
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020
2047

PAPER Special Section on Picture Coding and Image Media Processing

Algorithm-Hardware Co-Design of Real-Time Edge Detection for
Deep-Space Autonomous Optical Navigation

Hao XIAO†,††a), Yanming FAN†††, Nonmembers, Fen GE††,†††, Member, Zhang ZHANG†,
and Xin CHENG†, Nonmembers

SUMMARY Optical navigation (OPNAV) is the use of the on-board
imaging data to provide a direct measurement of the image coordinates
of the target as navigation information. Among the optical observables
in deep-space, the edge of the celestial body is an important feature that
can be utilized for locating the planet centroid. However, traditional edge
detection algorithms like Canny algorithm cannot be applied directly for
OPNAV due to the noise edges caused by surface markings. Moreover, due
to the constrained computation and energy capacity on-board, light-weight
image-processing algorithms with less computational complexity are de-
sirable for real-time processing. Thus, to fast and accurately extract the
edge of the celestial body from high-resolution satellite imageries, this pa-
per presents an algorithm-hardware co-design of real-time edge detection
for OPNAV. First, a light-weight edge detection algorithm is proposed to
efficiently detect the edge of the celestial body while suppressing the noise
edges caused by surface markings. Then, we further present an FPGA im-
plementation of the proposed algorithm with an optimized real-time perfor-
mance and resource efficiency. Experimental results show that, compared
with the traditional edge detection algorithms, our proposed one enables
more accurate celestial body edge detection, while simplifying the hard-
ware implementation.
key words: edge detection, autonomous optical navigation, star centroid
estimation, real-time processing

1. Introduction

As future missions ambitiously take us farther into the So-
lar system, there will be a need for autonomous operations
with minimal Earth contact. One key enabler for autonomy
is on-board optical navigation (OPNAV) that uses imaging
data to aid in spacecraft navigation. It has the advantages of
independence, low cost, high reliability, high accuracy, and
real-time performance, and has become a key technology in
deep space exploration [1], [2]. In the typical case, OPNAV
uses the optical sensor on-board to take pictures of some
target body, extracts the optical observables from the pic-
ture, and then, measures the image coordinates of the target
as navigation information [3]. Among the available optical
observables in deep-space, the edge of the celestial body is
an important feature for locating the planet centroid [4], [5].

Manuscript received December 20, 2019.
Manuscript revised March 19, 2020.
Manuscript publicized June 15, 2020.
†The authors are with the School of Microelectronics, HeFei

University of Technology, Hefei, China.
††The authors are with the Science and Technology on Elec-

tronic Information Control Laboratory, Chengdu, China.
†††The authors are with the College of Electronic and Informa-

tion Engineering, Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China.

a) E-mail: xiaohao@hfut.edu.cn
DOI: 10.1587/transinf.2020PCP0002

As a result, accurate and fast edge extraction of the celes-
tial body from satellite imageries is crucially important for
high-precision and real-time OPNAV.

Among the existing edge detection algorithms, the
Canny edge detector [6] has remained a standard for many
years and has best performance [7]. However, the compu-
tationally intensive nature of the Canny algorithm makes it
costly on hardware resources and processing speed. Espe-
cially for high-resolution satellite imageries, the computa-
tional load of Canny algorithm may increase exponentially,
and hence, make it challenging to real-time process under
the constrained computation and energy resources on-board.
More importantly, there are surface markings covered on
the celestial body, such as craters and atmosphere, which
may incur false edges using conventional edge detectors.
As shown in Fig. 1, the traditional Canny algorithm cannot
isolate the noise edges caused by surface markings, which
result in significant accuracy loss for the measurement of
the planet centroid. Therefore, fast and robustness celestial
body edge detection algorithms with a high degree of hard-
ware efficiency are indispensable for the success of OPNAV.

Many recent works have presented hardware imple-
mentation for real-time Canny edge detection. In [7], [8],
constant threshold is used regardless of the image charac-
teristics to reduce the computational complexity, where the
performance of edge detection is relatively degraded com-
pared with adaptive threshold approaches. He et al. [9]
present a pipelined implementation of an improved Canny
edge detector with a self-adapt threshold mechanism. In
[10], a parallel design of Canny implementation is proposed
for high-throughput real-time edge detection. Xu et al. [11]
explore the parallelism of Canny edge detection at block
level and propose an implementation of distributed Canny
edge detection algorithm to reduce processing latency. To
support a variable input resolution, Possa et al. [12] present
a multi-resolution FPGA-based architecture for flexible and
real-time Canny edge detection. In [13], a fast and resource-

Fig. 1 Problems of using Canny algorithm to extract the planet centroid

Copyright c⃝ 2020 The Institute of Electronics, Information and Communication Engineers

2048
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

efficient hardware implementation of Canny algorithm that
works in stream-in-stream-out manner is proposed for real-
time line detection. In a more recent paper [14], the authors
focus on the energy-efficient Canny edge detection for ad-
vanced mobile vision applications by proposing low com-
plexity architectures for the major computation element of
Canny algorithm, including an image filter, a gradient mag-
nitude and direction calculator, and an adaptive threshold
value selection module. The above designs have shown ef-
fectiveness in real-time edge detection using FPGAs. How-
ever, these designs target the traditional Canny algorithm,
which cannot be applied directly for OPNAV because of the
noise edges caused by surface markings.

There are also literature on the extraction of celes-
tial body edges for OPNAV. Li et al. [15] use image pre-
processing technology to enhance the contours and suppress
the rest of the image, and then, adopt Canny algorithm to ex-
tract edges. Du et al. [16] use threshold and morphological
method to initially remove the noise. The edge points of
a celestial body are then detected by Prewitt-Zernike mo-
ment operator. In [17], Richardson extrapolation is used
to achieve image differentiation, and then, a small gradi-
ent box and RANSAC algorithm are used to extract edge
points. Jiang and Wang et al. [18], [19] try to combine
the functions of a star tracker and a navigation with a single
camera by proposing a feature extraction algorithm to syn-
chronously extract the star centroid and celestial body edges
in an image. The accuracy achieved by these edge extrac-
tion algorithms are able to meet the requirements of OPNAV.
However, none of them considers the practical hardware im-
plementation of these algorithms, and less computation in
the image-processing algorithm is necessary for real-time
OPNAV due to the constrained computation and energy ca-
pacity on-board. To enable fast and accurate extraction of
celestial body edges from high resolution images with less
computational complexity, we presents an optimized edge
detection algorithm for real-time deep-space autonomous
OPNAV [20]. This paper extends our previous work [20] in
several aspects: (1) we describe in further detail the opti-
mized algorithm, hardware architecture and implementation
results; (2) experimental comparisons to the state of the art
are elaborated in the algorithm and hardware performance.

In this paper, we present an algorithm-hardware co-
design of real-time edge detection for deep-space au-
tonomous optical navigation. To fast and accurately extract
the edge of the celestial body from high-resolution satellite
imageries, we propose a light-weight edge detection algo-
rithm as well as an FPGA-based real-time processing ar-
chitecture. First, an optimized non-maximum suppression
(NMS) mechanism is proposed to ease the hardware im-
plementation without sacrificing the accuracy. Second, an
adaptive threshold selection approach is proposed to sup-
press the noise edges caused by craters and atmosphere cov-
ered on celestial bodies. Moreover, unlike the conventional
double-thresholding method, the proposed scheme adopts a
single threshold method, thus costing much less computa-
tional complexity and facilitating the hardware implemen-

tation. According to the optimized algorithm, we further
implement a completely pipelined hardware architecture for
real-time edge detection. Optimized storage and computa-
tion structures are proposed for improving the real-time per-
formance and the resource efficiency. We have implemented
and verified the proposed solution using Virtex-4 FPGA. Ex-
perimental results show that, compared with the traditional
Canny edge detector, the proposed algorithm enables more
accurate celestial body edge detection, while simplifying the
hardware implementation.

The rest of this paper is arranged as follows: Sect. 2
gives a brief introduction of the traditional Canny edge de-
tector. Section 3 presents our proposed edge detection al-
gorithm, which is followed by the hardware architecture in
Sect. 4. Implementation results and conclusions are given in
Sect. 5 and 6, respectively.

2. Canny Edge Detection Algorithm

Figure 2 shows the block diagram and the basic procedures
of classic Canny edge detection algorithm [6]. It consists of
the following five steps: (1) applying Gaussian filtering to
the input images to remove the noise; (2) computing the im-
age derivatives and calculating the gradient magnitude and
orientation for finding the intensity gradients of the image;
(3) NMS process to get rid of spurious response to edge de-
tection, which is also referred as edge thinning process; (4)
extracting high and low threshold from the gradient magni-
tude histogram of entire image; and (5) hysteresis thresh-
olding to apply high and low thresholds with connectivity
analysis. The upper threshold is used to mark edges that are
definitely edges. The lower threshold is to find faint pixels
that are actually a part of an edge.

Performing Gaussian blur is used for removing noise
that presents in images, and smoothing the images. As
shown in Eq. (1), it is carried out using one 2D Gaussian
filter g(x, y), which can be further represented by two 1D
Gaussian filters g(x) and g(y). Here, x is the distance from
the origin in the horizontal axis, y is the distance from the
origin in the vertical axis, and σ is the standard deviation of
the Gaussian distribution.

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2

= (
1
√

2πσ
e−

x2

2σ2)(
1
√

2πσ
e−

y2

2σ2)

= g(x) · g(y)

(1)

After Gaussian filtering, gradient magnitudes and di-
rections are calculated at every single point in the image.
The gradient magnitude of a certain point determines if it

Fig. 2 Block diagram and the basic procedures of Canny edge detection
algorithm

XIAO et al.: ALGORITHM-HARDWARE CO-DESIGN OF REAL-TIME EDGE DETECTION FOR DEEP-SPACE AUTONOMOUS OPTICAL NAVIGATION
2049

possibly lies on an edge or not. And the gradient direction
shows how the edge is oriented. The gradient can be cal-
culated by using the Sobel operator shown in Eq. (2), where
Hx and Hy are the horizontal and vertical derivatives at the
point being considered. Gx and Gy are the horizontal and
the vertical derivative of image, respectively. And the gradi-
ent magnitude |G| and the gradient direction θ can be repre-
sented by Eq. (3) and Eq. (4), respectively.

Next, NMS is an edge-thinning algorithm that elimi-
nates non-ridge pixels giving a one-pixel-wide aspect at the
edges. It works by finding the pixel with the maximum
gradient magnitude in the gradient direction. The gradient
magnitude of this pixel is compared with two of its immedi-
ate neighbors along the gradient direction and the gradient
magnitude is set to zero if it does not correspond to a lo-
cal maximum. When the pixel’s gradient direction is one
of eight possible main directions (0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 275◦, 315◦), the neighbor pixels are decided. For the
gradient directions that do not coincide with one of the eight
possible main directions (ex. M1 and M2 shown in Fig. 3),
an interpolation is necessary to infer the neighboring gra-
dients using Eq. (5)–(7). Here, d is the tangent function of
the gradients direction θ, and M1 and M2 are the gradient
magnitudes of neighbor pixels along the direction.

Hx =

 −1 0 1
−2 0 2
−1 0 1

,Hy =
 −1 −2 −1

0 0 0
1 2 1

 (2)

|G| =
√

(Gx)2 + (Gy)2 (3)

θ = arctan
(Gy
Gx

)
(4)

d =
Gy
Gx

(5)

M1 = d · M(x + 1, y + 1) + (1 − d) · M(x + 1, y) (6)

M2 = d · M(x − 1, y − 1) + (1 − d) · M(x − 1, y) (7)

After NMS, there still exist noise edge points. Thus,
double thresholding is adopted to further determine whether
an image pixel is on an edge or not. It works by setting
two thresholds, a high and a low threshold, based on the his-
togram of the gradient magnitude for the entire image. The
high threshold Thigh is computed such that a percentage P1

of the total pixels in the image would be classified as strong
edges. The low threshold Tlow is computed as a percentage
P2 of the high threshold.

Then, in the hysteresis thresholding stage, two thresh-
olds are used, Tlow and Thigh. All pixel with a magnitude

Fig. 3 Interpolation for computing the neighboring gradients

higher than Thigh are considered true edges. Pixels with
magnitudes between Tlow and Thigh are considered as edge
candidates. Pixels that do not satisfy these two criteria are
suppressed. Edge candidates become true edges if they are
connected to true edges directly or through other candidates.
For more information regarding methodologies to determine
the threshold values, we refer the readers to [21], [22].

3. Proposed Algorithm

In the scenario of OPNAV, it is required to isolate the edge
of the celestial body from the satellite imagery for extract-
ing the planet centroid. Although the classic Canny algo-
rithm have shown effectiveness in detecting edges, it is not a
viable option for OPNAV because of its particularity. First,
the Canny algorithm cannot distinguish the edges caused by
the contour of the celestial body and the ones caused by
the craters and atmosphere covered on the celestial body.
For measuring the planet centroid, the edges caused by the
texture on the celestial body are noises, which may inter-
fere the accuracy of the measurement significantly. Second,
considering the constrained hardware and energy resources
onboard, the original NMS algorithm defined in Eq. (3)–(7)
is quite expensive to implement on hardware. Even though
using hard macros, e.g., CORDIC IP, provided by FPGA
tools can facilitate the implementation, it still requires lots of
hardware resources that may exceed the limits of the FPGA
hardware resources. Moreover, the above mentioned Tlow

and Thigh for hysteresis thresholding are selected based on
the gradient magnitude histogram, which needs a large com-
putational complexity and storage resources, especially for
high-resolution satellite imageries. Thus, to suppress the
noise edges caused by textures and enable the algorithm
easier for real-time processing, this paper proposes a light-
weight edge detection algorithm for OPNAV. Generally, it
follows the basic steps of the classic Canny edge detection
shown in Fig. 2. However, the NMS mechanism and the
adaptive threshold selection approach are optimized for en-
suring the algorithm viable for real-time OPNAV applica-
tions.

3.1 Optimized Non-Maximun Suppression

NMS is applied on the pixels to remove the weaker edges.

2050
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 1 Proposed NMS method

Region
Gradient

NMS
Magnitude Sign

1 |Gx | > 2|Gy | / |G(x,y) | vs.
{
|G(x−1,y) |, |G(x+1,y) |

}
2 |Gy | < |Gx | < 2|Gy | XOR(S Gx , S Gy)=1 |G(x,y) | vs.

{
|G(x−1,y) |, |G(x+1,y) |, |G(x−1,y+1) |, |G(x+1,y−1) |

}
3 |Gy | < |Gx | < 2|Gy | XOR(S Gx , S Gy)=0 |G(x,y) | vs.

{
|G(x−1,y) |, |G(x+1,y) |, |G(x+1,y+1) |, |G(x−1,y−1) |

}
4 |Gy |/2 < |Gx | < |Gy | XOR(S Gx , S Gy)=1 |G(x,y) | vs.

{
|G(x,y+1) |, |G(x,y−1) |, |G(x−1,y+1) |, |G(x+1,y−1) |

}
5 |Gy |/2 < |Gx | < |Gy | XOR(S Gx , S Gy)=0 |G(x,y) | vs.

{
|G(x,y+1) |, |G(x,y−1) |, |G(x+1,y+1) |, |G(x−1,y−1) |

}
6 |Gx | < |Gy |/2 / |G(x,y) | vs.

{
|G(x,y+1) |, |G(x,y−1) |

}

Fig. 4 Proposed low complexity NMS method. (a) Location of neigh-
borhood pixels for NMS. (b) Determination of diagonal directions

However, the direct calculation of the gradient magnitude
and direction needs large computational complexity. Fur-
thermore, using interpolation to estimate the gradient mag-
nitude of the neighbor pixels along the gradient direction
is also expensive for real-time processing. Thus, approxi-
mation techniques are non-trivial while guaranteeing the ac-
curacy of the detected edges. For the gradient magnitude,
one possible approximation to the Euclidean norm is by us-
ing the sum of absolute values shown in Eq. (8). For the
gradient direction, instead of calculating the angle, this pa-
per proposes to infer the direction by comparing the magni-
tude of the horizontal (Gx) and vertical (Gy) gradient com-
ponent. As shown in Fig. 4, our approach simplifies the gra-
dient direction to one of the six sections. With the rotation
invariant characteristic of the gradient direction, these re-
gions can be identified by 5 critical angles which are 0◦,
26.58◦(≈ arctan 1

2), 45◦, 71.58◦, 90◦, respectively. And to
assign each pixel to one out of the six possible directions,
we utilize the magnitude and the sign of the horizontal and
vertical gradient components (Gx and Gy).√

G2
x +G2

y ≈ |Gx| + |Gy| (8)

As an illustration, Table 1 lists the detailed direction
partitions, as well as the NMS operation carried out within
each given region. When |Gx| > 2

∣∣∣Gy∣∣∣ is selected, the gra-
dient direction is located in regions 0, while

∣∣∣Gy∣∣∣ > 2 |Gx|
selection refers to region 6. If |Gy| < |Gx| < 2|Gy| is se-
lected, the gradient direction can be within region 2 or 3,
and this needs a further decision by checking the sign bit of
Gx and Gy with an XOR gate. When Gx and Gy have dif-
ferent signs, the gradient direction should be within region

Table 2 Performance comparison for the NMS algorithms.

Original Canny [12] [14] Proposed

Average P f a 0 6.70% 4.73% 0.95%

2. Otherwise, it should be within region 3. Similarly, when
|Gy|/2 < |Gx| < |Gy| is selected, the gradient direction can
be within region 4 or 5. In case of region 4, Gx and Gy have
different signs, and in case of region 5, Gx and Gy have the
same sign. After region selection, the actual NMS is per-
formed, where the magnitude of the edge pixel is compared
with the corresponding neighborhood pixels. For the edge
pixel located in region 1 and 6, it is compared with adjacent
pixels in the horizontal and vertical directions, respectively.
For region 2 and 3, the edge pixel is compared with adja-
cent pixels not only in the horizontal direction but also the
diagonal direction (45◦). And for region 4 and 5, the edge
pixel is compared with adjacent pixels in both horizontal
and diagonal (135◦) directions. Only the pixel whose gra-
dient magnitude is larger than both of its neighbors in the
gradient direction is accepted as the candidate for further
processing.

To evaluate the proposed NMS approach, the simula-
tion is carried out with more than 100 published deep-space
images. For comparison, the original NMS algorithm and
another two approximation schemes [12] and [14] are also
employed in our simulation. The original NMS algorithm
uses Eq. (3)–(7), where Euclidean norm is adopted for calcu-
lating the gradient magnitude and the interpolation scheme
is adopted for calculating the neighbors’ gradient. Since this
work uses the detected edges to infer the planet centroid, the
noise edges incurred by the approximation are of crucial im-
portance to the accuracy of the estimated centroid. Thus, the
percentage of the detected edge pixels by the proposed algo-
rithm that are not detected by the original Canny edge detec-
tor, also referred to false positives P f a, is used to represent
the performance of the proposed scheme. As shown in Table
2, the proposed scheme shows only 0.95% error compared
with the ideal one. However, considering the computa-
tional complexity, the proposed NMS consists of hardware-
friendly operations, e.g., addition, ×2 and ÷2, which eases
the hardware implementation significantly. Comparing with
the other two approximation schemes, the proposed one also
shows the lowest P f a. This is because [12] and [14] sim-
plify the gradient directions into 2 and 4 sections respec-

XIAO et al.: ALGORITHM-HARDWARE CO-DESIGN OF REAL-TIME EDGE DETECTION FOR DEEP-SPACE AUTONOMOUS OPTICAL NAVIGATION
2051

tively, while our proposed one uses 6 sections to approxi-
mate, which is more closed to the ideal one.

3.2 Simplified Adaptive Threshold Selection

Unlike general images whose pattern are diverse, the
background and object in the deep-space environment is
monotony. It is observed that well-exposed celestial objects
always have cleared contour with smoothed background.
However, the craters, texture, and atmosphere covered on
the celestial body may also incur edges, which interfere the
further calculation of the planet centroid significantly. Thus,
the purpose of the threshold in this work is to identify the
true edges of the celestial body while suppressing the noise
edges as much as possible. To do this, we observe that, due
to the darkness of the deep-space background, the intensity
of the image changes much more sharply at the real edge
when compared with the noise edge.

Exploiting this idea, this paper proposes an adaptive
single-threshold segmentation algorithm, which allow iso-
lating the real edge of the rest of the image, and also be-
ing convenient for hardware implementation. Eq. (9) shows
the proposed adaptive threshold, whose computation steps
are as follows: (1) assuming the pixels of the entire im-
age to be p(x, y), and calculating the mean value of the
gradient magnitudes Gp(x,y) for p(x, y); (2) removing pixels
whose gradient magnitude is smaller than G(x,y), resulting in
the subset of original image p0(x, y), and then calculate the
mean value of gradient magnitude Gp0(x,y) for p0(x, y); 3)
Calculating the standard deviation of the gradient magni-
tude σp0(x,y) for p0(x, y), and get the threshold via Eq. (9).

T = Gp0(x,y) + σp0(x,y) × 2 (9)

Figure 5 shows the simulation results of the real deep-

Fig. 5 Simulation results of the proposed adaptive threshold selection method. (a) Real deep-space
images. (b) Binary images after filtering by Gp(x,y). (c) Binary images after filtering by Gp0(x,y). (d)
Binary images after threshold segmentation.

space images published by NASA (Jupiter PIA04866, Mars
PIA04591, Mercury PIA10398 and Pluto PIA09113). In
more details, Fig. 5(b)-(d) shows the binary images accord-
ing to the steps above. At the 1st step, Gp(x,y) is used to
remove the background, leaving the celestial body contain-
ing both true edges and noise edges (as shown in Fig. 5(b)).
Thus, using Gp0(x,y) may further remove part of the noise
edges, which is shown in Fig. 5(c). Finally, the standard de-
viation (σp0(x,y)) of the gradient magnitude are adopted to
filter the rest noise edges.

4. Hardware Architecture

In this section, we shall show how to implement the pro-
posed edge detection algorithm on FPGA so that it can meet
the needs of real-time autonomous optical navigation. In the
rest of this section, we provide a high-level overview of the
proposed hardware architecture followed by details of each
functional component.

4.1 Architecture Overview

The block diagram of the proposed hardware architecture
for edge detection is shown in Fig. 6. According to the algo-
rithm above, it consists of five functional blocks: Gaussian
filter, gradient calculator, NMS unit, adaptive threshold cal-
culation, and thresholding. Getting the data stream from the

Fig. 6 Overview of proposed hardware architecture

2052
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Fig. 7 Pipelined image processing in stream-in-stream-out manner. (a) A 3 × 3 sliding window scan-
ning from the first column of the first row until the last column of the last row. (b) In/Out stream of each
pipelined functional stage.

image sensor, the system first applies a Gaussian filter on
the whole image. Then, the gradient at each pixel is cal-
culated for getting the gradient magnitude and direction of
a certain pixel. Furthermore, non-maximum suppression is
carried out as described in Sect. 3.2. Meanwhile, the adap-
tive thresholds are calculated according to Eq. (9). Finally,
the threshold is used to select the edge results after NMS.

The proposed architecture works in a completely
pipelined stream-in-stream-out manner. The image pixels
come in as a stream from the first point in the upper left to
the last one in the lower right. As shown in Fig. 7(a), the
detection is carried out by a window sliding the image from
the first column of the first row until the last column of the
last row to process every pixel with its neighborhood to con-
duct the edge results. The pipelined processing, as shown in
Fig. 7(b), has four major stages, which are Gaussian smooth-
ing, gradient computation, NMS and edge thresholding, re-
spectively. In Fig. 7(b), the numbers (0 to 6) inside the boxes
that denote the buffered row correspond to the column index
of Fig. 7(a). And the grey boxes with dashed line are the in-
coming data of each pipeline stage. The detailed implemen-
tation of each pipeline stage is explained in the following
subsections.

4.2 Gaussian Filter Architecture

In the hardware implementation, a sigma (σ) of 1.5 and a
kernel size of 5 are adopted for the Gaussian filtering. The
hardware structure consists of a rotating line buffer, convo-
lution buffers and two 1D convolution units. The rotating
line buffer that consists of four static random-access mem-
ory (SRAM) banks is used for the temporary store of the
image lines necessary for a 5 × 5 convolution. As shown
in Fig. 8(b), the input image lines are stored in these buffers
alternately. The output of the line buffers, along with the
incoming image line, are inputted to the respective register
(R0-R9) of the convolution buffer through a switching net-
work. The convolution units deal with the arithmetic pro-
cessing needed to calculate the Gaussian filtering with the
5 × 5 kernel. As shown in Fig. 8(a), to reduce the occu-

Fig. 8 HW Architecture for Gaussian filter. (a) Gaussian filter template.
(b) Hardware structure of Gaussian filter.

pied logic resources of the FPGA, we utilize the symmetry
of the Gaussian filter template, whose coefficients are de-
noted by g1-g15, to divide the one-step 2D convolution pro-
cess into two 1D ones, where a pattern is used to convolute
the columns first and then the rows. Since the symmetrical
columns and rows must be multiplied by the same coeffi-
cient (g1’-g3’), they are added together first and then the
sum is multiplied by the coefficient. As shown in Fig. 8(b),
the number of the multipliers necessary for pipelined pro-
cessing is thus reduced to 6 from the original 25.

Figure 7(b) illustrates the timing graph of the proposed
Gaussian filter. Since the size of the Gaussian kernel is
5 × 5, it is necessary to store four image lines before the
first convolution starts. It is noted that an additional two
lines padded with zero are extended to the first and the last

XIAO et al.: ALGORITHM-HARDWARE CO-DESIGN OF REAL-TIME EDGE DETECTION FOR DEEP-SPACE AUTONOMOUS OPTICAL NAVIGATION
2053

lines respectively to ensure the 5 × 5 sliding window cover
all the image lines. And thus, the first Gaussian filtering
starts when the 3rd line (indexed by 2) comes, and the re-
sults are passed to the next stage, gradient computation, as
input. The incoming pixel, on the one hand, is feed to the
convolution buffer through the switching network, and on
the other hand, is fetched to replace the unused data in the
line buffer. The same column of the four line buffers are
fetched to the convolution buffer simultaneously for the 1D
convolution.

4.3 Gradient Calculation Architecture

Figure 9 shows the hardware structure for calculating the
gradient of each image pixel. It consists of a rotating line
buffer, a window buffer and an arithmetic unit for 3 × 3 So-
bel operator. In the rotating line buffer, there are two SRAM
banks for the temporary store of the image lines necessary
for the 3 × 3 convolution. The input image lines are stored
in these line buffers alternately. The output of the two line
buffers, along with the incoming image line, are inputted to
the respective row of the window buffer through the switch-
ing network. The window buffer, which is a 3 × 3 shift reg-
ister array, stores the minimum size of image data necessary
for one convolution. It works as a buffer between the ro-
tating SRAM banks and the arithmetic unit. The arithmetic
unit is a combinational logic block dealing with the 3 × 3
Sobel operator.

As an illustration, Fig. 7(b) details the pipelined man-
ner of the proposed gradient calculation architecture. As the
size of the Sobel kernel is 3 × 3, an additional line padded

Fig. 9 HW architecture for gradient calculation

Fig. 10 HW architecture for NMS

with zero is extended to the first and the last lines respec-
tively to ensure the sliding window cover all the image lines.
Then, every clock cycle, the incoming pixel is feed to the
window buffer through the switching network, and on the
other hand, it is fetched to replace the used data in the line
buffer. Meanwhile, the same column of the adjacent two
lines that are stored in the line buffers are read and fetched
to the window buffer. In this manner, the entire image is
scanned by the 3 × 3 Soble kernel pixel by pixel, resulting
in the gradient of each pixel, Gx and Gy, passing to the fol-
lowing stage for NMS and adaptive threshold calculation.

4.4 Non-Maximun Suppression Architecture

Figure 10 shows the hardware architecture of the directional
NMS, where Gx and Gy are the horizontal and vertical gra-
dient of the input pixel, respectively. According to the pro-
posed algorithm in Sect. 3, the directional NMS unit con-
sists of three components including the gradient magnitude
calculator, the direction selector and the gradient magnitude
comparator. In the the gradient magnitude calculator, the
computation of square root is approximate by the absolute
operation in Eq. (8). The direction selector uses the input
gradient components Gx and Gy to assign each pixel to one
out of the six possible gradient direction. According to the
sign and value of the Gx and the Gy, the region of the direc-
tion can be determined; and thus the gradient magnitudes of
the neighbors (G1 to G4 and G6 to G9) along the direction
are selected and compared with the gradient magnitude of
the center pixel (G5). The pixels whose gradient correspond
to a local maximum gradient magnitude are considered to be
candidate edge points. Otherwise, the gradient of the pixel
that does not correspond to a local maximum gradient mag-
nitude is set to zero.

It is noteworthy that the proposed architecture signif-
icantly simplifies the hardware implementation of NMS.
First, it uses one addition operation to compute the gradi-
ent magnitude, getting rid of the resource-inefficient square
root operation. Furthermore, deploying the arctangent oper-
ation to calculate the gradient angle costs too much time and
resources, while the proposed method uses the magnitude of
Gx and Gy to quantize the gradient directions. As shown in

2054
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 3 Hardware resources and latency costed by various computation
in NMS algorithms.

Slices Slice Reg LUTs DSP Latency

Magnitude (Equ.3) 131 293 269 2 14
Arctan (Equ.4) 586 985 924 0 20
Division (Equ.5) 165 453 251 0 16
Proposed NMS 66 25 239 0 2

Note: The results are gotten by using Xilinx ISE 14.7.

Fig. 10, hardware-friendly operations, such as shift, compar-
ison and addition, are enough, avoiding the arctangent oper-
ation for achieving better utilization and speed performance
on FPGA. To quantitatively evaluate the advantages of the
proposed method from the viewpoint of hardware efficiency,
Table 3 compares the hardware resources and latency of the
proposed NMS implementation and the hard macros neces-
sary for directly implementing the original NMS algorithm
in Eq. (3)–(5). It is obvious that the advantages of the pro-
posed method are twofold: (1) it costs much less hardware
resources; (2) it performs much faster.

Figure 7(b) also illustrates the detailed timing of the
NMS stage. It works similarly with the gradient calculation
stage. There are two buffers for the temporary store of the
data lines. Every clock cycle, the incoming data is feed to a
3 × 3 window buffer through the switching network, and on
the other hand, it is fetched to replace the used data in the
line buffer. The 3 × 3 window buffer is adopted for storing
neighbors necessary for a NMS operation. Then, the results
after directional NMS are passed to the following stage for
the final thresholding.

4.5 HW Architecture for Adaptive Threshold Selection

The threshold calculation unit uses the gradient components
(Gx and Gy) to generate the threshold for the edge selec-
tion. According to the algorithm in Eq. (9), the mean value,
Gp(x,y) and Gp0(x,y), and the standard deviation (σp0(x,y)) of
the gradient magnitude are necessary for the calculation of
the threshold. It is noted that the herein p(x, y) and p0(x, y)
represents different sets of pixels, where the former is the
original image and the latter is a subset of p(x, y) filtered by
Gp(x,y). This module works in parallel with the directional
NMS unit. And the generated threshold is adopted to filter
the contour of the celestial body from the candidates after
NMS.

For hardware implementation, the direct calculation of
Gp(x,y), Gp0(x,y) and σp0(x,y) needs at least three iterations,
which cost huge storage resources and processing time.
Since the image sensor exposes every 200 ms and the target
planets are quite far from it, the successive images change
little. Thus, to avoid the iteration and ease the hardware im-
plementation, we assume the three adjacent images are the
same. Accordingly we propose to distribute the computa-
tion of the threshold into multiple successive expose period
in a pipelined manner. As shown in Fig. 11(a), Gp(x,y) is first
calculated by accumulating the incoming gradient compo-

Fig. 11 HW for the adaptive threshold selection. (a) Timing for the cal-
culation of threshold. (b) Circuit for the calculation of threshold.

nents of the 1st picture, and it is updated once a new picture
comes. Starting from the 2nd picture, the resulting Gp(x,y)

of the previous picture is used to filter the current incoming
gradient components, and the results after filtering are fur-
ther accumulated to calculate Gp0(x,y). At the 3rd picture, the
Gp0(x,y) getting in the previous period is further used to cal-
culate the standard deviationσp0(x,y), and then the 1st thresh-
old can be gotten by using Eq. (9). The circuits for calculat-
ing Gp(x,y), Gp0(x,y) and σp0(x,y) are shown in Fig. 11(b). And
starting from the 3rd picture, a new threshold is generated
every expose period.

5. Experimental Results

The effectiveness and performance of the proposed algo-
rithm are validated twofold. First, experiments are per-
formed to validate the effectiveness and performance of
the proposed algorithm by utilizing both synthetic and real
satellite imageries. Second, the hardware implementation is
evaluated in terms of the occupied resource and the real-time
processing efficiency.

5.1 Edge Extraction Performance

In order to validate the effectiveness and robustness of
the proposed algorithm, we use real images obtained from
deep-space flight missions and synthetic simulated images.
The real raw images used here include a Jupiter image
(PIA04866), a Mars image (PIA04591), a Mercury image
(PIA10398) and a Pluto image (PIA09113). The synthetic
image of the celestial body is also generated with fixed
Gaussian noise added. The edge points of the real and syn-
thetic images are extracted by using Canny edge extraction
algorithm adopted in [15] and our proposed algorithm. Fig-
ure 12 shows the edge extraction results of the real image.
The results indicate that the detected edges of celestial bod-
ies using the proposed is thinner than those of the traditional
Canny method. Moreover, the noise edges caused by craters
and atmosphere covered on celestial bodies are also sup-

XIAO et al.: ALGORITHM-HARDWARE CO-DESIGN OF REAL-TIME EDGE DETECTION FOR DEEP-SPACE AUTONOMOUS OPTICAL NAVIGATION
2055

Fig. 12 Simulation results of the proposed algorithm and the typical Canny algorithm

pressed using the proposed method.
To quantitatively measure the performance of the pro-

posed algorithms, we adopt the following measures: (1)
Noise-to-Signal Ratio (NSR); (2) Edge extraction error; (3)
Edge width in pixel. The NSR is defined as the ratio of the
number of detected edge points that do not coincide with the
ideal edge to those that coincide with the ideal edge. In the
simulated images, the actual centroid position and apparent
radius of the planet are accurately known in advance. In the
real images, the outline of the planet image is assumed as
round. And thus, the centroid position and apparent radius
of the planet of the planet can be fitted by Hough Trans-
form and the Least Square Circle fitting algorithm. The ideal
edges of the real images are assumed to be the edge points
within the width of ±1 pixels from the fitted circle. For
the edge extraction error, we adopt the root mean square er-
ror (RMSE) proposed in [18]. After manually removing the
false edges (the edge points beyond the width of ±5 pixels
from the fitted circle), the edge extraction accuracy of the
proposed algorithm is evaluated by calculating the absolute
deviation of the distance between the extracted edge point
and the planet centroid with respect to the theoretical appar-
ent radius.

Table 4 and Table 5 shows the overall performance of
the two algorithms applied to the four real images and the
synthetic image. The proposed algorithm achieves a signif-
icantly better edge extraction performance. First, the NSR
of the proposed algorithm is over one order of magnitude
better than the other algorithm. This indicates the proposed
algorithm can efficiently suppress the noise inside the celes-
tial body. After removing the false edges inside the celestial
body, the RMSE further shows the detected edges of the pro-
posed algorithm is over two times more accurate than those
of the conventional algorithm. Moreover, the proposed al-
gorithm can extract continuous one-pixel wide edges from
the real images, whereas the edges extracted by the Canny
algorithm are multi-pixel wide and numerous false edges
are also extracted. Therefore, the proposed algorithm can
extract edge points with high accuracy and achieve better

Table 4 Overall performance evaluation results of Canny algorithm.

Jupiter Mars Mercury Pluto Synthetic

NSR 12.10% 61.51% 34.38% 62.14% 4.69%
Edge width Multi Multi Multi Multi Multi

RMSE 1.561 1.507 0.752 2.134 0.5165

Table 5 Overall performance evaluation results of proposed algorithm.

Jupiter Mars Mercury Pluto Synthetic

NSR 0% 3.02% 0.35% 9.29% 0.60%
Edge width One One One One One

RMSE 0.458 0.438 0.470 1.068 0.3228

feature extraction performance in terms of qualitative and
quantitative measurements.

It is noted that, as shown in Fig. 12, the proposed algo-
rithm may remove part of the real edges and degrade the
connectivity of the edges when compared with the origi-
nal Canny algorithm. This is mainly caused by the differ-
ent threshold segmentation methods. In the original Canny
algorithm, the purpose of the threshold is to remove fake
edges. However, in our proposed method, the threshold
is required to identify the edge points exactly on the ring
of the celestial body while suppressing the other edges as
much as possible. Thus, to get thinner edges and suppress
noise edges inside the celestial body, it loses a part of the
real edges during the threshold segmentation. However, this
penalty is acceptable when extracting the planet centroid us-
ing star centroiding algorithms, e.g., ellipse fitting [4] and
Gaussian fitting [5], and the effectiveness of the proposed
method is also confirmed with the performance evaluation
above.

Unlike pixel-level edge detectors used in this work and
[15], sub-pixel edge detection algorithms are adopted in
[16], [18], [19] for more accurate OPNAV. Specifically, [16]
uses Prewitt-Zernike moment and [18], [19] use the second-
order Taylor expansion [23] to determine the sub-pixel loca-
tion of the edge points. They are certainly more accurate in
detecting edges, while this in turn becomes several orders

2056
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 6 Comparisons of various FPGA implementation results.

FPGA Resources
Max. Freq. (MHz) Time∗

Xilinx Occupied Slices Slice Reg. Slice LUTs DSP

[11] 2,988 5,080 10,312 28 250 3.325 ms / 185.48 µs
[13] / 4,810 4,437 8 100 2.647 ms / 25.76 µs

Proposed 2,511 4,270 3,813 26 250 2.642 ms / 20.60 µs

FPGA Resources
Max. Freq. (MHz) Time∗

Altera Adaptive Logic Modules Registers DSP

[12] 3,406 6,608 28 242 2.663 ms / 41.33 µs
Proposed 3,167 2,194 1 250 2.642 ms / 20.60 µs
∗Note: PL / IL of processing a 512 × 512 image at 100MHz.

of magnitude more complex than the proposed one. Con-
sidering the constrained computation and energy capacity
on-board, light-weight algorithms with less computational
complexity are desirable for real-time OPNAV. Moreover, it
has been found pushing more accuracy to select better pix-
els is unnecessary, because the final accuracy is provided by
the results of nonlinear least-squares estimation [17]. Thus,
to avoid computationally-intensive approaches, pixel-level
edge detector is here adopted to select the pixels of interest.

5.2 Hardware Performance

To evaluate the proposed hardware architecture, we have
implemented a complete edge detection system using Xil-
inx Virtex-4 FPGA and ISE design suite 14.7. The optical
sensor adopted is CMOSIS CMV20000 with a resolution of
5120× 3840. This sensor generates 12-bit grayscale images
which are processed by the proposed hardware in a com-
pletely stream-in-stream-out manner.

Table 6 lists the hardware resources and execution time
of various Canny edge detectors implemented with both Xil-
inx and Altera FPGAs. For the fair comparison, the execu-
tion time is measured using a 512 × 512 image working at
100 MHz, although the proposed implementation can sup-
port image resolutions of up to 5120 × 3840. Compared
with the previous work, the proposed Canny edge detector
uses a smaller number of logic elements with less execu-
tion time. In more detail, [11] adopts distributed processing
manner that allows parallel processing with multiple com-
puting engines. However, to support block level edge de-
tection, it suffers more hardware resources and execution
time. Both [12] and [13] use the completely pipelined ar-
chitecture. However, thanks to the hardware-friendly NMS
and thresholding method, the proposed design shows signifi-
cant area efficiency compared to [12]. Comparing with [13],
our proposed design costs more DSP blocks, since [13] uses
fixed threshold approach, while the proposed one uses adap-
tive threshold approach, which complicates the computation
but enables better performance in edge detection. In more
detail, the DSP blocks adopted in our design are all con-
sumed by calculating the adaptive threshold illustrated in
Sect. 4.5. In Xilinx FPGA, 26 DSP blocks are used, one for
square operation and the other 25 ones for the divider. In Al-
tera FPGA, due to its divider IP does not cost DSP resource,

Table 7 Number of used line buffers.

Proposed [12] [13]

Gaussian filter 4 5 4
Gradient computation 2 3 2

NMS 2 3 2
Thresholding 0 3 2

Total line buffer∗ 8 14 10
∗Note: depth of each line buffer equals the width of the image.

only one DSP block is used for the square operation. Thus,
ignoring the DSP and logic resources costed for adaptive
threshold calculation, the proposed implementation should
be much more resource-efficient than [13]. Moreover, con-
sidering the latency, our design calculates the threshold
while doing the NMS, which hides the processing latency.
And thus, it shows performance improvements in execution
time compared with [12] and [13], although all of them work
in the same pipelined stream-in-stream-out manner.

In the context of high-resolution satellite imageries,
block random-access memories (BRAMs) used to buffer the
image lines are the most critical resource in FPGA devices,
especially for completely pipelined architectures. Since the
data width and buffer depth vary among different applica-
tions, we compare the number of line buffers adopted in
the architectures. As listed in Table 7, the proposed de-
sign shows BRAM reduction of 43% and 20%, respectively,
compared with [12] and [13], making the remaining mem-
ory have enough space for further processing. In general, the
streaming calculation of threshold requires no line buffer,
making our method resource-efficient.

Using Xilinx Virtex-4 FPGA, the proposed architecture
can work with a maximum frequency of 250 MHz. In the
practical implementation, it works at 120 MHz which is the
rate of the pixel stream coming from the image sensor. In
terms of real-time performance, we use the Initial Latency
(IL) and the Processing Latency (PL) proposed in [12] to
measure. The IL is defined here as the amount of time be-
tween when a pixel arriving at the system and when it com-
ing out after all the processing finished. It also corresponds
to the time expended to fill the pipeline, and Fig. 13 shows
the IL of the proposed pipelined architecture. The PL is de-
fined here as the sum of the IL and the time to process all
the pixels of an image. It indicates the longest period of the

XIAO et al.: ALGORITHM-HARDWARE CO-DESIGN OF REAL-TIME EDGE DETECTION FOR DEEP-SPACE AUTONOMOUS OPTICAL NAVIGATION
2057

Fig. 13 Processing latency of each pipelined stage

Table 8 Comparison of timing performance for the edge detection im-
plementations

Image resolution GPU [7] Proposed FPGA

512 × 512 3.40 ms 1.06 ms
1024 × 1024 10.92 ms 4.21 ms
2048 × 2048 31.46 ms 16.81 ms
3936 × 3936 96.62 ms 62.03 ms
5120 × 3840 / 78.73 ms

∗FPGA working at 250 MHz.

whole algorithm. Since the pixel stream has a constant rate,
we can express IL and IP in terms of pixels using Eq. (10)
and (11), where W and H denote the width and height of the
images, respectively.

IL = 12 + 4 ×W (10)

PL = W × H + (12 + 4W) (11)

Table 8 shows that the proposed FPGA also has an ev-
ident advantage over the GPU implementation proposed in
[7]. The FPGA speedup factor for the GPU implementation
varies from 1.55 to 3.21. It is noted that, for larger images
however, the FPGA speedup decreases in function of the
image resolution. This is due to the high number of CUDA
cores of GPU, which enables a massively parallel process-
ing with high definition images. Regarding the target image
(5120 × 3840) of this work, a single edge detection takes
78.73 ms at 250 MHz, satisfying the real-time image pro-
cessing speed requirement for OPNAV.

6. Conclusion

In this paper, an algorithm-hardware co-design of real-time
edge detection is proposed for deep-space autonomous opti-
cal navigation. In terms of the algorithm, we modify the tra-
ditional Canny algorithm by proposing an optimized adap-
tive thresholding approach to efficiently detect the edge of
the celestial body while suppressing the noise edges caused
by surface markings. Moreover, hardware-oriented opti-
mization is also carried out to the NMS and threshold se-
lection for easing the hardware implementation without sac-
rificing the accuracy. Based on the proposed algorithm, we
further propose a completely pipelined hardware architec-
ture with optimized storage and computation structure for
improving its real-time performance and the resource ef-
ficiency. Finally, the proposed solution has been imple-
mented and verified on FPGA. Experimental results confirm

our proposed solution performs effectively with high accu-
racy, low processing latency and efficient on-chip resources,
making it a viable option for real-time edge detection in OP-
NAV.

Acknowledgments

This work is supported in part by National Natural Sci-
ence Foundation of China 61974039, 61834006, 61504059,
61674049, U19A2053, the Aeronautical Science Founda-
tion of China 2018ZCP4, the Fundamental Research Funds
for Central Universities JZ2019HGTB0092, and the Project
of Science and Technology on Electronic Information Con-
trol Laboratory.

References

[1] T. Teil and H. Schaub, “Software architecture for close-loop au-
tonomous optical navigation scenarios,” Proc. 1st Annual RPI Work-
shop on Image-Based Modeling and Navigation for Space Applica-
tions, New York, USA, pp.1–10, June 2018.

[2] X. Ma, J. Fang, and X. Ning, “An overview of the autonomous
navigation for a gravity-assist interplanetary spacecraft,” Prog.
Aerospace Sciences, vol.63, no.11, pp.56–66, 2013.

[3] M. William and J. Owen, “Methods of optical navigation,” Advances
in the Astronautical Sciences, no.140, pp.1635–1653, 2011.

[4] J.A. Christian and E.G. Lightsey, “Onboard image-processing algo-
rithm for a spacecraft optical navigation sensor system,” J. Space-
craft and Rockets, vol.49, no.2, pp.337–352, 2012.

[5] T. Delabie, J.D. Schutter, and B. Vandenbussche, “An Accurate and
Efficient Gaussian Fit Centroiding Algorithm for Star Trackers,” J.
Astronautical Sciences, vol.61, no.1, pp.60–84, 2014.

[6] J.F. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.8, no.6, pp.679–698, Nov.
1986.

[7] Y. Luo and R. Duraiswami, “Canny edge detection on NVIDIA
CUDA,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Anchor-
age, USA, pp.1–8, June 2008.

[8] A. Alaghi, C. Li, and J.P. Hayes, “Stochastic circuits for real-
time image-processing applications,” Proc. ACM/EDAC/IEEE De-
sign Automation Conf. (DAC), Austin, USA, no.136, June 2013.

[9] W. He and K. Yuan, “An improved Canny edge detector and its real-
ization on FPGA,” Proc. 7th World Congress on Intelligent Control
and Automation, Chongqing, China, pp.6561–6564, June 2008.

[10] C. Gentsos, C. Sotiropoulou, S. Nikolaidis, and N. Vassiliadis,
“Real-time canny edge detection parallel implementation for FP-
GAs,” Proc. 17th IEEE Int. Conf. Electronics, Circuits and Systems,
Athens, Greece, pp.499–502, Dec. 2010.

[11] Q. Xu, S. Varadarajan, C. Chakrabarti, and L.J. Karam, “A dis-
tributed Canny edge detector: algorithm and FPGA implementa-
tion,” IEEE Trans. Image Process., vol.23, no.7, pp.2944–2960, July
2014.

[12] P.R. Possa, S.A. Mahmoudi, N. Harb, C. Valderrama, and P.
Manneback, “A multi-resolution FPGA-based architecture for real-
time edge and corner detection,” IEEE Trans. Comput., vol.63,

http://dx.doi.org/10.1016/j.paerosci.2013.06.003
http://dx.doi.org/10.1016/j.paerosci.2013.06.003
http://dx.doi.org/10.1016/j.paerosci.2013.06.003
http://dx.doi.org/10.2514/1.A32065
http://dx.doi.org/10.2514/1.A32065
http://dx.doi.org/10.2514/1.A32065
http://dx.doi.org/10.1007/s40295-015-0034-4
http://dx.doi.org/10.1007/s40295-015-0034-4
http://dx.doi.org/10.1007/s40295-015-0034-4
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/CVPRW.2008.4563088
http://dx.doi.org/10.1109/CVPRW.2008.4563088
http://dx.doi.org/10.1109/CVPRW.2008.4563088
http://dx.doi.org/10.1145/2463209.2488901
http://dx.doi.org/10.1145/2463209.2488901
http://dx.doi.org/10.1145/2463209.2488901
http://dx.doi.org/10.1109/WCICA.2008.4594570
http://dx.doi.org/10.1109/WCICA.2008.4594570
http://dx.doi.org/10.1109/WCICA.2008.4594570
http://dx.doi.org/10.1109/ICECS.2010.5724558
http://dx.doi.org/10.1109/ICECS.2010.5724558
http://dx.doi.org/10.1109/ICECS.2010.5724558
http://dx.doi.org/10.1109/ICECS.2010.5724558
http://dx.doi.org/10.1109/TIP.2014.2311656
http://dx.doi.org/10.1109/TIP.2014.2311656
http://dx.doi.org/10.1109/TIP.2014.2311656
http://dx.doi.org/10.1109/TIP.2014.2311656
http://dx.doi.org/10.1109/TC.2013.130
http://dx.doi.org/10.1109/TC.2013.130
http://dx.doi.org/10.1109/TC.2013.130

2058
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

no.10, pp.2376–2388, Oct. 2014.
[13] F. Zhou, Y. Cao, and X. Wang, “Fast and resource-efficient hardware

implementation of modified line segment detector,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol.28, no.11, pp.3262–3273, Nov. 2018.

[14] J. Lee, H. Tang, and J. Park, “Energy efficient Canny edge detector
for advanced mobile vision applications,” IEEE Trans. Circuits Syst.
Video Technol., vol.28, no.4, pp.1037–1046, April 2018.

[15] S. Li, R. Lu, L. Zhang, and Y. Peng, “Image processing algo-
rithms for deep-space autonomous optical navigation,” J. Naviga-
tion, vol.66, no.4, pp.605–623, July 2013.

[16] S. Du, M. Wang, X. Chen, and Shenghui Fang, “A high-accuracy
extraction algorithm of planet centroid image in deep-space au-
tonomous optical navigation,” J. Navigation, vol.69, no.4, pp.828–
844, July 2016.

[17] D. Mortari, F. Dilectis, and R. Zanetti, “Position estimation using the
image derivative,” MDPI Aerospace, vol.2, no.3, pp.435–460, 2015.

[18] J. Jiang, H. Wang, and G. Zhang, “High-accuracy synchronous ex-
traction algorithm of star and celestial body features for optical nav-
igation sensor,” IEEE Sensors J., vol.18, no.2, pp.713–723, 2018.

[19] H. Wang, J. Jiang, and G. Zhang, “Celestial object imaging model
and parameter optimization for an optical navigation sensor based
on the well capacity adjusting scheme,” MDPI Sensors, vol.17, no.4,
pp.1–23, 2017.

[20] X. Hao, F. Yanming, Z. Zhang, and X. Cheng, “A Fast and Accurate
Edge Detection Algorithm for Real-Time Deep-Space Autonomous
Optical Navigation,” Proc. 10th IEEE Int. Conf. Intelligent Data Ac-
quisition and Advanced Computing Systems: Technology and Ap-
plications (IDAACS), Metz, France, pp.601–604, Sept. 2019.

[21] R. Szeliski, Computer Vision: Algorithms and Applications,
Springer, 2011.

[22] T.B. Moeslund, Introduction to Video and Image Processing,
Springer, 2012.

[23] C. Steger, Unbiased Extraction of Curvilinear Structures from
2D and 3D Images, Ph.D. Dissertation, Technischen Universität
München, Munich, Bavaria, Germany, 1998.

Hao Xiao received the B.E. degree from
Zhejiang University, Hangzhou, China, in 2005,
the M.S. degree from Fudan University, Shang-
hai, China, in 2009, and the Ph.D. degree from
Tokyo Institute of Technology, Tokyo, Japan,
in 2012. From 2012 to 2014, he worked at
Tokyo Institute of Technology as a research fel-
low. He was a lecturer with Nanjing University
of Aeronautics and Astronautics from 2014 to
2017. Since November 2017, he has been a Full
Professor with the School of Microelectronics

in HeFei University of Technology. His research interests include energy-
efficient VLSI system design, computer vision, and hardware security.

Yanming Fan received his B.E. degree
from Nanjing University of Aeronautics and
Astronautics in 2017. Since 2017, he has
been studying for his M.S. degree in the Col-
lege of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astro-
nautics. His research interests include image
signal processing, deep neural network acceler-
ation and processing-in-memory architectures.

Fen Ge received the B.E., M.E. and Ph.D.
degrees from Nanjing University of Aeronautics
and Astronautics in 2003, 2006 and 2010, re-
spectively. She is currently an Associate Pro-
fessor at College of Electronic and Information
Engineering, Nanjing University of Aeronautics
and Astronautics. Her research interests include
network-on-chip and reconfigurable computing.

Zhang Zhang received the B.S. degree in
electronic science and technology from Hefei
University of Technology, Hefei, China, in
2004, and the Ph.D. degree in microelectron-
ics from Fudan University, Shanghai, China, in
2010. He was a Visiting Scholar in Georgia In-
stitute of Technology from 2016 to 2017, and he
has been a Full Professor in the School of Elec-
tronic Science and Applied Physics, Hefei Uni-
versity of Technology since 2019. His current
research interests include mixed signal/power

management circuits design and ultra-low power biomedical circuits de-
sign. He is an IC design professional member of China Computer Federa-
tion.

Xin Cheng received the B.S. and M.S. de-
grees in microelectronics from Hefei University
of Technology, Hefei, China, in 2006 and 2009
respectively, and the Ph.D. degree in microelec-
tronics from the Institute of Electronics, Chi-
nese Academy of Sciences, Beijing, China, in
2012. She is currently an Associate Professor
in the School of Electronic Science and Applied
Physics, Hefei University of Technology. Her
research interests include integrated circuit de-
sign and power electronics.

http://dx.doi.org/10.1109/TCSVT.2017.2746753
http://dx.doi.org/10.1109/TCSVT.2017.2746753
http://dx.doi.org/10.1109/TCSVT.2017.2746753
http://dx.doi.org/10.1109/TCSVT.2016.2640038
http://dx.doi.org/10.1109/TCSVT.2016.2640038
http://dx.doi.org/10.1109/TCSVT.2016.2640038
http://dx.doi.org/10.1017/S0373463313000131
http://dx.doi.org/10.1017/S0373463313000131
http://dx.doi.org/10.1017/S0373463313000131
http://dx.doi.org/10.1017/S0373463315000910
http://dx.doi.org/10.1017/S0373463315000910
http://dx.doi.org/10.1017/S0373463315000910
http://dx.doi.org/10.1017/S0373463315000910
http://dx.doi.org/10.3390/aerospace2030435
http://dx.doi.org/10.3390/aerospace2030435
http://dx.doi.org/10.1109/JSEN.2017.2777493
http://dx.doi.org/10.1109/JSEN.2017.2777493
http://dx.doi.org/10.1109/JSEN.2017.2777493
http://dx.doi.org/10.3390/s17040915
http://dx.doi.org/10.3390/s17040915
http://dx.doi.org/10.3390/s17040915
http://dx.doi.org/10.3390/s17040915
http://dx.doi.org/10.1109/IDAACS.2019.8924336
http://dx.doi.org/10.1109/IDAACS.2019.8924336
http://dx.doi.org/10.1109/IDAACS.2019.8924336
http://dx.doi.org/10.1109/IDAACS.2019.8924336
http://dx.doi.org/10.1109/IDAACS.2019.8924336
http://dx.doi.org/10.1007/978-1-84882-935-0
http://dx.doi.org/10.1007/978-1-84882-935-0
http://dx.doi.org/10.1007/978-1-4471-2503-7
http://dx.doi.org/10.1007/978-1-4471-2503-7

