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SUMMARY Resource sharing is to ensure required resources available
for their demanders. However, due to the lack of proper sharing model,
the current sharing rate of the scientific and technological resources is low,
impeding technological innovation and value chain development. Here we
propose a novel method to share scientific and technological resources by
storing resources as nodes and correlations as links to form a complex net-
work. We present a few-shot relational learning model to solve the cold-
start and long-tail problems that are induced by newly added resources.
Experimentally, using NELL-One and Wiki-One datasets, our one-shot re-
sults outperform the baseline framework - metaR by 40.2% and 4.1% on
MRR in Pre-Train setting. We also show two practical applications, a re-
source graph and a resource map, to demonstrate how the complex network
helps resource sharing.
key words: resource sharing, scientific and technological resource, re-
source graph, few-shot relational learning

1. Introduction

Scientific and technological resources are dispensable for
both the academic community and industries. However,
there lacks of a proper model for resource sharing, resource
reuse, and resource integration [1].

The purposes of resource sharing are to improve pro-
duction, to produce higher quality products, to ensure prod-
uct safety and transparency, and to reduce the waste of
resources [1]. Sharing can improve cluster utilization and
avoid data replication and storage waste. Product Lifecycle
Management (PLM) [2] is an efficient method for informa-
tion management throughout the product lifecycle, as it can
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tackle heterogeneous resources and track the evolution of
these resources. However, resource heterogeneity and en-
terprise personalization make PLM hard to share resources
among different enterprises [2]. Besides, newly arising re-
sources increase at an explosive rate, and their manual an-
notations cost a lot. Therefore, there is a strong need for
a suitable model that can automatically aggregate resources
and intelligently share resources based on a handful of la-
beled materials. The model should also provide resource
query and resource sharing to serve the economy. In recent
years, knowledge graph (KG) becomes a promising solu-
tion for knowledge ordering, as it can serve as a compu-
tational model of reality [3]. However, the current litera-
ture on knowledge graph mainly focuses on mining seman-
tic knowledge [19] rather than extracting the correlations
among scientific and technological resources. Hence, in this
sense, the extant knowledge-graph-based approaches might
not be applicable for resource ordering and sharing.

In this paper, we aim to construct a resource graph
based on few-shot relational learning to effectively inte-
grate various scientific and technological resources in value
chains, as well as to share and reuse resources in a more in-
telligent manner. The resource graph can enhance scientific
and technological resource exploitation to increase produc-
tion efficiency, and it can optimize resource utilization for
maximum efficiency and profitability. The resource graph
can also achieve several downstream applications such as
resource sharing, association query, and graph visualiza-
tion. Furthermore, to solve the cold-start problem (how to
achieve personalized sharing using newly arising resources)
and the long-tail problem (distribution imbalance of corre-
lations among resources), we propose a novel few-shot rela-
tional learning model. The model combines the meta rela-
tion learner with the matching learner to predict the correla-
tions of newly coming resources and to share scientific and
technological resources among different task nodes based on
the correlations. The experiment results of our method out-
perform the baseline. A case study of the Chinese home ap-
pliance enterprise shows a practical application of resource
sharing based on resource graph with few-shot relational
learning.

The contributions of our work can be summarized as
follows:

1) We develop a resource graph to simplify resource
integration and to enhance resource sharing. The
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implementation of resource graph is based on the com-
plex network. It takes the scientific and technologi-
cal resources as nodes, and the correlations among re-
sources are mapped as links.

2) We propose a new few-shot relational learning model
to complete the resource graph. Specifically, our model
combines the matching meta with the relation meta
to improve the generalization ability of the neighbor-
encoder. The model aims to address the cold-start prob-
lem and the long-tail problem, because these problems
impede the sharing and utilization of resources.

3) We develop two practical applications, namely a re-
source graph and a resource map, to effectively fa-
cilitate the management and sharing of scientific and
technological resources. More downstream applica-
tions can be improved using the resource graph, such
as intelligent question and answering, semantic query-
ing, and resource reasoning.

The rest of the paper is organized as follows. In Sect. 2,
we present and review the current research on the sharing
of scientific and technological resources. In Sect. 3, our
proposed resource graph framework and our few-shot rela-
tional learning model are illustrated. Experiments and appli-
cations, which demonstrate the performance of our frame-
work, are presented in Sect. 4. Section 5 is reserved for dis-
cussion. Finally, Sect. 6 concludes our work and mentions
possible future work.

2. Related Work

In this section, we present current works on scientific and
technological resources. Then we show previous studies on
representation learning, as well as several few-shot learning
works. Lastly, we list a few significant works on resource
sharing. Our work focuses on constructing the complex net-
work for the scientific and technological resources, and the
few-shot learning model can intelligently complete the re-
source graph. The methodology and demonstration will be
presented in the next section.

2.1 Scientific and Technological Resource

With the development of communities and industries, the
information and resources are increased rapidly. It in-
cludes the simulation datasets, intellectual resources such as
patents and papers, transaction lists, models, and workflows.
These resources are highly distributed among schools, com-
panies, and factories, and these scientific and technologi-
cal resources are significant to the economy [4]. There are
works that focused on the scientific and technological re-
sources and we list some of them as follows.

On one hand, there are plenty of works on some spe-
cial domains using domain-specific resources. For instance,
Hong [5] designs a resource management framework for it-
erative MapReduce processing in large-scale data analy-
sis, but its framework does not tackle knowledge sharing

indeed. Kyong [6] provides an optimal resource sharing
mechanism in hierarchical VO environments. Takuma [7]
analyzes the advantage of distributed representation, and
propose a method to extract knowledge with much less an-
notated data. Ji [8] mines the high-quality reference sen-
tences for joint representation learning of knowledge graphs
and text information, and he embeds them to a unified vector
space.

On the other hand, there are researchers who not only
do research on domain-specific resources, but they study the
integration and sharing model of scientific and technologi-
cal resources. For example, Gu [9] proposes a description
model and an establishment method of scientific and tech-
nological resources from the perspective of the classification
model, metadata model, ontology model, meta-knowledge
model, and knowledge graph model. Wang [10] analyzes the
related research on scientific and technological resources.
He also finds that although various norms and standards ac-
celerating industrial development appear in the open sharing
process, these resources still lack a unified and standard-
ized framework. Du [11] focuses on human resources using
knowledge graph technology. Dong [12] establishes a re-
source classification system by analyzing the characteristics
of different resources.

However, scientific and technological resources lack
a proper model for resource classification and integra-
tion [13]. We also find that previous studies of knowledge
sharing lack the formal basis and do not support knowl-
edge sharing across different systems [13], let alone resource
sharing among several enterprises of the industry value
chain.

2.2 Representation Learning and Few-Shot Relational
Learning

With the rapid development of deep learning, representation
learning is widely used in multiple research fields such as
computer vision, NLP, and knowledge graph [14]. Repre-
sentation learning aims to transfer the semantic information
of the object to a low dimensional vector space where the
similarity of two objects is represented by distance.

Structured embedding (SE) [15] is a learning process
based on a neural network architecture designed to embed
any of these symbolic representations into a more flexible
continuous vector space in which the original knowledge
is kept and enhanced. Single-layer model [16] improves
SE [15] by adding a single layer neural network to learn
the nonlinearity of semantic relation. Latent factor model
(LFM) [17] is a latent factor model that learns the relation-
ship based on bi-linear transformation. Matrix factoriza-
tion (RESACL) [18] is a matrix factorization method that
directly extracts the vector in low dimension space. Trans-
lating based model [19] is the most classic method of repre-
sentation learning.

However, such embedding-based methods perform
poorly where there only have a few associative triples in
training. This problem in the knowledge graph is usually
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called the few-shot learning problem. FewRel [20] is a clas-
sic Few-Shot Relation Classification Dataset that includes
70,000 sentences on 100 relations derived from Wikipedia
and annotated by crowd workers. Xiong [21] propose a one-
shot relational learning framework that utilizes the knowl-
edge extracted by embedding models, and learns a match-
ing metric by considering both the learned embeddings and
one-hop graph structures. Chen [22] focuses on transferring
relation-specific meta information to make the model learn
the most important knowledge and learn faster. FSRL [23]
is a novel few-shot relation learning model that aims at dis-
covering facts of new relations with few-shot references.
MLMAN [24] presents a multi-level matching and aggrega-
tion network for the task of classifying few-shot relation.

The previous studies mostly focus on extracting se-
mantic knowledge from texts [19], [25] rather than identify-
ing the correlations among scientific and technological re-
sources. This problem seriously impedes resource sharing.
Besides, the continuously arising resources of the industry
value chain also hinder scientific and technological resource
sharing.

2.3 Resource Sharing

Resources of industry value chain can be classified into sci-
entific and technological resources and business resources.
Scientific and technological resources include patent, paper,
conference, standard, and other academic resources. Busi-
ness resources represent a variety of data from production to
marketing.

Resource sharing plays an important role in knowledge
management. Specifically, transferring and disseminating
resources from one task node to another can reduce costs
and promote productivity. Sato [26] develops a knowledge-
sharing system using XML linking language and peer-to-
peer technology to facilitate intellectual creative work and
knowledge management. Zhang [27] focuses on how can in-
dividuals and groups share knowledge on the Internet more
efficiently, and the knowledge resources in the network are
redefined by object-oriented thinking. They finally propose
a three-layer knowledge-sharing model. Semantic web tech-
nology is another available framework for resource shar-
ing [28]. Raza [29] adds a knowledge layer to commercial
PLM systems to solve the semantic interoperability problem
of heterogeneous data. Arduin [30] proposes semantic inter-
operability between a collaborative platform and a product
lifecycle management (PLM) system to share knowledge
within extended enterprises. He also highlights the condi-
tions under which a piece of information shared through
a PLM system may lead to one and only one interpreta-
tion. Assouroko [31] proposes a semantic relationship man-
agement approach to improve knowledge management and
reuse in collaborative product development.

Nowadays, knowledge graph with representation learn-
ing has become more prevalent to extract knowledge [32],
[33]. We find it can be a more intelligent method to improve
resource sharing significantly. However, we realize that few

works take full advantage of this technique to share scien-
tific and technological resources. In the next section, we
describe the scientific and technological resource graph for
resource sharing in detail. We also introduce our few-shot
relational learning model to figure out the cold-start problem
and the long-tail problem when encountering newly added
resources.

3. Method

3.1 Resource Sharing Based on Resource Graph

Scientific and technological resources is one of the pri-
mary productive forces for developed and developing coun-
tries. However, scientific and technological resource shar-
ing and allocation rates are still low, and the current situa-
tion of resource sharing cannot meet production status [34].
The barrier of resource sharing caused by resource disperse
and resource islands also becomes more severe. Thus, re-
source dissemination among urban agglomerations is defi-
cient. These problems restrict technological innovation and
the harmonious development of urban agglomerations.

Therefore, it is necessary to design a model for scien-
tific and technological resource sharing and allocation. We
develop a resource graph by storing resources as nodes and
discovering correlations as links to form a complex network
for resource integration and resource sharing. Further, we
propose a few-shot relational learning model to predict cor-
relations among resources based on the links. Thus, re-
sources can be shared among task nodes of the different
stages of the value chain.

Resource sharing can be described as a process either
of push or pull [35]. Resource push is to push resources like
newsletters or subscriptions to the users, and resource pull
represents the activity of consumer seeking out resources
such as library search, seeking out an expert, collaborat-
ing with a high-tech enterprise. Resource sharing can be
further divided into explicit resource sharing and tacit re-
source sharing. Explicit resource sharing [35] is impacted
by the factors such as articulation of users, the awareness of
resource availability and access, the guidance of the shar-
ing system, and resource completeness. Contrarily tacit re-
source sharing [35], such as informal networks among hu-
man resources, has its relevant factor that is hard to identify
and requires the model for employees to foster informal net-
works and trade tacit knowledge. Generally, it is much more
important for the sharing model to externalize the source
of tacit knowledge and pass on the resource in practice.
Broadly speaking, the resource sharing model must imple-
ment the right processes and frameworks, and it can foster a
resource sharing culture [34].

Specifically, we divide resources into scientific and
technological resources and business resources. The former
represents research on the social and natural world through
observation and experiment. The latter consists of data
resources involved in the process of production, market-
ing, and after-sale service. Business resources should also
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Fig. 1 Resource graph schema.

Fig. 2 Resource sharing instance based on resource graph.

contain tacit knowledge like experience and reference [35].
Then a resource graph can be constructed using the scien-
tific and technological resources. Each node in the graph
represents an individual resource instance, and the correla-
tions among resources are set as links. It is different from the
general knowledge graph in which a node may be a noun or
phrase of a specific description. A resource graph is set up
for the urban agglomerations or the industry to integrate var-
ious resources, and it provides a proper model for resource
sharing. The proposed resource graph can also support ad-
ministrators to make decisions and visualize resource allo-
cation easily.

As shown in Fig. 1, a resource graph takes human re-
sources as the graph center, which can support resource
sharing based on the correlations among people. Notice-
ably, the human resource in Fig. 1 is regarded as a symbol
for enterprises or urban agglomerations, and the schema is
regarded as the classification tree to some extent.

As shown in Fig. 2, a node in the resource graph cor-
responds to a specific resource, and resources around a spe-
cific human resource node are in a resource pool that sup-
ports resource sharing. Resource sharing is based on the
resource graph hugely, and once constructed; one can share
resources to another according to rules like “If. . . Than. . . ”
(marked in red in Fig. 2). The main purpose is to offer
more scientific and rational decision support and to share
resources to drive the development and integration of the re-
gional economy.

3.2 Few-Shot Relational Learning

The resource graph is already available to achieve resource

integration and resource sharing as shown in Fig. 2. How-
ever, we find that it still has many problems limiting the
ability of resource sharing in practice as bellow.

On one hand, the cold-start problem is common in rec-
ommendation systems [36]. It also impacts the resource
sharing performance indeed. We find that this problem
stems from three factors: new scientific and technologi-
cal resources, new business resources, and new human re-
sources [37]. These newly arising resources appear contin-
uously with the development of industry. But they are unla-
beled and costly for manual annotation. Thus, it is hard to
add new resources to the resource graph, let alone resource
sharing based on links.

On the other hand, we discover that the resource graph
built for urban agglomerations and enterprises will en-
counter the long-tail problem [38]. Because those newly
added relations often do not have enough triples, and it will
be ignored as time goes by [39]. This problem will lead
to resource waste and incompleteness of the resource graph.
Besides, resource sharing will be much more biased because
the model just focuses on the resources that have a large
number of relations around human resources.

Therefore, we regard these problems as the few-shot
learning problem, and we propose a few-shot relational
learning model to complete the resource graph. Few-shot
relational learning aims at predicting new facts under a chal-
lenging setting where only a few known instances are avail-
able [21]. The previous study also finds that only observing
a few associative triples is enough to achieve the few-shot
link prediction [22]. Thus, our method aims to complete the
resource graph via newly arising resources and to predict
relations or tail resources for users to support scientific and
technological resource sharing. Namely, the model tries to
achieve intelligence in the aggregation, sharing, and utiliza-
tion of scientific and technological resources to serve the
real economy.

In detail, our method is inspired by two previous
work [21], [22], and we try to improve the performance
by combining their main contributions, as shown in Fig. 3.
Xiong [21] proposes a one-shot relational learning frame-
work that learns a matching metric to imitate the exist-
ing similar facts. Chen [22] tries to learn several relation-
specific meta and transfer them to newly unknown triples.
However, Xiong [21] ignore the circumstance that there may
exist unseen relations, and it cannot merely learn by a sim-
ple matching matric. It is common for the resource graph
because the newly coming resources may become unpre-
dictable. On the other hand, however, the one-hop graph
structures dose not fully utilized by metaR [22]. It loses the
structure information around human resources and hinders
resource sharing.

As shown in Fig. 4, our method aims to aggregate
newly added resources into the corresponding one-hop
graph, which could effectively the robustness and general-
ization of the whole model. We use meta relation learner
to fit new relations not included in the existing graph struc-
ture. Then we aggregate all one-hop structure information
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Fig. 3 The model of few-shot relational learning.

Fig. 4 Aggregating newly arising resources into one-hop graph.

with the aforementioned meta relation to match the query.
We believe our method can adapt to any new resources and
complete the resource graph for downstream resource shar-
ing task.

We first embed resources into vector space using pre-
trained embeddings such as Glove [40] or BERT [41]. We
add all the descriptions and attributes of a single resource as
the descriptor to represent itself because we firmly believe
that the semantic information inside the resource node is
helpful to multiple downstream tasks. Then we use the same
idea as Chen [22] to construct the meta relation learner. The
single difference is we further add an LSTM layer to capture
the sequential information in the input layer as Eq. (1):

x0
sp = LSTM(hi ⊕ ti)

x0
sn = LSTM(hi ⊕ t j) (1)

where hi and ti are pre-trained embeddings of the head entity
and tail entity separately. ⊕ represents the concatenation

operation.
Then the meta relation for the input fact pair is calcu-

late via an L-layers stacked LSTM module as follows:

xl = LSTM(xl−1)

R(hi,ti) = LSTM(xL−1) (2)

RTr =

∑K

i=1
R(hi,ti)

K
(3)

where l ∈ {1, . . . , L−1} represents the lth layer of the stacked
LSTM module. xl is the embedding of the lth layer. R(hi,ti)

is the specific meta relation of input hi, ti. RTr represents
the total meta relation of the selected task in every learning
epoch. K is the number of facts.

We calculate the score of each fact in Eq. (4). The score
function is similar to TransE [19].

S1(hi, ti) = ‖hi + RTr − ti‖22 (4)

Then we do a similar process as Xiong [21] called
neighbor encoder to grab one-hop structure around the re-
source node. Function f ( ) means to learn the characteristic
of adjacency. The difference in Eq. (5) is that we add the
external pair of meta relation into the candidate pairs where
RTr and tk are features of the meta relation and features of
the tail resources, and Xrk ,tk = LSTM(rk ⊕ tk).

f (Nr) = σ

⎛⎜⎜⎜⎜⎜⎝
1
|Nr |

∑

(rk ,tk), (RTr,tk)∈Nr

Xrk ,tk

⎞⎟⎟⎟⎟⎟⎠ (5)

We do the same matching processor based on cosine
similarity just the same as Xiong [21] in Eq. (6) where s =
f (Nh0 )⊕ f (Nt0 ), q = f (Nhi )⊕ f (Nti j ), and k is a hyperparam-
eter to be tuned.

h′k+1,Xrk ,tk = LSTM(q, [hk ⊕ s,Xrk ,tk ])

hk+1 = h′k+1 + q (6)

Sk+1
2 =

hk+1 · s
‖hk+1‖ ‖s‖

Lastly, the total score stotal is the sum of two scores
in formula 4 and formula 6 above. stotal and stotal are the
scores of the positive fact and the score of the negative one.
Then we conduct margin ranking loss L(Sγ) based on the
total score of input fact as Eq. (7) where γ is another hyper-
parameter to be tuned.

stotal = S1(hi, ti) + Sk+1
2

L(Sr) =
∑

(hi,ti)∈Sr

[
γ + s+total − s−total

]
+

(7)

Notice that the meta relation fed into the matching net-
work represents the idea that not all the relationships are
already involved in the matching network, especially for
newly arising resources. Meanwhile, the local one-hot graph
structure embeds more semantic information to learn the
meta relation. Our method brings a lot from these two previ-
ous works. We actually combine their advantages and utilize
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our method in resource graph to learn the latent relationships
for resource sharing.

4. Experiment

Our few-shot relational learning model is tested on two
public datasets NELL-One and Wiki-One selected by
Xiong [21] from NELL and Wiki data. We also show a re-
source sharing case of a home appliance enterprise based on
our method. We further discuss and analyze the experiment
results in the end.

4.1 Datasets and Evaluation Metrics

We use two few-shot learning datasets as previous stud-
ies [21], [22] for a better comparison of performance on
these two benchmarks. We also use the same evaluation
metrics for convenience.
Datasets: We first experiment on two public datasets,
NELL-One and Wiki-One, the same as Chen [22]. These
datasets are first proposed by Xiong [21], and they are fur-
ther used by Chen [22]. NELL-One and Wiki-One are used
for few-shot relation learning. Namely, given the fact (the
Arlanda Airport, Stockholm), the algorithm needs to in-
fer the fact (the Haneda Airport, Tokyo). We divide these
datasets into train sets, validation sets, and test sets. The
statistics are shown in Table 1 where Fit in Table 1 means
neither Pre-Train setting [22] nor In-Train setting [22].
Evaluation Metrics: We use the same evaluation methods
as Xiong [22], including MRR and Hits@N. MRR repre-
sents the mean reciprocal rank, and Hits@N means the pro-
portion of correct predictions ranked in the top N in link
prediction tasks.

4.2 Implementation

We use Adam optimizer and ReLU activation function to
achieve better convergence in training. The initial learning
rate is 0.01, and it descends to 0.0001 gradually to reach
the global optima of the whole training model with fast con-
vergence [22]. The embedding size, following the work of
Xiong [21], are 100 and 50 for NELL-One and Wiki-One
respectively. We use the early stop trick when the model
hits the best performance on Hits@10. To get better perfor-
mance, the hidden size and the layer of LSTM are 200 and
4 for NELL-One, and 100 and 4 for Wiki-One.

Table 1 Statistic of datasets.

4.3 Result

4.3.1 Experiment Results

To compare with state of the art, we experiment on two kinds
of few-shot link prediction tasks, 1-shot and 5-shot, on both
datasets.

As shown in Table 2, our method is better than
the baseline in any setting. On one hand, compared to
MetaR [22] with the Pre-Train setting, we increase 1-shot
results of NELL-One by 40.2%, 6%, 21%, and 73% on
MRR, Hits@10, Hits@5, Hits@1, and 5-shot results by
14.8%, 6.5%, 16.1% and 17% on MRR, Hits@10, Hits@5,
Hits@1. Besides, we increase 1-shot results of Wiki-One by
4.1%, 4.2%, 1.1%, and 4.1% on MRR, Hits@10, Hits@5,
Hits@1, and 5-shot results by 3.7%, 6.5%, 4.2% and 2.6%
on MRR, Hits@10, Hits@5, Hits@1. On the other hand,
compared with the In-Train setting, we increase 1-shot re-
sults of NELL-One by 24%, 19.2%, 22%, and 28.2% on
MRR, Hits@10, Hits@5, Hits@1, and 5-shot results by
28.4%, 17.4%, 22% and 33.3% on MRR, Hits@10, Hits@5,
Hits@1. Meanwhile, we increase 1-shot results of Wiki-
One by 4.1%, 3.9%, 5.6%, and 1.9% on MRR, Hits@10,
Hits@5, Hits@1, and 5-shot results by 4.5%, 13.6%, 6.8%,
and 5.6% on MRR, Hits@10, Hits@5, Hits@1.

We can conclude that the performance of few-shot link
prediction is affected by the quality and quantity of the data
indeed. On one hand, the Pre-Train setting is better than
the In-Train setting under large datasets, such as Wiki-One.
That is because of the sparsity problem of the entities. It is
difficult to learn the correct meta relation when the support
triples are too sparse, which is unstable and biased for the
meta-based relation learner. That is why pre-trained embed-
dings improve 1-shot tasks a lot. On the other hand, the per-
formance improved under the In-Train setting for the small
dataset NELL-One, because fitting background brings more
sparsity into training procedure.

4.3.2 Ablation Study

We have proved that the information in meta relation suc-
cessfully enhances the ability of the neighbor encoder [21].
To further figure out the significance of correlations, we con-
duct an ablation study on NELL-One with metric Hit@10
with seven settings. The results are shown in Table 3. The
first one is removing both the meta relation learner and the
GMatching module, which simplifies the model to a classi-
cal TransE embedding model, denoted as -mg -ng -r. The
second one is removing the meta relation learner, which be-
comes the GMatching TransE, denoted as −r. The third one
is removing both the matching processor and the neighbor
encoder, denoted as -mg -ng. The fourth one is removing
the matching processor, denoted as -mg. The fifth one is re-
moving the neighbor encoder, denoted as -ng. The sixth one
is the standard metaR. The last one is our complete model
denoted as standard. Specifically, the results of both the
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Table 2 Experiment results of few-shot relational learning.

Table 3 Results of ablation study on Hits@10 of 1-shot link prediction
in NELL-One.

first setting and the second setting are neither Pre-train nor
In-train, and they are copied from Xiong [21].

On one hand, Table 3 shows that, compared to the stan-
dard results of the 1-shot setting, removing the matching
processor decreases 2.3% and 11.7% on two dataset set-
tings, and removing the neighbor encoder decreases 0.6%
and 5.2%. Removing both the matching processor and the
neighbor encoder continuously decreases the performance
by 3.4% and 13.2%. On the other hand, when the shot num-
ber arising to 5, the performance increases by 7.7% and
7.3% under the standard setting, and it has the same up-
ward trend under every setting. Thus, both the meta relation
learner and the GMatching module contribute to the few-
shot link prediction task dramatically. Moreover, more shot
samples provide better performance because these training
samples make the meta relation more robust and powerful. It
also illustrates that the learned meta relation completes the
information of neighbor encoder, which is significant and
helpful for the few-shot link prediction.

4.3.3 Shot Number Analysis

As our model combines the neighbor-encoder with the meta
relation, here we try to analyze how these relations affect

Fig. 5 Shot number analysis.

the model convergence. Figure 5 shows the learning curves
of different shot numbers. We evaluate these curves on the
Hits@10 on the validation set.

Obviously, we find that more shot samples generally
lead to better performance of the proportion of correct link
predictions (Hits@10). The result is similar to the analy-
sis [21] on neighbor-encoder. Because both increasing the
neighbors and adding more shot samples enrich the infor-
mation of the fact. We also observe that 10 shots for each
task is enough to learn a robust meta relation, and more
samples seem to be saturated. The potential reason is that
more samples for training can reduce the over-fitting of
the meta-learning model. But it also brings noises to the
model. In this situation, fine-tuning models could be better
alternatives.

4.4 Application

We show two practical applications of resource sharing
based on the resource graph with few-shot relational learn-
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Fig. 6 Instance of resource sharing using our method.

Fig. 7 Resource map based on resource graph.

ing. We construct a resource service platform for a Chinese
home appliance enterprise. The platform relies on a specific
resource graph to link various scientific and technological
resources. It also provides the interface to share resources
among different task nodes.

As shown in Fig. 6 (a) and Fig. 6 (b), our method helps
the experts share scientific and technological resources
(marked in the red square) with each other by the correla-
tions among resource nodes because they both attend the
same conference and publish their papers. The predictive
relations based on our few-shot relational learning model
also provide the support of new resource sharing (marked in
the green square). As shown in Fig. 6 (b), expert Gu may
share the patent resource and the project resource to expert
Ji based on the predictive correlations (marked as “rel”).
The visualization of the resource graph supports its execu-
tors to reach a swift decision, and resource sharing could be
friendly by clicking the resource node and choose the target
task node easily.

Figure 7 shows the resource map that depicts the
resource distribution of urban agglomeration. The map
supports the semantic query of resources such as expert,
high-tech enterprise, agency, patent, and other scientific
and technological resources. Figure 7 (a) shows the scien-
tific and technological resource allocation of specific query
input, and Fig. 7 (b) is the corresponding information of

agency in the selected urban agglomeration. Obviously, it
is effective and convenient to share scientific and technolog-
ical resources via the resource map.

5. Analysis and Discussion

Most relevant resource sharing models merely classify and
store their data in a closed domain such as product data
management (PDM) and manufacturing execution system
(MES), which hugely limits the horizontal sharing across
different systems. However, other downstream tasks based
on knowledge graphs ignore the practical applications of
scientific and technological resource integration and shar-
ing. As far as we know, we are the first to try to achieve
scientific and technological resource ordering and resource
sharing based on knowledge graph technology. We actually
improve it to construct a novel resource graph that can be a
more suitable business model for the integration and shar-
ing of scientific and technological resources. Furthermore,
at present, most researchers developed recommendation sys-
tems to share resources, but such systems are hard to solve
the cold-start problem caused by new resources. Therefore,
our few-shot relational learning model could be a proper so-
lution to some extent.

Specifically, we emphasize that a normalized resource
classification tree defining in Sect. 3.1 as resource graph
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Table 4 Abbreviation.

schema is the basis of resource graph construction. Then
a resource graph can be efficiently constructed based on the
explicit correlations among resources efficiently. Further-
more, a few-shot relational learning model is used to learn
a general meta-model to predict implicit links among new
resources and complete the resource graph via predictable
correlations. Our model practically combines the character-
istic of two previous works based on the intuitive that both
the structure information and the implicit information deep
inside meta relations are important for the few-shot link
prediction. Finally, a more robust and completive resource
graph can effectively support users to share and manage sci-
entific and technological resources.

However, the limitations of our method are also obvi-
ous. On one hand, the construction of the resource graph is
hugely influenced by the specialists using top-down meth-
ods. And the performance of bottom-up methods in most
realistic scenarios, such as unsupervised learning, are usu-
ally unsatisfactory. On the other hand, the few-shot re-
lational learning model is supposed to complete the re-
source graph automatically. However, the performance of
our meta-learning model is still have significant room for
improvement. Thus, more attention is required to refine and
optimize such deep learning models to achieve real cogni-
tive intelligence.

We list the abbreviations of the whole paper in Table 4.

6. Conclusion and Future Work

In this paper, we propose a scientific and technological re-
source sharing method based on the resource graph. We also
present a novel few-shot relational learning model for the
few-shot link prediction to solve the long-tail problem and
cold-start problem, which aims to share newly arising re-
sources and complete resource graph intelligently. Lastly,
the experiments on the two public datasets have proved the
reliability and efficiency of our proposed method. We also
show the practical examples of our resource sharing and
query based on the corresponding resource graph.

In the future, we may include and modify more meta-
learning methods, such as reinforcement learning and gen-
erative adversarial learning, to further improve the perfor-

mance of few-shot relation learning. We also tend to develop
more applications based on the resource graph to facilitate
urban agglomerations and industries.
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