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SUMMARY As an important type of science and technology service
resource, energy consumption data play a vital role in the process of value
chain integration between home appliance manufacturers and the state grid.
Accurate electricity consumption prediction is essential for demand re-
sponse programs in smart grid planning. The vast majority of existing
prediction algorithms only exploit data belonging to a single domain, i.e.,
historical electricity load data. However, dependencies and correlations
may exist among different domains, such as the regional weather condi-
tion and local residential/industrial energy consumption profiles. To take
advantage of cross-domain resources, a hybrid energy consumption predic-
tion framework is presented in this paper. This framework combines the
long short-term memory model with an encoder-decoder unit (ED-LSTM)
to perform sequence-to-sequence forecasting. Extensive experiments are
conducted with several of the most commonly used algorithms over inte-
grated cross-domain datasets. The results indicate that the proposed multi-
step forecasting framework outperforms most of the existing approaches.
key words: cross-domain feature fusion, long short-term memory, encoder-
decoder, multistep electricity load forecast

1. Introduction

Electricity is a necessary commodity in contemporary so-
ciety, and it cannot be stored for future supply. Existing
studies show that every increase of 5% in electricity peak
demand requires an extra 20% energy output in the absence
of an effective electricity load forecasting scheme [1]. More-
over, the increased demand for electricity at certain hours of
the day may result in several problems, such as short cir-
cuits and transformer failure. To address these issues, many
researchers have developed excellent methods and achieved
desirable results [2]–[6].

Traditional electricity demand forecasting models are
mainly based on data-driven methods and can usually be
categorized into (i) statistical learning (SL) models, (ii) ma-
chine learning (ML) models, and (iii) deep learning (DL)
models. Statistical learning models are mathematical mod-
els derived from measurement data and are distinguished by
model simplicity and high performance. Examples include
the exponential smoothing method [7], the autoregressive
integrated moving average (ARIMA) method [8], the sea-
sonal autoregressive integrated moving average (SARIMA)
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method [9], etc. However, these models have strict require-
ments regarding the stability of time series data and involve
only univariate data. Furthermore, the rapid deployment of
smart meters and building automation systems (BASs) has
created opportunities for load forecasting to collect data.

By contrast, ML algorithms do not require strong as-
sumptions about the mapping function and readily learn lin-
ear and nonlinear relationships; in other words, they ele-
gantly approximate arbitrary nonlinear functions. Y. Chen
et al. [5] proposed a new SVR-based forecasting method,
in which determining the SVR model offers a high degree
of prediction accuracy and stability in short-term load fore-
casting. H. Jiang [6] predicted electricity consumption by
using support vector regression (SVR) machines. H. Chen
et al. [10] proposed an ANN-based short-term load forecast-
ing technique that utilizes the electricity price as one of the
main input variables. Compared with SL algorithms, ML
models demonstrate remarkable improvements in nonlinear
handling ability. However, these ML models feature exceed-
ingly complex engineering modeling and require a certain
degree of professional domain knowledge.

Deep learning methods have grown in popularity over
the past few years. Many researchers have begun to ap-
ply these techniques in the field of electricity load predic-
tion. Deep neural networks (DNNs) are particularly ad-
vantageous, as they can automatically learn using a gen-
eral learning procedure with little prior knowledge and thus
do not require domain expertise. Mostafa Askari [11] pro-
posed a load forecasting method by a new composite method
based on a multilayer perceptron (MLP) neural network al-
gorithm and obtained excellent results in middle load de-
mand forecasting. L. Li et al. [12] presented a deep con-
volutional neural network (CNN) model that transforms the
numerical prediction problem into an image processing task
for electric load forecasting and performs well in terms of
accuracy. However, MLP and CNN models only take the
current input into account and do not consider a critical
factor of the electric data, namely, their time dependency.
Consequently, recurrent neural networks (RNNs) have been
designed to capture the time dependencies of the previ-
ously received input from the current input in the archi-
tecture [13]. Rahman et al. [14] applied an LSTM model
to make predictions over a time horizon of a few months.
Sumit Kumar et al. [15] explored the performance of LSTM
and a gated-recurrent unit (GRU) in the field of load fore-
casting. Kim et al. [16] analyzed the effectiveness of a
CNN coupled to an LSTM model to forecast the electricity
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consumption of a residence. Furthermore, bidirec-
tional LSTM (Bi-LSTM) [17] and bidirectional GRU (Bi-
GRU) [18] have also been studied and achieved higher ac-
curacy than traditional deep learning methods.

While RNNs are capable of extracting the time depen-
dencies from historical data, for the multistep prediction
problem, the RNN model and its variant’s prediction per-
formance have difficulty reaching the expected target since
the sequential temporal dependency of the output label is
not considered. Fortunately, a sequence-to-sequence (S2S)
RNN model has shown promise in the field of electricity
load multistep prediction. It has shown great success in the
field of language translation by combining an encoder and a
decoder RNN [19].

According to most research, the time series prediction
model suffers from shifts introduced by complex factors.
However, the majority of existing models aim at the elec-
tricity load forecasting of single load data or combine the
features associated with load data, such as the voltage and
the current. These models might disregard factors associ-
ated with seasonal features [20], temporal features [21] and
meteorological features [22] in the time series prediction.

This paper presents a short-term multistep prediction
framework based on the ED and LSTM models for electric-
ity consumption prediction, named ED-LSTM, that collec-
tively considers cross-domain feature fusion strategies and
Deseasonalization (DS) strategies. Cross-domain features
such as meteorological conditions, electricity data informa-
tion and holiday information are combined to calculate the
electric load demand through various prediction modules,
which aim at preventing the prediction model from becom-
ing affected by complex factor shifts. The DS method is
designed to separate the seasonal/trend/residual components
of the time series by the seasonal-trend decomposition using
LOESS (STL) approach. Then, the residual value is input to
the model to predict the load demand. The proposed frame-
work includes three major phases: 1) In the preprocessing
phase, typical preprocessing strategies (transformation, DS,
normalization, etc.) are applied to the raw data. 2) In the
feature fusion phase, features from different domains are
extracted and integrated from the input datasets. 3) In the
modeling phase, a hybrid LSTM network combined with an
encoder-decoder unit is selected to solve the multistep elec-
tricity load forecasting problem. Alternative models (MLP,
SimpleRNN, GRU, etc.) are also applied to the datasets to
evaluate the performance of the proposed method.

The contributions of the paper can be summarized as
follows:

A: The self-feature of electricity data exists complex
information easily causes the forecasting losses shifts and
requires further removing. Seasonal and Trend decomposi-
tion using the Loess method (STL) is introduced to tackle
the problem. This method extends the study for the data
internal feature.

B: Due to the different combinations of domain infor-
mation derive different performance in same networks, it
confirmed that dependencies and correlations exist among

different domains provide important reference information
for the accurate prediction of power demand.

C: Compared with four baseline models, the proposed
ED-LSTM has an advantage in structure for time series pre-
diction problems. The ED-LSTM model not only inherits
the ability of the LSTM model capable of extracting the
time dependencies from historical data, but also extracting
the output label temporal dependency used encoder-decoder
structure. The findings extend and supply the study in short-
term multi-step electricity consumption forecasting.

The rest of this paper is organized as follows: Sect. 2
reviews the literature relating to electricity cross-domain
features analysis and the LSTM model. Section 3 describes
the proposed short-term multistep electricity consumption
forecasting framework. Section 4 introduces the electric-
ity dataset and test the accuracy of the proposed ED-LSTM
model. Finally, the last section concludes the exposition.

2. Related Work

2.1 Cross-Domain Feature Analysis

Dependencies and correlations exist among different do-
mains provide important reference information for the ac-
curate prediction of power demand, especially those local
features closely related to power activities. The weather fea-
tures are those which have a significant impact on the elec-
tricity load demand. Meteorological information is univer-
sally used to build the model with the models capable of de-
ducing future electricity load. In many researches, the tem-
perature is most used and considered as effective contribute
to the electric load demand [23], [24]. Mayur Barman
et al. [25] further studied the temperature, dew point,
and wind speed is considered for electricity consumption,
founding that temperature and wind speed in a whole have a
significant influential to electricity demand. However, only
taking into account of meteorological feature is insufficient,
the human activity information, namely temporal features, is
another factor that affects electricity demand. This is due to
the strong temporal regularities of urban life, for example,
the workdays would increase the electricity consumption,
weekend is inverse. The time series prediction problem of
traffic flow is considered the holiday/weekend information
as the model input, indicating that consideration of temporal
features can decrease the prediction losses [26]. RunHai Jia
et al. [27] used the k-means clustering to explore the patterns
of manufacturing industrial electricity consume, validating
the differs significantly in workdays and holiday/weekend.

Besides meteorological information and temporal in-
formation, the self-feature of electricity data exists in com-
plex information, such as trends and seasonal components.
Different from the above two domain’s data, these compo-
nents easily cause the forecasting losses shifts and require
further removing. Difference method [28] and exponential
smoothing [29] was used to remove the impact of seasonal
factors. However, these two methods exist limitations that
are difficult to cope with long sequences. The Seasonal and
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Fig. 1 The LSTM model structure

Trend decomposition using Loess (STL) was proposed to
solve the problem in this paper.

In our research, we integrally consider electricity his-
tory electricity load information, weather information and
temporal information. Further, the data seasonal decompose
method is introduced to tackle the error shifts caused by sea-
sonal factor of self-feature in long sequence.

2.2 Long Short-Term Memory Neural Network

Long short-term memory networks (LSTMs) are a variant
of RNNs that can effectively learn long-term dependencies
from data. Compared with RNNs, LSTMs add an additional
cell state unit to transfer the long-term dependency informa-
tion. The LSTM unit is shown in Fig. 1.

The cell state ct is a vital part of the LSTM structure;
it involves the updating, maintenance and destruction of in-
formation in the network. The LSTM units are composed
of three gate units (forget gate ft, input gate it, and output
gate ot) to protect and control the cell state. The gates are
ways to allow information to pass optionally. The principles
of the three gate units can be described with Eqs. (1)–(3):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c̃t

ot

it
ft

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tanh
σ
σ
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
W

[
xt

ht−1

])
+ b, (1)

ct = ft � ct−1 + it � c̃t, (2)

ht = ot � tanh(ct), (3)

where ct represent the current cell state, c̃t represent the new
updated cell status values. The notations ft, it and ot is the
sigmoid activation function. ct represents the internal state
of the network, which is specialized for linear circular infor-
mation transmission and outputs information to the external
state ht of the hidden layer. xt ∈ Re represents the input at
the current moment, w ∈ R4d×(d+e) and b ∈ R4d are network
parameters.

3. Short-Term Multistep Forecasting Framework

The proposed electricity load forecasting framework con-
sists of 3 modules, data preprocessing, data integration, and

Fig. 2 Data integration module system

model building, as shown in Fig. 3. The de-seasonalization
algorithm, cross-domain fusion strategy and temporal fea-
ture extraction are designed to obtain highly accurate pre-
diction results.

3.1 Data Pre-Processing Module

The main function of the data preparation module is to per-
form the extract, transform and load (ETL) process for three
sources of data. The purpose of the ETL process is to inte-
grate scattered, disordered, and inconsistent data from dif-
ferent domains to provide an analytical basis for subsequent
electricity forecasting.

Since machine learning models only take digital data
as input, a label encoder is used to encode the classified
data. As the dimensionalities of the features may be differ-
ent, to avoid the negative effects of weight updating during
the training process, normalization is required to obtain di-
mensionless expressions. Therefore, the indexes of different
units can be compared and weighed.

As a branch of time series forecasting problem, the his-
tory load data usually contains 3 components: trend T , sea-
sonal S, and residual R. Seasonality and Trend components
lead to high volatility of serial data, which disturbs fore-
casting accuracy [30]. Therefore, the seasonal decompose
method is used to extract residual component R as the input
data of model, as shown in Eqs. (4)–(6):

Yt = Tt + St + Rt, , (4)

Tt =

(
Xt− f−1/2) + Xt− f−1/2+1

+ . . . + Xt+ f−1/2

)
f −1, (5)

Tt =

(
0.5 ∗ Xt− f /2 + Xt− f /2+1 + . . .
+Xt+ f /2−1 + 0.5 ∗ Xt+ f /2

)
f −1, (6)

Ŝt = Yt − Tt, (7)

St =

n∑
i=0

f −1 Ŝt+ f ∗i, (8)
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Fig. 3 The proposed electricity load forecasting system

Rt = Yt − St − Tt, (9)

where f is the frequency and l are the length of time se-
ries. When t is even, using the Eq. (5) calculate the trend Tt,
otherwise, use Eq. (6) calculate the Tt.

3.2 Data Feature Integration Module

Although the self-features of history electricity load data
provide meaningful information for prediction models, the
impact of temporal information, namely daily periodicity
and holiday/weekend, are to be not overlooked. In addi-
tion, weather information would cause error shifts that affect
the patterns of load forecasting. Therefore, it may increase
losses if only the history electricity information is taken into
consideration without referring other domain information.
To solve this problem, the proposed forecasting framework
introduces the feature integration module that, including the
cross-domain data fusion method and refining the time se-
ries problem to a supervised learning problem.

3.2.1 Cross-domain Data Fusion Method

Traditional electricity consumption forecasting usually fo-
cuses on a single domain. However, with the continuous
development of big data technologies, diversity and hetero-
geneity of datasets are shown in electricity forecasting sub-
jects from different sources in a different domain. These
datasets are likely to be composed of more fine-grained pat-
terns, such as temporal attribute, temp feature and dew-point
feature, etc. How to explore the relevance of the different
disparate domains is predominant, essentially distinguish-
ing cross-domain forecasting tasks from single data source
forecasting tasks. Therefore, advanced methods that can in-
tegrate data from multiple domains into a machine learning
model are needed. So, we proposed a cross-domain data fu-
sion strategy that merges incorporate multiple temporal fea-
tures and weather features to predict electricity consump-
tion, as showed in Fig. 2 (a).

In Fig. 2, T = {d0, d1, . . . , dn}, E = {e0, e1, . . . , en},
W = {w0,w1, . . . ,wn} represent temporal feature vector data,
weather feature vector data and electricity load data, respec-
tively. The first is to merge these data T , E, W into S, and
the next is to map the multiple domain data to a data frame.

3.2.2 The Time Series Problem into the Supervised Learn-
ing Problem

A supervised learning problem consists of the input feature
set X and the output label set Y that an algorithm can learn
how to predict the output sequence from the input sequence.
However, the original electricity dataset is a kind of contin-
uous sequence sorted by time index, it cannot be directly
provided to the machine learning model for training, so it
has to be redefined as a supervised learning problem. We
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design Algorithm 1 to transform a time series problem into
a supervised learning problem. The main idea of algorithm 1
is utilize the sliding window algorithm to divide the original
time series data D into feature set X and label set Y by spec-
ifying the step size s and the window size w, as shown in
Fig. 2 (b).

3.3 Encoder-Decoder Long Short-Term Memory (ED-
LSTM) Model

The framework of the proposed ED-LSTM is shown in
Fig. 4. The LSTM unit is employed as the encoder and de-
coder scheme to improve the learning of the continuity in
the input and output sequences. Given an input sequence
x1:S, another output sequence y1:T is generated by the ED-
LSTM model. In the encoder phase, the input sequence x1:S

is then updated by Eqs. (1)–(3) in the LSTM unit to generate
the state unit containing the input sequence summary. Then,
a LSTM network fenc is used to encode the input sequence
x1:S to obtain a fixed dimension vector C, which is the hid-
den state at the last unit of the LSTM. In the decoder phase,
as the target sequence y1:T is generated, another LSTM neu-
ral network is used for decoding, assuming that the prefix
sequence y1:T is generated at the t step. The decoder re-
ceives the vector C as the initial cell state for the sequence.
The decoding step is initiated with a dummy input s0. Then,
the decoder recursively decodes the vector to generate the
output sequence. It then feeds the output values obtained in
the previous update as the current update’s input values. The
number of reused LSTM units in the encoding and decoding
phases depends on the input and output sequence lengths.
Finally, the output sequence {y1, y2, y3}, whose length is ar-
bitrary, is produced recursively using the ED-LSTM model,
as shown in Eqs. (10)–(15).

he
t = fenc(he

t−1, ext−1 , θenc), ∀t ∈ 1 : S, (10)

Fig. 4 The ED-LSTM model structure

u = he
S, (11)

hd
0 = Ct, (12)

hd
t = fdec hd

t−1, yt−1, θdec, (13)

ot = g hd
t , θo, (14)

yt = fdec yt−1, st, h
d
t , (15)

4. Results and Discussion

4.1 Dataset Description

In this paper, we use a multiple feature aggregate dataset
to validate the performance of the proposed electricity
load forecasting architecture, including electricity load data,
weekend/holiday data and meteorological data. The first
dataset is the total electric load consumption dataset col-
lected from different manufacturers. The second is the mete-
orological dataset collected from the climatological station
located in the manufacturers’ home regions. The last is the
temporal feature data, such as weekend and holiday data.
The raw time resolution of the electricity load dataset is 5
minutes. To analyze the ability of the dataset to forecast
the hourly electricity demand, the dataset is resampled. De-
tailed information on the datasets is described in Table 1.
The domain data features correlated with electricity con-
sumption are depicted in Table 2. The training set consists
of the first eight years of data, and the ninth year’s data are
used as the testing set. For the dataset, we select 80% of the
data as the training data and 20% of the data as the testing
data.

The hardware and software environment of the
experiment is provided as follows, including the configu-
ration of relevant parameters. The Keras open-source un-
derlying framework based on TensorFlow 2.4 is used to es-
tablish the deep learning model, and Scikit-learn is used to

Table 1 Dataset description

Table 2 Related domain feature description
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Fig. 5 The prediction results of MLPs/SVR/LSTM between original electricity dataset and de-
seasonalization electricity dataset

build ARIMA/SARIMA models. All experiments are con-
ducted on an ubuntu server with an Intel(R) Xeon(R) Silver
4210 CPU @ 2.20 GHz configuration, 4 GPUs, each with a
12 GB GeForce RTX 2080 Ti, and 64 GB memory.

4.2 Evaluation Criteria

The prediction results are compared by three evaluation met-
rics: the root mean square error (RMSE) [31], coefficient
of determination (R2), and mean absolute percentage error
(MAPE). These three indexes reflect that the overall predic-
tion error intuitively varies according the target mean [33].
The RMSE and MAPE values constantly decrease during
model training, with smaller values implying a better model
fit to the data. Conversely, the closer the value of R2 is to
1, the better the linear regression fits the data. The detailed
equations of the three metrics are formulated in Eqs. (16)–
(18)

RMSE =

√√
1
n

n∑
t=1

(ŷ − yt)2, (16)

MAPE =
100%

n

n∑
t=1

∣∣∣∣∣∣ ŷ − yt

yt

∣∣∣∣∣∣, (17)

R2 = 1 −

∑
i

ŷi − yi
2

∑
i

ȳi − yi
2
, (18)

4.3 Deseasonalization Effect Comparison

Figure 5 shows the prediction performance of the three mod-
els after deseasonalization. In general, the DS method de-
creases the prediction error rate of the model, and the SVR
model most substantially reflects the influence of seasonal
factors on electricity consumption forecasting. The results
indicate the effectiveness of the DS method in electrical load
forecasting. In each subgraph, the peak forecasting values of
the power load reflect the substantial impact of the seasonal
factors. Adjusting for these factors, the LSTM, MLP, and
SVR models all improved in predicting the peak and trough

values.
According to the experimental results, the DS approach

based on the patterns of the seasonal periods enhances the
forecasting performance of nonstationary time series with
trend and seasonal components.

4.4 Cross-Domain Feature Impact Comparison

To analyze the impact of different domain information on
electricity consumption forecasting, combinations of vari-
ous features, including load-self features (L), temporal fea-
tures (T), and weather features (W), were used. These com-
binations are fed into different kinds of RNN models with
different feature combinations. The experimental results are
visually presented in Fig. 6.

Overall, as the number of features increases, the RMSE
decreases, which indicates that the combination of differ-
ent domain attributes is conducive to improving energy load
forecasting, as shown in the six subgraphs in Fig. 6. For
subgraph (a), the load data features (L) are combined with
the W and T features, and the error rates of the W- and T-
based models are lower than those of the model created with
L alone, showing that the model utilizing cross-domain fea-
tures is superior to the single feature-based model. More-
over, the model created with feature W has a slightly lower
RMSE than the model created with feature T, demonstrating
that energy load consumption forecasting is more sensitive
to weather features than temporal features. Furthermore,
compared with the model constructed with the combinations
of L + T and L +W, the model constructed with L, T, and
W yielded the best forecasting result. The results indicate
that energy load consumption is related to holiday factors
and the weather condition.

Figure 6 shows the error rate of the LSTM model
and other baseline models. It can be observed that the
LSTM model outperforms the four baseline models with the
cross-domain feature fusion dataset. This indicates not only
the advantage of taking multiple features into consideration
over individual features but also that the LSTM model is bet-
ter at extracting complex patterns from the various domain
features than the reference models.

In general, each algorithm shows a significant dif-
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Fig. 6 The RMSE values of RNNs model using cross-domain data fusion method

Table 3 The error values of electricity forecasting models-based L + T +W

ference for different feature combinations. RNN/BI-RNN
and LSTM/BI-LSTM are more sensitive to temporal char-
acteristics than weather characteristics. For the GRU/BI-
GRU algorithm, weather features improve the prediction
result more than time series features. Table 3 shows the
predictive performance of the LSTM and baseline mod-
els. It can be seen that the LSTM/BI-LSTM model out-
performs the four baseline models. Compared with the
RNN/Bi-RNN, GRU/Bi-GRU and Bi-LSTM models, the
reductions of the LSTM model in RMSE are respectively
3.64%/1.17%, 3.78%/2.47%. and −1.07%. The RMSE of
the LSTM model is slightly inferior to that of Bi-LSTM,
ranking second. However, compared with the LSTM model,
the Bi-LSTM has a complex structure and long calculation
time. Therefore, we choose LSTM as the benchmark of the
encoder-decoder model.

The experimental results show that the error values de-
crease as the number of features increase, suggesting that
the proposed cross-domain feature fusion method has more
accurate forecasting results than the single feature forecast-
ing model in the electricity consumption prediction. Fur-
thermore, compared with the variant of RNNs model, the
LSTM model, which takes additional potential temporal in-
formation and weather information into account for elec-
tricity load demand prediction, is beneficial for improving
predictive performance.

4.5 Model Comparison Based Multi-Step Forecasting

To evaluate the effectiveness of the proposed multistep fore-
casting model, four baseline models are selected and com-
pared with the ED-LSTM model: the ARIMA/SARIMA

Fig. 7 The multi-step forecast result of ED-LSTM/ARIMA/SARIMA/
LSTM/CNN-LSTM on cross-domain electricity consumption dataset (L +
W + T)

model, the LSTM model, and the latest CNN-LSTM model.
Figure 7 presents the predictive performance of the

multistep forecasting framework for the next six steps.
Overall, the ARIMA algorithm has the highest prediction er-
ror, while the ED-LSTM and CNN-LSTM algorithms show
the lowest prediction performance, as well as similar pre-
diction performance. Over time, the prediction error of the
ED-LSTM algorithm accumulates slower than the LSTM al-
gorithm, which indicates that the prediction error can be re-
duced by considering the temporal dependence of the output
labels.

Table 4 shows the predictive error values of the pro-
posed ED-LSTM model and the baseline models. It can
be observed that the RMSE of the ED-LSTM model is su-
perior to that of the other baseline models over more than
half the steps. Compared ED-LSTM with the single-feature
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Table 4 The RMSE values of multi-step forecasting of electricity load based on cross-domain feature
fusion and DS methods

Fig. 8 Comparison of different models in execution efficiency

ARIMA/SARIMA algorithms, the prediction error of ED-
LSTM method is lower in all time steps. This validates
the advantage of implementing cross-domain feature fusion
strategies over individual load features as the model train-
ing data. This also shows that cross-domain characteristic
data can reduce the influence of uncontrollable factors on
power prediction. Compared with the multifeatured LSTM
model, the ED-LSTM model is superior for most time steps.
Furthermore, it can be seen that accounting for the temporal
dependence of the output labels can improve the prediction
performance for many-to-many prediction problems. Com-
pared with that of the CNN-LSTM model, the RMSE of
the ED-LSTM model is slightly higher in the first two-time
steps, but in the last four steps, the RMSE of ED-LSTM
is lower. It indicts that the accuracy of ED-LSTM is bet-
ter than the CNN-LSTM in long forecasting horizons. This
conclusion again illustrates the importance of considering
cross-domain feature data and the temporal dependence of
the output sequence tags.

Figure 8 depicts the computational efficiency of the
proposed model and baseline models in terms of running
time. It can be seen that the ARIMA/SARIMA model has
the shortest running time among all models. This shows that
the statistical model is simple in structure and fast in calcula-
tion speed. The CNN-LSTM model requires the longer run-
ning time than ED-LSTM model, indicating that the com-
bination of the CNN model and LSTM model increases
the complexity and depth of the training data calculations.

The ED-LSTM model has no obvious advantages over the
SARIMA model in terms of operation efficiency, but the
running time is within an acceptable range compared with
the CNN-LSTM model and LSTM model. This shows that
the ED-LSTM model strikes a balance between prediction
performance and operation efficiency.

5. Conclusion

In this paper, a sequence-to-sequence multistep prediction
framework is proposed. This framework combines encoder-
decoder and LSTM models and uses seasonal adjustment
strategies and cross-domain feature aggregation strategies
to improve prediction performance. Relying on the seasonal
adjustment strategy, the residual of the time series is decom-
posed to make the prediction, which improves the prediction
ability of the model at the peak value. Furthermore, cross-
domain feature fusion (T +W + L) is used to generate train-
ing samples, and the prediction performance of the result-
ing is greater than that of the single-feature models, indicat-
ing that the multifeature fusion method has certain advan-
tages. Moreover, the ED-LSTM model is based on the RNN
model, which is used to extract the time-dependent charac-
teristics of the input data, increasing the ability to capture
the time-dependent characteristics from the output tags and
further improving the prediction performance.

In terms of the prediction horizons, although the
prediction accuracy of the proposed multistep prediction
scheme decreases as the number of prediction steps in-
creases, the rate of decline rate is obviously lower than that
of the ARIMA/SARIMA, and LSTM models and slightly
lower than that of the CNN-LSTM model. In terms of
the predicted performance, the ED-LSTM model is not the
most suitable but is obviously better than the CNN-LSTM
model. This conclusion shows that in the field of short-
term multistep forecasting, the proposed load forecasting
framework not only captures the temporally dependent char-
acteristics between the input and output data but also avoids
the influence of complex factors due to active seasonal and
artificial features. Compared with the LSTM model, the
ARIMA/SARIMA, and CNN-LSTM models have certain
advantages. These findings extend and complement the re-
search on the influencing factors and horizons of power load
forecasting. In future work, we aim to include more cross-
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domain resources, e.g., to include household power con-
sumption, so that the working state of an individual house-
hold or single piece of electrical equipment can be accu-
rately predicted.
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