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SUMMARY Blockchain-based voting, including liquid voting, has
been extensively studied in recent years. However, it remains challenging
to implement liquid voting on blockchain using Ethereum smart contract.
The challenge comes from the gas limit, which is that the number of in-
structions for processing a ballot cannot exceed a certain amount. This
restricts the application scenario with respect to algorithms whose time
complexity is linear to the number of voters, i.e., O(n). As the blockchain
technology can well share and reuse the resources, we study a model of
liquid voting on blockchain and propose a fast algorithm, named Flash, to
eliminate the restriction. The key idea behind our algorithm is to shift some
on-chain process to off-chain. In detail, we first construct a Merkle tree off-
chain which contains all voters’ properties. Second, we use Merkle proof
and interval tree to process each ballot with O(log n) on-chain time com-
plexity. Theoretically, the algorithm can support up to 21000 voters with
respect to the current gas limit on Ethereum. Experimentally, the result
implies that the consumed gas fee remains at a very low level when the
number of voters increases. This means our algorithm makes liquid voting
on blockchain practical even for massive voters.
key words: liquid voting, blockchain, smart contract, gas limit, Merkle
tree

1. Introduction

Since the inception of Bitcoin, blockchain has shown great
promises in implementing decentralized cryptocurrencies
that have attracted significant attentions of academia, indus-
try and government. Essentially, a blockchain is a decen-
tralized and immutable public ledger ensured by cryptogra-
phy and peer-to-peer networking technologies. The ledger
share the transactions and reuse the technological resources
across many participants so that any involved record cannot
be altered retroactively, without the alteration of all subse-
quent blocks. This allows participants to verify and audit

Manuscript received November 9, 2020.
Manuscript revised February 4, 2021.
Manuscript publicized May 17, 2021.
†The authors are with the School of Computer Science and En-

gineering, The University of Aizu, Aizu-wakamatsu-shi, 965–8580
Japan.
††The authors are with Beijing YeeZTech Co., Ltd., China.
†††The author is with the College of Computer Science and Tech-

nology, Hangzhou Dianzi University, China.
∗This research is supported by the JSPS Grants-in-Aid for Sci-

entific Research No. JP19K20258.
a) E-mail: d8211110@u-aizu.ac.jp
b) E-mail: pengli@u-aizu.ac.jp
c) E-mail: cengyulong@yeez.tech
d) E-mail: xuepeng.fan@yeez.tech
e) E-mail: perryliu@hdu.edu.cn
f) E-mail: miyazaki@u-aizu.ac.jp

DOI: 10.1587/transinf.2020BDP0001

transactions independently and relatively inexpensively [1].
The early blockchain implementation, represented by Bit-
coin, can store simple data formats in the form of money-
transferring transactions. Later, Ethereum and other emerg-
ing blockchain projects have enhanced the blockchain by
involving smart contracts, which are programs running on
blockchain nodes for storing and operating on-chain data.
With smart contracts, we can implement various complex
decentralized applications with strong security and trusti-
ness guarantee, e.g., insurance, supply chain management,
the vehicular Internet of Things [2] and copyright protec-
tion.

Voting is one of the most popular blockchain applica-
tions, and plays an important role in many decision-making
scenarios. Liquid voting (or liquid democracy) is a form
of delegative democracy [3], which lies between direct and
representative democracy [4]–[7]. Voters can either vote di-
rectly or delegate their votes to other participants. Voters
delegate some others who may further elect other repre-
sentatives, which forms a delegation graph. Since voters
may change their delegation by the voting deadline, frequent
graph operations, like graph traversing, will be executed.

Graph traversing operations are common and various
efficient algorithms are available on our traditional comput-
ing systems. However, it becomes a big challenge for a
unique limitation called gas limit when we conduct such op-
erations on blockchain. We take Ethereum as an example.
Executing a single instruction of smart contracts consumes
a certain amount of gas fee, which varies from several to 10
thousand∗∗. Ethereum has a parameter block gas limit,
usually about 10 million, which determines the total gas that
can be consumed within a block(that is gas limit). The to-
tal gas fee for invoking a smart contract can not exceed
block gas limit, because the corresponding transaction
can only be included in one block, which means that the
number of instructions cannot exceed a certain amount. Oth-
erwise, the transaction will be reverted.

Many companies/parties have started practicing appli-
cations of liquid voting, such as Google Votes [8] and Pirate
Parties (software: liquid feedback) [9]. However, they are
centralized solutions that suffer from black-box operations
and statistical errors. Blockchain is promising in solving

∗∗According to https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-150.md, one storage modify instruction costs 5000
gas, and one storage add instruction costs 20000 gas.
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these issues, but an efficient blockchain-based implementa-
tion of liquid voting is still an open challenge.

The difficulty lies in the self-tally requirement. Self-
tally means that after all ballots have been cast, anyone can
compute the result without external help. This is a natural
requirement for a distributed voting scheme [10]. Naive al-
gorithms usually compute the result by traversing the del-
egation graph on-chain, of which the time complexity is
O(n), where n is the number of voters. Especially, when
the delegation graph is chain-like, they are undesirable due
to the gas limit, since application scenarios are limited to
less than one thousand voters (usually with millions of vot-
ers required).

Some discussions try to rise to the challenge by adding
restrictions to the delegation graph, i.e., set an upper limit to
the depth of the graph (max depth). Yet, this would open
the door to potential griefing attacks. In this case, delega-
tors can block voters from delegating by delegating a chain
of depth as max depth-current depth†. Other solutions
abound but are all unreasonable when meet with the gas
limit.

In this paper we essentially take the computation pres-
sure by real-timely updating the status upon each voting
massage, which gives the icing on the cake for user expe-
rience by displaying it. We propose an algorithm, named
Flash, that reduces the on-chain time complexity to O(log n)
for processing each voting information, which essentially
solves the on-chain liquid voting problem. The Flash does
not add any restriction to voters: any voter can delegate ar-
bitrarily. Its off-chain time complexity is also acceptable,
which is only O(n). The Flash solves the liquid voting prob-
lem with the following aspect:

• At the beginning of a voting, each voter obtains the
delegation graph by snapshotting the current height of
Ethereum, then executes an O(n) off-chain initializa-
tion to get his initialization data.

• Voters directly vote to a candidate by sending a voting
message, attached with his initialization data. Upon re-
ceiving a voting message, the voting contract use the
Merkle proof to check the correctness of the initializa-
tion data with O(log n) time complexity.

• After that, the voting contract process the voting mes-
sage to update the voting status and storage real-
timely through the interval tree structure which further
achieves O(log n) time complexity.

The rest of this paper is organized as follows. In Sect. 2,
we describe the background technologies and further elicits
the motivation of this paper. In Sect. 3 we discuss the prob-
lem with an example. In Sect. 4, we present the Flash for the
liquid voting on blockchain problems. We do some theoret-
ical analysis and prove some properties of our algorithm in
Sect. 5. In Sect. 6 we show our experiment results. Finally,
we conclude the paper in Sect. 7.

†https://forum.aragon.org/t/open-challenges-for-on-chain-
liquid-democracy/161

2. Background and Motivation

2.1 Voting and Liquid Democracy

Theories and algorithms of liquid voting have been exten-
sively studied in recent years. Blum et al. [11] give an
overview of liquid voting, including concepts, history and
issues. The latest research progress of liquid voting can be
found at The Liquid Democracy Journal††.

Recently, a series of literature studies the implemen-
tation of blockchain-based voting systems [12], [13], some
of which also refer to liquid voting but not consider the
self-tally requirement. The introduction of self-tally can be
found in [14], which states that the property of self-tally and
perfect ballot secrecy can not be satisfied simultaneously.
Thus in this paper the privacy is compromised in favor of re-
altime self-tallying. Yang et al. [15] introduce a self-tallying
voting system by Ethereum smart contract, but do not con-
sider the liquid voting scenario. McCorry et al. [16] also im-
plement a distributed and self-tally electronic voting scheme
using the Ethernet blockchain, while the core is to maximize
the protection of voter privacy.

There are some applications for liquid voting, as
Google vote and liquid feedback. The algorithms in them
work in following ways: Google vote’s algorithm mainly
bases on the work of Schulze’s [17], which is a m3 method
for electing a winner, where m is the number of candi-
dates. They also demonstrate that the system can imple-
ment liquid voting on a social network in a scalable manner
with a gradual learning curve. The basics of Liquid Feed-
back’s algorithm come from Harmonic Weight†††, Propor-
tional Runoff†††† and Schulze method, whose proposes are
to determine the weights of candidates. Though both al-
gorithms can be applied to liquid voting, the self-tallying
requirement and gas limit are not taken into consideration.

2.2 Merkle Tree and Interval Tree

Merkle tree [18] is a commonly used data structure for stor-
ing and verifying data on blockchain. The blockchain stores
only the root of the Merkle tree (called Merkle root). A leaf
node together with its correct Merkle proof (also known as
Merkle path, which is defined as a sequence of nodes in the
Merkle tree that corresponds to brother of each node on path
from the leaf node to the root) can recover the root of the
Merkle tree. Merkle proof is used to concisely proof and
ensure the validity of a certain data set being inclusive in a
larger data set without revealing either the complete data set
or its subset. The length of the Merkle path and the time
complexity for recovering the Merkle root are all logarith-
mic to the number of leaf nodes of the Merkle tree. Besides,
the one-wayness of the hash function guarantees that it is

††https://liquid-democracy-journal.org/
†††https://en.wikipedia.org/wiki/Harmonic mean
††††http://www.magnetkern.de/prop-runoff/prop-runoff.html
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hard to construct a correct Merkle proof for any data that
does not belong to any leaf nodes of the Merkle tree.

Interval tree is a binary tree that each node holds an
interval. The interval of any node is uniformly distributed
to its two child nodes, until the interval becomes a singular,
to be a leaf node. It supports finding and updating opera-
tion. For updating operation, usually not every leaf node
is updated since the updating information may stop at an
intermediate node, recorded as lazy-tag, and will be exe-
cuted in subsequent operations. Finding operations need to
be executed recursively starting from the root, and trigger
the pass-down operation of all lazy-tags until the leaf node
is reached. The complexity is O(log n) with respect to inter-
val tree for both operations. We refer [19], Chapter 10.1 to
readers for more detail.

2.3 Motivation

The security and transparency of the blockchain, combined
with the freedom and flexibility of liquid democracy, make it
possible to truly achieve democracy for everyone. However,
due to the gas limit on Ethereum, the application scenario is
restricted with respect to algorithms whose time complexity
is linear to the number of voters, i.e., O(n). Therefore, we
hope to be able to implement an O(log n) algorithm to elimi-
nate the restriction, as the total gas fee will never exceed the
gas limit. There by we can make liquid voting on blockchain
practical, that without any restriction to voters: no limit to
the number of voters and voters can delegate arbitrarily.

3. Problem Description

In this section, we first define the process of liquid voting on
blockchain. Second, we formalize the liquid voting prob-
lem. Finally, we breakdown the problem into subproblems.

In brief, liquid voting on blockchain can be separated
into three periods:

(1) Spare period

The election organizer allocates voting powers to all voters,
initializes voters identity if necessary, and deploys the dele-
gate contract on blockchain. Each voter can arbitrarily del-
egate or undelegate by sending transactions to the delegate
contract. In our model, we assume that each voter is al-
lowed to appoint at most one delegation. During this period,
no voting is casted, and a voter’s delegation is not allowed
to change after the spare period.

(2) Prepare period

In this period, the election organizer needs to deploy a vot-
ing contract with the delegation graph from the spare period.
Notice that the delegation graph could be too large to recon-
struct on blockchain. We provide more details in Sect. 4.

(3) Voting period

After the voting begins, each voter can directly vote to a

Fig. 1 Delegation tree. We ignore the virtual node with index 0 here.

candidate by sending a voting message to the voting con-
tract, with all his delegators’ voting powers also casting to
the same candidate. It is notable that, although our algo-
rithm does not allow voters to change their delegations dur-
ing the voting period, they can accomplish the same purpose
by casting a direct voting. Changing delegation to a voter
that has voted is equivalent to casting a direct voting, and
changing delegation to a voter that has not voted is rare in
practice.

We introduce delegation graph to describe voters’ del-
egation behaviors. A delegation graph G is a direct graph,
where each node represents a voter, and a direct edge (u, v)
represents that voter v delegates his voting power to voter u.
It is intuitive to assume that a delegation graph G contains
no loop, thus a forest (multiple trees). Additionally, we can
add a virtual node that is pointed by the root of each con-
nected branch. So a delegation graph G can be transferred
to a delegation tree T . If G contains only one connected
branch, the transfermation can be ingored since it is already
a delegation tree. Figure 1 shows an example of delegation
tree for 12 voters, in which voters are indexed by numbers
1, 2, . . . , n, while candidates are indexed by capital letters
A, B,C, . . .. The arrow from the number to the capital let-
ter represents the voter votes to the candidate with all his
ballots.

The liquid voting problem can be described as tally-
ing all candidates’ ballots with a subset of voters in a del-
egation tree voting to the candidates. Given that a delega-
tion tree could contain thousands of nodes, it is difficult, if
not impossible, to traverse it on-chain due to the gas lim-
itation. Notice that the involved nodes of each voting is
quite less than the total number of nodes, we further con-
vert our goal to self-tallying the ballots of all candidates for
each voting message. Instead of self-tallying the ballots af-
ter all votes are casted, our new goal is more applicable for
the blockchain scenario. We again take Fig. 1 as an exam-
ple, and further assume each voter’s voting power equals to
his index for convenience. At the beginning, nobody votes.
When voter 1 votes for candidate A (as the first voter), A
obtains 1 + 2 + · · · + 12 = 78 ballots. After voter 1 votes,
suppose voter 5 (as the second voter) votes for candidate B.
Then B obtains 6 + 5 = 11 ballots. A’s ballots decrease by
11, turning into 67. Further, voter 3 (as the third voter) votes
for candidate C, then C obtains 3 + 4 + 7 + 8 = 22 ballots,
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Table 1 Expamle of self-tallying the ballots for each voting.

inputs outputs
1 A A 78 B 0 C 0
5 B A 67 B 11 C 0
3 C A 45 B 11 C 22

A’s ballots become 45, and B’s ballots don’t change. Table 1
shows the process.

It’s obvious that in order to tally the ballots after each
voting, the key point is to maintain each node’s “lost vot-
ing power” (the total ballots of his delegators who vote di-
rectly, initially valued zero). Since a certain delegation tree
is established, the total voting power (the total ballots the
voter and all his delegators hold) of each voter is deter-
mined. When a voter votes, his actual voting power is his
total voting power minus his lost voting power. Meanwhile,
some other voters’ lost voting power should be updated after
he votes. As long as each voter’s lost voting power can be
updated within O(log n), the liquid voting problem can be
solved.

Take Fig. 1 for example, when voter 5 votes, his nearest
voted parent is voter 1, so all nodes on the path (5) → 4 →
3 → 2 → (1) are to be updated. When voter 3 votes, nodes
on the path (3)→ 2→ (1) are to be updated.

So the main two goals of our algorithm are: first, find
the voter’s nearest voted parent; second, update lost voting
powers of nodes on the path from the voter to the voter’s
nearest voted parent. However, to meet both these two goals
we need to traverse the graph in traditional method, whose
time complexity is O(n).

4. Algorithm

The basic idea of the Flash is to trade off-chain process-
ing time for on-chain processing time. Specifically, we 1)
snapshot the delegation graph and construct a Merkle tree in
which a leaf represents each voter’s information, like voting
power and delegation; and 2) process the voting message
on-chain by leveraging both Merkle proof and interval tree,
which further achieves O(log n) time complexity. Although
we focus on the time complexity, and the storage space of
blockchain can be regarded as infinity, the space complexity
of the Flash is only O(n), because the two main data struc-
tures are Merkle tree and interval tree, of which the space
complexity are both O(n).

4.1 Overview

We describe the main algorithm in the steps from (A) to (F).
As mentioned in Sect. 3, the delegations are constructed in
the spare period.

Step A) At the beginning of the prepare period, all on-
chain information are snapshotted by the current height of
the blockchain, mainly, each voter’s delegation and weight.
Then, each voter involved in the voting locally constructs the
delegation tree T and gets all voters’ voting powers accord-
ing to the following two rules. First, for each voter, get his

Table 2 Variables used in the algorithm.

Notation Description

T The delegation tree, which is generated and
stored off-chain.

n Number of nodes, as well as the length of the
preorder sequence (called preorder index for
short).

n0 Length of the bracket sequence.
node A type, representing the voters.
node.weight Node’s voting power, which is given from the

snapshot.
node.index Index of the node in the pre-order sequence.
node.address The Ethereum address of the node, which is an

inherent parameter.
b[] Mapping from a node’s preorder index to the

node.
nearestparent[] Mapping from a node’s preorder index to its

nearest voted parent’s preorder index.
s[] The score of the bracket sequence (shown in the

following).
node.endpoint The maximum preorder index among the

node’s children (include multi-level).
node.left The first index where the node appears in the

bracket sequence.
node.right The second index where the node appears in the

bracket sequence.
node.power Node’s total voting power (including its chil-

dren’s).
node.candidate The candidate that the voter votes.
C[] Recording the ballots of candidates.
lazy 1[] Lazy-tag of the interval tree with respect to the

preorder sequence, which also reflects the index
of the nearest voted parent.

lazy 2[] Lazy-tag of the interval tree with respect to
the bracket sequence, which also reflects the
“score” of the sequence.

last delegating operation from the snapshot and add the cor-
responding direct edge to the delegation graph. For all edges
that are on a cycle, delete the latest edge. Then repeat the
deletion until the delegation graph has no cycle†. After that,
add an edge from each zero-outdegree node to the virtual
node, resulting in T. Since the rule is deterministic, all vot-
ers obtain a same delegation tree. Second, all voters’ voting
powers can be obtained from the snapshot (node.weight
in Table 2). There are many off-chain methods in practice to
distribute voting powers, which is not critical of our paper
as long as all voters can reach an agreement.

Step B) After the construction of T, we use T.root to
denote the root of T (the virtual node). Then, each voter
locally call Preorder(T.root) (the procedure is shown in
Algorithm 1) to obtain initialization data.

Step C) Each voter constructs a Merkle tree ac-
cording to the initialization data. The information of
each leaf node is the hash of the node’s initialization

†All transactions in Ethereum are attached with a timestamp.
The time order on the blockchain is defined as that if a transaction’s
block height is larger than another trasaction, the former is later
than the latter. If two transactions have the same block height, the
transaction with the larger timestamp is later. The rule of Etherum
guarantees that the timestamp can not be forged too far from the
actual time otherwise the transaction is infeasible.
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Algorithm 1: Procedure of Preorder(root)
1: n← n + 1
2: n0 ← n0 + 1
3: root.left← n0

4: root.index← n
5: root.power← root.weight
6: for all node in root’s direct child do
7: Preorder(node)

8: root.power← root.power+node.power
9: end for

10: root.endpoint← n
11: n0 ← n0 + 1
12: root.right← n0

Algorithm 2: Procedure of Vote, upon receiving a
voting message

Input: node,voter, data,proof,node.candidate
Output: C[]
1: if not check(RootHash,proof,data) then
2: return
3: end if
4: b[node.index]← node
5: FAULVP(node.left,node.left,1,2n,1,0)
6: FAULVP(node.right,node.right,1,2n,1,0)
7: t ← node.power − s[node.left] + s[node.right]
8: C[node.candidate]← C[node.candidate] +t
9: FAUNVP(node.index,node.index,1,n,1,0)

10: parent← b[nearestparent[node.index]]
11: C[parent.candndate]← C[parent.candndate] −t
12: FAUNVP(node.index +1,node.endpoint,1,n,1,node.index)
13: FAULVP(parent.left,node.left,1,2n,1,t)

data (data=(node.address,node.power,node.index,
node.endpoint,node.left,node.right)). The elec-
tion organizer deploys a new smart contract (the voting con-
tract). The Merkle root is hard-coded in the voting contract
by the election organizer.

After step C, the prepare period is over and the voting
period begins. In the following steps, we describe the voting
contract which processes each direct voting message.

Step D) When a voter casts a direct voting, he
sends a voting message which contains (data, proof,
node.candidate), where data is the initialization data of
himself and proof is the Merkle path from the leaf node
(hash(data)) to the Merkle root in the Merkle tree (con-
structed in step c).

Step E) Upon receiving a voting message, the voting
contract first obtains the sender’s Ethereum address to check
if it matches with node.address in data. If it matches, the
contract recovers a root according to data and proof. Then
it checks if the result matches to the Merkle root stored in
the contract. If matches, the contract begins to process the
voting message, otherwise returns an “error” response.

Step F) Algorithm 2 shows the main procedure for pro-
cessing a voting message, which consists of the following
instructions:

• Compute the voter’s lost voting power (line 5 and
line 6).

Algorithm 3: Procedure of FAUNVP(L,R, l, r, k, v),
which is to find and update the node’s nearest voted
parent

Input: [L,R], which is the interval to be updated
Input: [l, r], which is the current interval of the interval tree node
Input: k, which is the index of interval tree node
Input: v, which is the value for updating.
1: if L = l and R = r then
2: if v >lazy 1[k] then
3: lazy 1[k]← v
4: end if
5: if L = R then
6: nearestparent[L]← lazy 1[k] // Recursion ends
7: end if
8: else
9: m← �(l + r)/2�

10: if lazy 1[2k] <lazy 1[k] then
11: lazy 1[2k]← lazy 1[k]
12: end if
13: if lazy 1[2k + 1] <lazy 1[k] then
14: lazy 1[2k + 1]← lazy 1[k] // pass down the lazy-tag
15: end if
16: if L ≤ m then
17: FAUNVP(L,min{m,R}, l,m, 2k, v)
18: end if
19: if R > m then
20: FAUNVP(max{m + 1, L},R,m + 1, r, 2k + 1, v)
21: end if
22: end if

• Define t to be the voter’s total voting power minus lost
voting power, which represents his actual votes. The
ballots of the candidate he votes increase by t.

• Find the voter’s nearest voted parent (line 9), whose
candidate’s ballots decrease by t.

• Update other voters’ nearest voted parent (only the
voter’s children are affected) (line 12).

• Update the lost voting powers of the nodes on the path
from the voter to his nearest voted parent (line 13).

So far, the overall procedure of the Flash is produced.
The variables used in the algorithm are described in Table 2.
All variables are global and initially valued 0 unless other-
wise stated. In the next two subsections we introduce the
two functions FAUNVP(), FAULVP().

4.2 Find the Nearest Voted Parent

The function FAUNVP(), of which the procedure is shown in
Algorithm 3, achieves the goal of finding the voter’s near-
est voted parent, by implementing the updating operation of
the interval tree with respect to the preorder sequence. The
lazy-tag (lazy 1[]) of the interval tree’s leaf node records
the preorder index of corresponding voter’s nearest voted
parent. The following observation is sufficient for the cor-
rectness:

Observation 1. A node’s preorder index is always smaller
than its children’s. Preoroder indexes of a node’s children
are successive to the node’s preorder index. When a voter
votes, only his children’s nearest voted parents need to be
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Fig. 2 Example of updating lost voting powers in a path.

updated, which should be at least the voter’s preorder index.

For a node (voter), indexes from node.index+1 to
node.endpoint represents the preorder indexes of its chil-
dren, whose nearest voted parent need to be updated. Since
they form a successive interval, the interval tree is applica-
ble.

4.3 Update the Lost Voting Power

When a voter votes, the lost voting powers of all the nodes
on the path from the voter to its nearest voted parented
should be updated. Take Fig. 2 for example, if voter 8
votes after voter 1 votes, the lost voting powers of the
nodes on the path 7 → 3 → 2 → 1 should be up-
dated. However it is not a successive interval in the pre-
order sequence. We use the bracket sequence to handle
this problem. A bracket sequence is to record each node
twice in the pre-order traversal, one as entering and the
other as exiting, called left bracket and right bracket re-
spectively. For the tree in Fig. 2, the bracket sequence
is 1, 2, 3, 4, 5, 6, 6, 5, 4, 7, 8, 8, 7, 3, 2, 9, 10, 10, 11, 11, 12, 12,
9, 1. For a direct path from u to v in a tree, define the
path’s bracket interval to be indexed from v.leftbracket
to u.leftbreacket. The following observation shows the
property of the bracket interval:

Observation 2. Given a direct path, for any node not lying
on the path, it either occurs twice or does not occur in the
path’s bracket interval. For any node lying on the path, it
occurs exactly once in the path’s bracket interval. Moreover,
only the node’s first appearance lies in the interval.

Take Fig. 2 as an example, suppose the path from 8
to 1 is to be updated, its bracket interval is 1, 2, 3, 4, 5, 6,
6, 5, 4, 7, 8 (index 1-11). Nodes 4, 5, 6, 11, 12 do not lie on
the path, so they occur twice or do not occur in the inter-
val. Nodes 1, 2, 3, 7, 8 lie in the path, so they occur once in
the interval. We define an array s[] for recording the so-
called “score” of the bracket sequence. Given a path where
the nodes’ lost voting powers need to add some value, we
add that value to the scores of the path’s bracket interval.
Then for a node’s lost voting power, we can compute it by
s[node.left]−s[node.right] The reason is that, when
we increase the score, only the nodes on the path increase
their lost voting powers (only s[node.left] increases).
For a node outside the path, the values of s[node.left]

Algorithm 4: Procedure of FAULVP(L,R, l, r, k, v),
which is to find and update the note’s lost voting
power

Input: [L,R], which is the interval to be updated
Input: [l, r], which is the current interval of the interval tree node
Input: k, which is the index of interval tree node
Input: v, which is the value for updating.
1: if L = l and R = r then
2: lazy 2[k]← lazy 2[k] +v
3: if L = R then
4: s[L]←lazy 2[k]
5: end if
6: else
7: m← (l + r)/2
8: lazy 2[2k]← lazy 2[2k] + lazy 2[k]
9: lazy 2[2k + 1]← lazy 2[2k + 1] + lazy 2[k]

10: lazy 2[k]← 0 // pass down the lazy-tag
11: if L ≤ m then
12: FAULVP(L,min{m,R}, l,m, 2k, v)
13: end if
14: if R > m then
15: FAULVP(max{m + 1, L},R,m + 1, r, 2k + 1, v)
16: end if
17: end if

and s[node.right] either do not change or both increase
by the same value, thus the lost voting power does not
change. We construct another interval tree with respect to
the bracket sequence and maintain the score, recorded in the
variable lazy 2[] of leaf nodes. The function FAULVP()
gives the implementation, of which the procedure is shown
in Algorithm 4.

5. Theoretical Analysis

In this section we prove some properties of the Flash. We
first analyze our protocol for constructing the delegation
graph.

Lemma 1. If a voter’s delegating operation does not gen-
erate a cycle in the delegation graph (locally checked), the
corresponding edge will never be deleted.

Proof. Assume by contradiction that the edge is deleted. By
definition, there must be a cycle such that the edge is the lat-
est, which means that the cycle is generated by the appear-
ance of the edge, contradiction. �

Lemma 1 means that, if the voter follows the protocol,
his delegation is garanteed to be retained, which is benefit
for him. Otherwise if his delegation generates a cycle, it
may be deleted. (It’s also possible to be retained, if other
voters further change their delegation so as to remove the
cycle.)

Lemma 2. If a voter deviates from our mechanism, by
building a delegating edge that generates a cycle, this edge
will not cause other voter’s delegating edge to be refused if
they follows the protocol.

Proof. We call the edge built by the dishonest voter A. We
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prove that, if an edge B is refused with the existence of A, it
will also be refused without the existence of A.

Since B is refused, it lies on a cycle which contains A.
Since A also lies on another cycle, if A is deleted, B still lies
on a cycle, and should be refused by the protocol. �

Lemma 2 shows that, even if a voter deviates from the
protocol, other voters are not influenced. There are also
sublinear-time algorithms that can judge whether a cycle
is generated for a incoming delegating edge, which can be
used in smart contract. However it is more complex and re-
quires more gas fee for each delegating message. So still
our protocol is recommended in practice.

Theorem 1. For each voting message in liquid voting prob-
lem, the voting status can be updated and displayed within
O(log n) time complexity. Moreover, our algorithm can be
deployed on the Ethereum mainnet and overcome the gas
limitation, for the number of voters more than one million.

Theorem 1 is our main theorem, which is obvious ac-
cording to the properties of the tools we used. Here we il-
lustrate some issues. 1) Processing a voter’s voting message
does not rely on the initialization data of other voters that
has not voted, since our algorithm only requires the data
from the nearest voted parent. 2) The “mapping” structure
in Solidity (the coding language of Ethereum smart contract)
satisfies that, the storages are allocated only if they are as-
signed values. For example, the storage lazy[3] can be al-
located without the allocation of lazy[1] and lazy[2]. While
lazy[1] and lazy[2] still can be visit with a default value 0,
which is just the requirement of our algorithm. 3) The time
complexity of updating operation in interval tree is O(log n),
because there are O(log n) levels in a interval tree and at max
we will have to process 4 nodes in a level. For the part of
Ethereum, we leave the proof in the experiment section.

6. Experiment

We compare our algorithm with traversal algorithm by
recording the maximum consumed gas fee. We conduct the
evaluation on Ganache, which is a personal blockchain for
Ethereum development that can be used to deploy contracts,
and run tests. Our implementation can be found here†. We
use the DFS algorithm to implement the traversal algorithm.
The nodes in the delegation graph represents the users, the
length of the delegation chain represents the num of users
when the delegation graph is chain-like. The higher time
complexity of the voting algorithm makes higher gas fee,
while the time complexity of the voting is the highest when
the delegation graph is chain-like. Unlike other networking
researching that have real data set [20], there is no real data
set for liquid voting to the best of our knowledge. Therefore,
Our comparison is from two aspects, 1) gas fee cost by vot-
ing with the DFS and the Flash, and 2) voting by delegation
chain root, and by delegation chain leaf, as shown in Fig. 3.

†https://github.com/freeof123/liquid-voting/tree/master/
ether-eval/contracts

Fig. 3 Voting by delegation chain (a) root; (b) leaf.

Notice that the gas limit is about 6,700,000 according
to Ganache. Our evaluation shows that: 1) the traversal al-
gorithm performs better when the delegation chain is short,
like smaller than 100; 2) our algorithm significantly outper-
forms the traversal algorithm when the delegation chain is
long enough; 3) our algorithm can scale up with very lim-
ited gas increasing, while the traversal algorithm reaches the
gas limit when the delegation chain grows up to 1,000.

When voting by a chain leaf by the traversal method,
the leaf node can be found at the beginning. On the other
hand, the root node will be found by traversing through all
the nodes while voting by the chain root. Consequently,
the gas cost of voting by delegation chain root (Fig. 3 (a)) is
much higher than by delegation chain leaf (Fig. 3 (b)). Even
so, the gas fees of both cases grow fast and reach the gas
limit soon. The height of the chain is the highest among that
of the normal graphs with the same number of nodes, so the
cost will be highest when the delegation graph is chain-like.
The result implies that the consumed gas fee remains at a
very low level when the number of voters increases.

7. Conclusion

In this paper we study the liquid voting problem, where each
voter can either directly vote to a candidate or delegate his
voting power to a proxy. In order to make the liquid voting
on blockchain practical without any restriction to voters, we
propose a fast algorithm to guarantee that the gas fee of the
voting transaction on blockchain through Ethereum smart
contract does not exceed the gas limit. We outline the basic
idea and overview of our algorithm and then describe the
two key procedures. Finally, we evaluate our algorithm by
comparing it with traversal algorithm. Experimental results
show that our algorithm can be deployed on Ethereum and
eliminate the restriction, which means it makes liquid voting
on blockchain practical even for massive voters.
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