and involves copying the common regions only once before
the temporal blocking loops. Moreover, the two schemes
have the same effect in eliminating halo transfers, resulting
in almost the same performance achievement, which will be
demonstrated with experimental results in Sect. 6.5.

However, the region-sharing scheme has a disadvan-
tage. If the code runs in a multi-node environment, the inter-
chunk execution order prevents the assignment of chunks
to different nodes in an arbitrary order because contiguous
chunks must be assigned to the same node to share common
regions. This constraint reduces the flexibility with which
load balancing is performed in a multi-node environment.
Nevertheless, the performance improvement produced by
the region-sharing scheme outweighs the reduction in pro-
gramming flexibility.

6. Experimental Results

We parallelized an acoustic wave propagator introduced
in Sect. 3 using the extended PACC framework that



SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2429

automatically generated out-of-core OpenACC-based code
from the original serial code. To demonstrate the applica-
bility to other stencil kernels, we also applied the extended
PACC framework to the Himeno benchmark [38], which is
widely used in measuring computation speed of different ar-
chitectures. Himeno benchmark has much smaller halo size
(i.e., one) than the acoustic wave propagator. The generated
code implemented the proposed optimization techniques,
and we evaluated the generated code on a latest NVIDIA
GPU with respect to performance.

6.1 Experimental Setup

To verify the effectiveness of the proposed optimization
schemes on a latest NVIDIA GPU (Table 1), we designed
five experiments with two datasets for the acoustic wave
propagator (Table 2) and one dataset for the Himeno bench-
mark (Table 3). A brief introduction to the four experiments
is as follows.

• The first experiment aims to detect the performance im-
provement achieved by the PACC-generated code com-
pared with other implementations, such as OpenMP
and Unified Memory based programs.
• The second experiment aims to analyze the speedups

achieved by the direct-mapping and region-sharing
schemes.
• The third experiment aims to investigate the improve-

ment (or degradation) attributed to PACC-generated
out-of-core code compared with an in-core implemen-
tation.
• The fourth experiment aims to compare the region-

sharing scheme with a previous result-reusing scheme

Table 1 Testbed: a latest NVIDIA GPU.

Device Tesla V100-PCIe
Device architecture Volta
Device memory capacity 16 GB
Host Xeon Silver 4110
OS Ubuntu 16.04.6
CUDA 9.2
PGI compiler 19.10
Interconnect PCIe 3.0 ×16

Table 2 Two datasets for acoustic wave propagator.

Out-of-core In-core

Size 1160 × 1160 × 1160 820 × 820 × 820
Data type Float Float
Number of arrays 4 4
Total amount 24 GB 8 GB

Table 3 Dataset for Himeno benchmark.

Size 613 × 613 × 1225
Data type Float
Number of arrays 14
Total amount 24 GB

in terms of performance.
• The fifth experiment aims to demonstrate the number

of source lines automatically generated by the PACC
framework.

6.2 Comparison with OpenMP, Unified Memory, and
Intermediate-Copying Based Implementations

In this experiment, we compared the out-of-core acous-
tic wave propagation code and Himeno benchmark gen-
erated by the extended PACC framework with OpenMP
(i.e., CPU parallelization), Unified Memory, intermediate-
copying [17], and direct-mapping based implementations.
Note that in our experiments, we prepared the OpenMP and
OpenACC based implementations by inserting OpenMP or
OpenACC directives into the original serial code. Unified
Memory was enabled for the OpenACC-based implementa-
tion by compiling the source code with the Unified Memory
option. Techniques, such as loop transformation and Unified
Memory prefetching hints, were not used because they re-
quire many manual modifications to the original code, such
as dividing the original data into tiles. In contrast, PACC-
based out-of-core implementations were automatically gen-
erated by the proposed framework. All PACC-based imple-
mentations used pinned memory by enabling pinned mem-
ory when we compiled the codes. We set d (the number of
chunks) to eight, and k (the number of temporal blocking
time steps) to 12 for the acoustic wave propagator, whereas
we set d to 10, and k to 16 for the Himeno benchmark. These
settings were experimentally determined to be optimal. The
datasets used in this experiment were 24 GB (referring to
out-of-core data in Table 2 and Table 3).

Figure 9 presents the results of running acoustic wave
propagation codes obtained on the Tesla V100 GPU. The
execution time of out-of-core code generated by the ex-
tended PACC framework was 7.5 s, which was 41.0, 22.1,
3.6, and 1.4 times as fast as the OpenMP (307.4 s), Unified

Fig. 9 Comparison of the acoustic wave propagation code generated by
the extended PACC framework (Direct-mapping + Region-sharing) with
other implementations on a Tesla V100 GPU in terms of performance.



2430
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Memory (165.5 s), intermediate-copying [17] (26.8 s), and
direct-mapping (10.8 s) based implementations, respec-
tively.

Figure 10 demonstrates that the extended PACC frame-
work obtained even better speedup for the Himeno bench-
mark than for the acoustic wave propagator on the Tesla
V100 GPU. The execution time of out-of-core code gen-
erated by the extended PACC framework was 4.5 s,
which was 103.0, 88.9, 2.7, and 1.5 times as fast as the
OpenMP (508.6 s), Unified Memory (400.1 s), intermediate-
copying [17] (12.1 s), and direct-mapping (6.9 s) based
implementations, respectively. Note that the transition of
speedups was similar for both acoustic wave propagator and
Himeno benchmark, as we incrementally added the opti-

Fig. 10 Comparison of the Himeno benchmark code generated by the
extended PACC framework (Direct-mapping + Region-sharing) with other
implementations on a Tesla V100 GPU in terms of performance.

Fig. 11 Comparison of the breakdown of the execution time of three versions of out-of-core code, im-
plemented with intermediate-copying [17], direct mapping, and both direct mapping and region sharing,
respectively. Bars of different colors denote the time consumed by different operations. “N/A” denotes
that no time consumption for that operation. Direct-mapping based code eliminated data copying be-
tween the original data and host buffers, and thus ran 2.7 times as fast as intermediate-copying based
code; moreover, region-sharing achieved a further 1.4× speedup because it eliminated all halo transfer.

mization schemes to the PACC framework, which proved
the general usefulness of the extended PACC framework for
different stencil kernels.

These results demonstrate the effectiveness of the ex-
tended PACC framework on the state-of-the-art GPU, owing
to the direct-mapping and region-sharing schemes. Detailed
analyses for the improvements achieved by the two schemes
are given in the following section.

6.3 Detailed Analyses of Data-Centric Optimizations

To discuss the performance bottleneck and achievements
of the data-centric optimizations, we analyzed the per-
formance improvement by using the direct-mapping and
region-sharing schemes. In this experiment, we ran the
intermediate-copying, direct-mapping, and direct-mapping
plus region-sharing based implementations on the Tesla
V100 GPU. Because the extended PACC framework ob-
tained similar benefits for both acoustic wave propagtor and
Himeno benchmark, we considered only the acoustic wave
propagtor in this experiment.

Figure 11 reveals that the replacement of the
intermediate-copying scheme by the direct-mapping scheme
attained a 2.7× speedup (26.8 s/10.1 s). The performance
(i.e., total execution time) of intermediate-copying based
code was apparently limited by the data copying between
the original data and host buffers (i.e., reading and writing
the host buffers). Note that in the intermediate-copying [17]
based code, although reading and writing the host buffers
were performed by multiple threads, reading was not over-
lapped with writing, and vice versa. In contrast, the perfor-
mance of the direct-mapping based code was limited by the
HtoD data transfer, which required less time than reading



SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2431

and writing the host buffers did. The amount of HtoD data
transfer was the same for both schemes; thus, a reduction in
data transfer is necessary for further improvement.

Moreover, for the code implemented with direct-
mapping and that implemented with both direct-mapping
and region-sharing, the bounding operation is HtoD data
transfer. Therefore, we are interested in analyzing the
theoretical and practical speedups for HtoD data transfer
achieved by the region-sharing scheme. We obtained the
theoretical speedup by calculating the amount of HtoD data
transfer reduced by the region-sharing scheme. In this ex-
periment, the data consisted of four arrays. Each array
had 1160 × 1160 × 1160 float-type elements. Because we
decomposed the data along one axis, we considered the
data as 1160 planes, where each plane had 1160 × 1160
float-type elements. We decomposed the data into eight
chunks and processed each chunk on the device for 12 times.
Therefore, for the first and last chunks, the halo region had
4 + 4 × 12 = 52 planes, whereas for the other chunks, the
halo regions had 2×4×12 = 96 planes. Because the region-
sharing scheme effectively avoids transferring halo regions,
the amount of HtoD transfer equals that of the original data:
1160 planes. However, if the region-sharing scheme is not
used, (1160 + 52 × 2 + 96 × 6 = 1,840 planes must be
transferred to the device to process all of the data for 12
time steps. Summarily, the theoretical speedup of HtoD
transfer should be 1,840/1160 = 1.6×. However, the prac-
tical speedup for HtoD transfer was 1.5× (= 9.8 s/6.7 s).
In order to explain the discrepancy, we recorded the data
transfer behaviors of both implementations. The results in-
dicate that the increased number of operation streams and
synchronizations required by the region-sharing scheme re-
sulted in a small achieved bandwidth compared with the
implementation without region-sharing. For the HtoD data
transfer, the implementation with region-sharing achieved
10.5 GB/s, whereas the implementation without region-
sharing achieved 11.2 GB/s. We can thus verify the validity
of the practical speedup, i.e., (1,840/11.2)/(1160/10.5) =
1.5 times. In terms of the total execution time, the code im-
plemented both direct-mapping and region-sharing (7.5 s)
ran 1.4× as fast as that using direct-mapping alone (10.1 s).

6.4 Comparison with In-Core Implementation

In this experiment, we aimed to determine the improvement
or degradation caused by PACC-generated out-of-core code,
compared with in-core OpenACC code. We ran OpenACC,
Unified Memory, direct-mapping, and direct-mapping plus
region-sharing based implementations on the Tesla V100
GPU. The direct-mapping plus region-sharing based imple-
mentation implemented the two data-centric optimization
schemes to process data that fit in the device memory (in-
core data in Table 2). The direct-mapping based implemen-
tation processed the same data.

Figure 12 reveals that the Unified Memory based code
had almost the same performance as OpenACC based code
without using Unified Memory, implying that the Unified

Fig. 12 Analysis of the performance of PACC-generated code to process
data that fit in the device memory.

Fig. 13 Comparison between region-sharing and result-reusing [19]
schemes in terms of performance.

Memory technique fails to sufficiently overlap data transfer
with kernel execution if prefetching hints are not explicitly
implemented. The PACC-generated code using the direct-
mapping scheme alone led to a degradation of 15% com-
pared with the in-core code due to extra data (i.e., halo re-
gions) transfer. Fortunately, the code using both the direct-
mapping and region-sharing schemes ran 1.3 times as fast as
the in-core code, because the proposed schemes notably re-
duce the amount of data transfer and thus improve the effect
of overlapping data transfer with kernel execution.

6.5 Comparison with Result-Reusing Scheme

In this experiment, we compared the region-sharing scheme
with result-reusing scheme [19]. Both implementations used
direct-mapping scheme.

Figure 13 shows that similar performances were ob-
tained by the two schemes, which was because the two
schemes had the same effect in eliminating the halo trans-
fers. The performances were limited by HtoD data trans-
fer time for both schemes. Precisely, the result-reusing
scheme had shorter HtoD data transfer time (6.9 s) than
region-sharing scheme (7.3 s), because the result-sharing
scheme took advantage of smaller device buffers. However,



2432
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Table 4 Comparison between source lines of code (SLOC) of PACC-generated out-of-core code (429
lines) and that of serial code (185 lines).

Serial code Code with PACC directives Generated out-of-core code
SLOC 185 193 429

Table 5 Details of generated out-of-core code. “Changed” and “Unchanged” denote lines that are
changed and not changed, respectively, compared with serial code.

Changed Unchanged
Adding new variables Data transfer Region Kernel execution
and methods (direct mapping) sharing (temporal blocking)

SLOC 78 132 25 90 104

the region-sharing scheme has shorter on-device data copy
(i.e., common region copy) time (0.1 s) than result-reusing
scheme (0.2 s), and the region-sharing scheme also showed
better effect in overlapping operations, because the region-
sharing scheme had fewer CUDA API invocations for on-
device data copy.

6.6 Evaluation of Programming Effort Benefits

In this experiment, we examined on the programming ef-
fort reduced by using the extended PACC framework. We
considered the source lines of code (SLOC) as a metric for
programming effort. Table 4 demonstrates that the serial
code of the acoustic wave propagator had 193 lines, whereas
the PACC-generated out-of-core code had 429 lines. There-
fore, the PACC code generation process reduced the pro-
gramming effort by automatically extending the serial code
2.3 times in length. In fact, the framework was even more
helpful because 325 out of 429 generated lines were either
new or modified compared with the original serial code (Ta-
ble 5). From this perspective, the PACC framework ex-
empts the users from manually modifying 75% of the final
program.

7. Conclusion

In this study, we extended the PACC framework using
two data-centric optimization schemes for GPU accelera-
tion of out-of-core stencil computation. The direct-mapping
scheme avoids data copying between the original data and
host buffers, whereas the region-sharing scheme avoids halo
region transfer between the host and device. We thus re-
tain the high usability of this directive-based framework and
generate efficient out-of-core code with the framework.

The experimental results demonstrate that out-of-core
code generated by the extended PACC framework outper-
formed OpenMP and Unified Memory based implementa-
tions by a factor of 10 on a latest GPU, thus verifying
the usefulness of the extended PACC framework. With
respect to the data-centric optimizations, the replacement
of intermediate-copying [17] by the direct-mapping scheme
contributed to a 2.7× speedup. Furthermore, the region-
sharing scheme achieved an additional 1.4× speedup. Al-
though being aimed at out-of-core stencil computation, the

extended PACC framework can be applied to in-core code,
achieving a 1.3× speedup. With respect to the extent of pro-
gramming effort reduction, we determined that the PACC
framework automatically extended the original serial code
2.3 times in length to obtain the out-of-core parallel code.
In addition, 75% of the extended code was different from
the original serial code.

Future work includes adapting the PACC framework
to a multi-node environment. Because the region-sharing
scheme involves an inter-chunk execution order, sophis-
ticated offloading algorithms are required that consider
the data dependency between contiguous chunks. Tuning
schemes are also worthy of investigation to automatically
determine the parameters for temporal blocking.

Acknowledgments

This study was supported in part by the Japan Society
for the Promotion of Science KAKENHI Grant Numbers
JP15H01687, JP16H02801, and JP20K21794.

References

[1] M. Serpa, E. Cruz, M. Diener, A. Krause, A. Farrés, C. Rosas, J.
Panetta, M. Hanzich, and P. Navaux, “Strategies to Improve the
Performance of a Geophysics Model for Different Manycore Sys-
tems,” Proc. 2017 International Symposium on Computer Architec-
ture and High Performance Computing Workshops (SBAC-PADW),
pp.49–54, Campinas, 2017.

[2] A. Farres, C. Rosas, M. Hanzich, M. Jordà, and A. Peña, “Perfor-
mance Evaluation of Fully Anisotropic Elastic Wave Propagation on
NVIDIA Volta GPUs,” Proc. 81st EAGE Conference and Exhibition,
2019.

[3] S. Adams, J. Payne, and R. Boppana, “Finite Difference Time
Domain (FTDT) Simulations Using Graphics Processors,” Proc.
High Performance Computing Modernization Program Users Group
Conf. (HPCMP-UGC), pp.334–338, Pittsburgh, PA, 2007.

[4] K. Ikeda, F. Ino, and K. Hagihara, “Efficient Acceleration of Mutual
Information Computation for Nonrigid Registration using CUDA,”
IEEE J. Biomed. Health Inform., vol.18, no.3, pp.956–968, 2014.

[5] S. Tabik, M. Peemen, and L. Romero, “A tuning approach for iter-
ative multiple 3d stencil pipeline on GPUs: Anisotropic Nonlinear
Diffusion algorithm as case study,” The Journal of Supercomputing,
vol.74, no.4, pp.1580–1608, 2018.

[6] K. Datta, “Auto-tuning Stencil Codes for Cache-Based Multicore
Platforms,” Technical Report No. UCB/EECS-2009-177, 2009.

[7] A. Schäfer and D. Fey, “High Performance Stencil Code Algorithms
for GPGPUs,” Proc. International Conference of Computer Science,

http://dx.doi.org/10.1109/sbac-padw.2017.17
http://dx.doi.org/10.3997/2214-4609.201901307
http://dx.doi.org/10.1109/hpcmp-ugc.2007.34
http://dx.doi.org/10.1109/jbhi.2014.2310745
http://dx.doi.org/10.1007/s11227-017-2184-6


SHEN et al.: A DATA-CENTRIC DIRECTIVE-BASED FRAMEWORK TO ACCELERATE OUT-OF-CORE STENCIL COMPUTATION ON A GPU
2433

pp.2027–2036, 2011.
[8] T. Okuyama, M. Okita, T. Abe, Y. Asai, H. Kitano, T. Nomura, and

K. Hagihara, “Accelerating ODE-based Simulation of General and
Heterogeneous Biophysical Models using a GPU,” IEEE Trans. Par-
allel Distrib. Syst., vol.25, no.8, pp.1966–1975, 2014.

[9] F. Ino, K. Shigeoka, T. Okuyama, M. Motokubota, and K. Hagihara,
“A Parallel Scheme for Accelerating Parameter Sweep Applications
on a GPU,” Concurrency and Computation: Practice and Experi-
ence, vol.26, no.2, pp.516–531, 2014.

[10] Y. Mitani, F. Ino, and K. Hagihara, “Parallelizing Exact and Approx-
imate String Matching via Inclusive Scan on a GPU,” IEEE Trans.
Parallel Distrib. Syst., vol.28, no.7, pp.1989–2002, 2017.

[11] J. Shen, K. Shigeoka, F. Ino, and K. Hagihara, “GPU-based
Branch-and-Bound Method to Solve Large 0-1 Knapsack Problems
with Data-centric Strategies,” Concurrency and Computation: Prac-
tice and Experience, vol.31, no.4, e4954, 2019.

[12] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface, MIT press, 1999.

[13] R. Pas, E. Stotzer, and C. Terboven, Using OpenMP–The Next Step:
Affinity, Accelerators, Tasking, and SIMD, MIT press, 2017.

[14] NVIDIA Corporation, CUDA C Programming Guide, 2019.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[15] Y. Lu, F. Ino, and K. Hagihara, “Cache-Aware GPU Optimiza-
tion for Out-of-Core Cone Beam CT Reconstruction of High-Res-
olution Volumes,” IEICE Trans. Inf. & Syst., vol.E99-D, no.12,
pp.3060–3071, 2016.

[16] PGI Compilers & Tools, OpenACC Getting Started Guide, 2019.
https://www.pgroup.com/resources/docs/19.1/pdf/openacc19 gs.pdf.

[17] N. Miki, F. Ino, and K. Hagihara, “PACC: a directive-based pro-
gramming framework for out-of-core stencil computation on accel-
erators,” International Journal of High Performance Computing and
Networking, vol.13, no.1, pp.19–34, 2019.

[18] M. Sourouri, S. Baden, and X. Cai, “Panda: A Compiler Framework
for Concurrent CPU+GPU Execution of 3D Stencil Computations
on GPU-accelerated Supercomputers,” International Journal of Par-
allel Programming, vol.45, no.3, pp.711–729, 2017.

[19] G. Jin, T. Endo, and S. Matsuoka, “A multi-level optimization
method for stencil computation on the domain that is bigger than
memory capacity of GPU,” Proc. 2013 IEEE International Sympo-
sium on Parallel Distributed Processing (IPDPS), Workshops and
Phd Forum, pp.1080–1087, 2013.

[20] T. Shimokawabe, T. Endo, N. Onodera, and T. Aoki, “A stencil
framework to realize large-scale computations beyond device mem-
ory capacity on GPU supercomputers,” Proc. 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp.525–529,
Hawaii, USA, 2017.

[21] I. Reguly, G. Mudalige, and M. Giles, “Beyond 16GB: out-of-core
stencil computations,” Proc. Workshop on Memory Centric Pro-
gramming for HPC (MCHPC), pp.20–29, Denver, CO, 2017.

[22] I. Reguly, G. Mudalige, M. Giles, D. Curran, and S. McIntosh-
Smith, “The OPS domain specific abstraction for multi-block struc-
tured grid computations,” Proc. 4th International Workshop on Do-
main-Specific Languages and High-Level Frameworks for High Per-
formance Computing (WOLFHPC), pp.58–67, New Orleans, LA,
2014.

[23] I. Reguly, G. Mudalige, and M. Giles, “Loop tiling in large-scale
stencil codes at run-time with OPS,” IEEE Trans. Parallel Distrib.
Syst., vol.29, no.4, pp.873–886, 2017.

[24] G. Mudalige, I. Reguly, S. Jammy, C. Jacobs, M. Giles, and N.
Sandham, “Large-scale performance of a DSL-based multi-block
structured-mesh application for Direct Numerical Simulation,” Jour-
nal of Parallel and Distributed Computing, vol.131, pp.130–146,
2019.

[25] K. Hou, H. Wang, and W. Feng, “Gpu-unicache: Automatic code
generation of spatial blocking for stencils on gpus,” Proc. Comput-
ing Frontiers Conference (CF), pp.107–116, Siena, Italy, 2017.

[26] T. Endo, “Applying Recursive Temporal Blocking for Sten-

cil Computations to Deeper Memory Hierarchy,” Proc. IEEE
7th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), pp.19–24, Hakodate, Japan, 2018.

[27] B. Fornberg, “Generation of finite difference formulas on arbitrar-
ily spaced grids,” Mathematics of computation, vol.51, no.184,
pp.699–706, 1988.

[28] S. Deldon, J. Beyer, and D. Miles, “OpenACC and CUDA Uni-
fied Memory,” Proc. Cray User Group (CUG), Stockholm, Sweden,
2018. https://cug.org/proceedings/cug2018 proceedings/includes/
files/pap115s2-file1.pdf.

[29] N. Sakharnykh, “Maximizing Unified Memory Performance
in CUDA,” 2017. https://devblogs.nvidia.com/maximizing-unified-
memory-performance-cuda/.

[30] J. McCalpin and D. Wonnacott, “Time skewing: A value-based ap-
proach to optimizing for memory locality,” Technical Report DCS-
TR-379, Department of Computer Science, Rugers University, 1999.

[31] D. Wonnacott, “Using time skewing to eliminate idle time due
to memory bandwidth and network limitations,” Proc. 14th Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
pp.171–180, Cancun, Mexico, 2000.

[32] T. Muranushi and J. Makino, “Optimal temporal blocking for stencil
computation,” Procedia Computer Science, vol.51, pp.1303–1312,
2015.

[33] T. Grosser, A. Cohen, P. Kelly, J. Ramanujam, P. Sadayappan, and S.
Verdoolaege, “Split tiling for GPUs: automatic parallelization using
trapezoidal tiles,” Proc. 6th Workshop on General Purpose Proces-
sor Using Graphics Processing Units (GPGPU), pp.24–31, Houston,
TX, 2013.

[34] U. Bondhugula, V. Bandishti, and I. Pananilath, “Diamond tiling:
Tiling techniques to maximize parallelism for stencil computations,”
IEEE Trans. Parallel Distrib. Syst., vol.28, no.5, pp.1285–1298,
2016.

[35] M. Harris, “How to Optimize Data Transfers in CUDA C/C++.”
https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/.

[36] V. Allada, T. Benjegerdes, and B. Bode, “Performance analysis of
memory transfers and GEMM subroutines on NVIDIA Tesla GPU
cluster,” Proc. 2009 IEEE International Conference on Cluster Com-
puting and Workshops, pp.1–9, 2009.

[37] L. Wang, S. Chen, Y. Tang, and J. Su, “Gregex: GPU Based High
Speed Regular Expression Matching Engine,” Proc. 2011 5th Inter-
national Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), pp.366–370, 2011.

[38] R. Himeno, Himeno benchmark, 2015. http://accc.riken.jp/en/
supercom/himenobmt/.

Jingcheng Shen was born in 1990, in
Chongqing, China. He received a B.E. de-
gree in the College of Software Engineering,
Southeast University, China and an M.E. degree
in the Graduate School of Information Science
and Technology, Osaka University, Japan. He is
now working for a PhD degree in Osaka Uni-
versity. He is currently doing research on adapt-
ing out-of-core GPU-accelerated applications to
rapidly developing parallel machines.

http://dx.doi.org/10.1109/tpds.2013.198
http://dx.doi.org/10.1002/cpe.3016
http://dx.doi.org/10.1109/tpds.2016.2645222
http://dx.doi.org/10.1002/cpe.4954
http://dx.doi.org/10.7551/mitpress/7056.001.0001
http://dx.doi.org/10.7551/mitpress/10031.001.0001
http://dx.doi.org/10.1587/transinf.2016edp7174
http://dx.doi.org/10.1504/ijhpcn.2019.097046
http://dx.doi.org/10.1007/s10766-016-0454-1
http://dx.doi.org/10.1109/ipdpsw.2013.58
http://dx.doi.org/10.1109/cluster.2017.97
http://dx.doi.org/10.1145/3145617.3145619
http://dx.doi.org/10.1109/wolfhpc.2014.7
http://dx.doi.org/10.1109/tpds.2017.2778161
http://dx.doi.org/10.1016/j.jpdc.2019.04.019
http://dx.doi.org/10.1145/3075564.3075583
http://dx.doi.org/10.1109/nvmsa.2018.00016
http://dx.doi.org/10.1109/nvmsa.2018.00016
http://dx.doi.org/10.1090/s0025-5718-1988-0935077-0
http://dx.doi.org/10.1109/ipdps.2000.845979
http://dx.doi.org/10.1016/j.procs.2015.05.315
http://dx.doi.org/10.1145/2458523.2458526
http://dx.doi.org/10.1109/tpds.2016.2615094
http://dx.doi.org/10.1109/clustr.2009.5289124
http://dx.doi.org/10.1109/imis.2011.107


2434
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.12 DECEMBER 2020

Fumihiko Ino received the B.E., M.E.,
and Ph.D. degrees in information and computer
sciences from Osaka University, Osaka, Japan,
in 1998, 2000, and 2004, respectively. He is
currently a Professor in the Graduate School of
Information Science and Technology at Osaka
University. His research interests include par-
allel and distributed systems, software develop-
ment tools, and performance evaluation.

Albert Farrés is an engineer at Barcelona
Supercomputing Center, the Spanish National
Supercomputing Institute. He is currently re-
searching and developing seismic imaging tools
for the oil industry. He has an MSc degree and a
Bachelor in Computer Science from the Univer-
sitat Politècnica de Catalunya.

Mauricio Hanzich is a senior researcher at
Barcelona Supercomputing Center, the Spanish
National Supercomputing Institute. He is cur-
rently researching and developing seismic imag-
ing tools for the oil industry. Prior to this po-
sition, he was a professor at the Universitat
Autónoma de Barcelona and a information tech-
nology consultant for the Argentinian govern-
ment. Raised in Neuquén, Argentina, Mauricio
now lives in Barcelona. He has a PhD degree
from the Universitat Autónoma de Barcelona

and a Bachelor in Computer Science from Universidad del Comahue
(Neuquén).


