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SUMMARY Many scientific and technological resources (STR) can-
not meet the needs of real demand-based industrial services. To address
this issue, the characteristics of scientific and technological resource ser-
vices (STRS) are analyzed, and a method of the optimal combination of
demand-based STR based on multi-community collaborative search is then
put forward. An optimal combined evaluative system that includes various
indexes, namely response time, innovation, composability, and correlation,
is developed for multi-services of STR, and a hybrid optimal combined
model for STR is constructed. An evaluative algorithm of multi-community
collaborative search is used to study the interactions between general com-
munities and model communities, thereby improving the adaptive ability of
the algorithm to random dynamic resource services. The average conver-
gence value CMCCS A = 0.00274 is obtained by the convergence measure-
ment function, which exceeds other comparison algorithms. The findings
of this study indicate that the proposed methods can preferably reach the
maximum efficiency of demand-based STR, and new ideas and methods for
implementing demand-based real industrial services for STR are provided.
key words: scientific and technological services, evaluative system, hybrid
optimal combined model, multi-community collaborative search, maximum
efficiency of combination

1. Introduction

The General Office of the State Council on Accelerating De-
velopment of Scientific and Technological Services clarified
an emphasis on the development of STRS including funda-
mental research, technological transmission, detection cer-
tification, entrepreneurship promotion, intellectual property,
technology consulting, scientific finance, and technology
popularization [1]. However, because of the various types
and distributions of STR and service systems, the compo-
sitions and interactions in STRS systems and in real eco-
nomic industries are complicated. Thus, optimal combined
STRS must be searched, analyzed, and matched from huge
technological resource libraries that are distributed in dif-
ferent locations and industries. The combination of STRS
with business processes would form a kind of STRS sys-
tem [2]. Therefore, the real-time dynamics of real industrial
services and the random execution times for STR are more
complicated than expected. As the uncertainty arising from
STRS makes them difficult to be solved by traditional opti-
mal combination theory and other methods, it is necessary to
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deliberate the interactions among the response time of ser-
vices, correlations, and innovations when integrating STRS.

Today, scholars worldwide find references for STRS
from libraries [3] and intelligence agencies [4], and aim to
expand these areas from the perspectives of literature nov-
elty, literature retrieval, and knowledge services. However,
most studies on the combination and optimization of re-
sources focus on cloud computing resources [5], [6], internet
resources [7], [8], and cloud manufacturing resources [9],
[10]. Furthermore, cloud computing resource services are
mainly associated with optimal combined algorithms, such
as the particle swarm optimization algorithm [11], [12], fire-
works algorithm [13], bee colony algorithm [14], and simu-
lated annealing algorithm [15]. Such methods inadequately
consider factors that may influence practical resource ser-
vices, leading to low efficiency; thus, these methods cannot
be used in the demand-based combination of heterogeneous
STR. Tao et al. reviewed the methods for the combina-
tion of STRS, and pointed out the key issues in cloud man-
ufacturing services. They then put forward relative mod-
elling and evaluative methods [16]. Strunk et al. optimized
relative services via semantic matching and genetic algo-
rithms [17]. Ning et al. [18] solved the issues in flow di-
rection and resource combination by a framework of cloud
manufacturing. Zeng et al. [19] put forward a service com-
bination based on quality optimization. Tao et al. [20] se-
lected each service resource from cloud manufacturing ser-
vice platforms to choose resource assemblies that satisfy
the functionality of subtasks, and then combined these into
resource services according to certain rules, thus allowing
for the cooperative access to multi-service tasks. Although
many scholars worldwide have conducted research on the
combination and optimization of resources, most existing
studies have not been technologically oriented and therefore
cannot meet the needs for STRS in real industries, which
include the sharing and utilization of STR under demand-
based environments of distributed STRS.

The combination and optimization of STRS in the
present study is an assessment of the performances and de-
mands of services faced by real industries. An integrated
mode based on performance assessment is used to provide
STR and services during developmental products, thereby
creating a reflective transformation from the qualitative de-
mands of STRS to a quantitative combination of resource
services. First, a combined framework based on perfor-
mance assessment for the combination and optimization of
resource services is constructed. Then, an optimal combined
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Fig. 1 Combination frameworks for the demands of real industries in STRS.

evaluative system with multi-service tasks is developed, and
includes serval indexes including response time, compos-
ability, correlation, and innovation. At last, a hybrid optimal
combined model of STR is designed. The response ability
and performances of resource services are improved by us-
ing the strategies of a multi-community bidirectional drive
collaborative search algorithm and an asynchronous parallel
method. This study provides new methods and techniques
for solving the issues of the combination and optimization
of multi-service tasks in STRS.

2. Combination Frameworks for the Demands of Real
Industries in STRS

In the mode of cloud services, users from real industries
submit service tasks to platforms associated with their de-
mands. The platforms analyze the service tasks and then
encapsulate different STRS into minimum service units ac-
cording to the real-time information of STRS and the ser-
vice abilities of platforms. These units allow for the trans-
fer and combination of STRS for the platforms. The com-
bination frameworks in the present study, which are illus-
trated in Fig. 1, include the demand side for resources, cloud
platforms, and STR. During combination processes, real in-
dustrial users will input parameters, and the platforms will
automatically produce combined tasks for STRS. The task
information will be sent to a resource service composition

executor (RSCE), which inquires whether users have reg-
istered corresponding combined services. If the inquiry is
successful, the combined tasks will be transferred to users;
if not, the combined tasks will be divided into subtasks and
then sent to the RSCE for executive sequences, and the op-
timal solutions of STR will be calculated by an intelligent
optimization algorithm and returned to the users.

In these frameworks, the resource services can be cat-
egorized into a single task, a single task with combinations,
or multi-tasks with combinations according to the granular-
ity of users’ demands. The single task can be further divided
into several single-task units, which is achieved by mod-
elling users’ demands under QOS restrictions. The present
study focuses on the modelling and optimization of multi-
task combinations for STR.

3. Optimal Combined Models of STRS

3.1 The Evaluative Indexes for the Combination and Opti-
mization of STRS

STRS are demand-based modes for the distributed aggre-
gation and sharing of STR in the context of the deep inte-
gration of the service industry and real industries. STRS
are driven by the demands of services form multi-task col-
laborative networks, and are unitedly run and controlled by
cloud platforms. Therefore, the characteristics of STRS are
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as follows.
(1) Rapid responses to services. STRS will search, an-

alyze, match, and optimize different dynamic schemes ac-
cording to different requests from real industrial users. The
system will then choose the optimal scheme and return the
requests from users via optimal managerial techniques and
qualitative evaluation.

(2) Flexible combination of services. STRS are
distributed aggregative modes and demand-based sharing
modes for the demands of STR. Because of the complicated
interactions and compositions among STRS systems, and
those between STRS systems and real economic industries,
STRS will transfer several processes of resource services.
Furthermore, the large scale of intercross, aggregation, and
dynamic evolution of multi-language correlations will also
be introduced in STRS. Therefore, demand-driven STRS ac-
tivities have strong flexibility.

(3) Dynamics of service correlations. Real industrial
users submit service tasks for their demands to platforms
in the STRS environment, and cloud platforms will analyze
the service tasks in time. When several tasks are executed
interactively, correlative interactions occur between differ-
ent tasks. To finish one specific task, more related resource
services should be considered in multi-mode combinations
(series and parallel connections, selection, circulation, etc.).

(4) Innovation of services. The providers, consumers,
and operators of STRS are the main components of intelli-
gent collaboration processes. Thus, determining how to sat-
isfy their own demands and how to earn maximum profits
from services are the main objectives for all collaborators.
The innovation of STRS will have strong effects on the effi-
ciency of resource services.

In summary, the optimization and combination of
STRS must not only consider evaluative indexes such as
service time, but also other factors such as innovation (In),
composability (Cp), and correlation (Ca). Therefore, a
combined evaluative system was built as follows.

(1) Service Time. The service time is the time length
from receiving the requests to the output of the results, and
includes executable service time (Tpro) and delay time of
service (Tdel):

T = Tpro + Tdel (1)

where Tpro is the executable service time and Tdel is the
time gap between sending and receiving service requests.

(2) Innovation. Innovation means the originality of ser-
vices and the novelty of combination. The more innovative
a service is, the more value the service has. The function is:

In =
1

n∑
i=1

sim(RS i,RS j)
(2)

sim(RS i,RS j) =
ω(a1 + a2)√∑

(RS ,RS j)2 ·max(|a1 + a2|)
(3)

where ω > 0, a1 and a2 respectively represent the
levels of semantic classification trees of RS i and RS j get-
ting semantic rules from user feedback, sim

(
RS i,RS j

)
represents the degree of similarity of RS i and RS j, and√∑(

RS i,RS j

)2
indicates the distance between RS i and

RS j.
(3) Composability. Composability is the probability of

STRS being composited during execution, and determines
whether the services are transferred as a single function or
as a service resource from combined services. The value of
composability is the ratio of the specific executing time to
total executing time. The function is:

Cp =
FCp

fC

(4)

where fc is the time of the specific service being exe-
cuted, and FCp indicates the total executing time.

(4) Correlation. Correlation is the degree to which two
logic technological resource are correlated. To ensure that
two services can coordinate in combined forms, the outputs
of former services should match the inputs of later services.

Exi = {Exi1, Exi2, . . . Exik, . . . , Exim} is the set of
output values of RS i, and En j =

{
En j1, En j2, . . . En jl,

. . . , En jm

}
is the set of input values of j. The semantic sim-

ilarity of Exik and En jl is:

sim
(
Exik, En jl

)
=

ω (a1 + a2)√∑(
Exik, En jl

)2 ·max (|a1 + a2|)
(5)

where ω > 0, a1 and a2 are the respective levels of
semantic classification trees of input property Exik and
output property En jl obtaining semantic rules from property

sets Exi and En j, and
√∑(

Exik, En jl

)2
indicates the dis-

tance between output property Exik and input property
En jl. Thus, the correlation of service i and service j is:

Ca(RS i,RS j) =

1, Exi = En j

m

{
m∑

k=1
max

[
sim

(
Exik, En jl

)]−1
}−1

, Exi ⊂ En j

u

{
m∑

k=1
max

[
sim

(
Exik, En jl

)]−α}−1

, Exi ∩ En j , 0

0, Exi ∩ En j = 0

(6)

where α =

 1,max
{
sim

(
Exik, En jl

)}
≥ θ

0,max
{
sim

(
Exik, En jl

)}
< θ

, θ ∈ (0, 1)

is the threshold of definition, and u is the numbers of α = 1.

3.2 Hybrid Optimal Combined Model of STRS

The real industrial demand of STR is RS C = {RS 1,RS 2, . . . ,
RS m}. To satisfy users’ needs and maintain good feedback,
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Fig. 2 The four types of combinations in STRS.

Table 1 The model for calculating different indexes under different combinations .

T In Cp Cp

Series connection
m∑

i=1
T

(
RS j

i

) m∑
i=1

In
(
RS j

i

)
m

m∏
i=1

Cp
(
RS j

i

) m∑
i=0

m+1∑
t=t+1

Ca(RS i ,RS t)
m−i

m

Parallel connection max T
(
RS j

i

) m∑
i=1

In
(
RS j

i

)
m min Cp

(
RS j

i

) m
min
i=1

{
Ca(RS 0 ,RS i)+Ca(RS 0 ,RS m+1)
G(RS 0 ,RS i)+G(RS 0 ,RS m+1)

}
Selection

m∑
i=1

(
T

(
RS j

i

)
× p j

) m∑
i=1

(
In

(
RS j

i

)
× p j

) m∑
i=1

(
Cp

(
RS j

i

)
× p j

) m∑
i=1

pi ×
 Ca(RS 0 ,RS i)+Ca(RS 0 ,RS m+1)

G(RS 0 ,RS i)+G(RS 0 ,RS m+1)
+Ca (RS i,RS m+1)


Circulation r ×

m∑
i=1

T
(
RS j

i

) m∑
i=1

In
(
RS j

i

)
m min Cp

(
RS j

i

) m∑
i=0

m+1∑
t=t+1

Ca(RS i ,RS t)
m−i

m

an optimal model was developed by the evaluative system
discussed previously.

Q (RS C) = {T (RS C) , In (RS C) ,
Cp (RS C) ,Ca (RS C)} (7)

In this paper, the main principles are borrowed from
web services composition, and the combination of STRS is
divided into series connection, parallel connection, selec-
tion, and circulation. In real services, however, one tech-
nological resource service can have several combinations.
Therefore, the hybrid combinations can be transferred into
combinations of several series and parallel connections.

The mathematic model for calculating different combi-
nations to arbitrate STRS RS j

i is presented in Table 1.
In this table, m indicates that the service combination

is combined by m numbers of resource services RS, r is the
number of cycles of the resource service candidate set RS i

corresponding to the i-th resource service, p j indicates the
probability of RS j

i being selected in the candidate set RS i

of resource services, and
n∑

j=1
p j = 1, where n is the number

of candidate resources in RS j
i . Thus, the formula of Task =

{t1, t1, . . . , tk, . . . , tM} for STRS is:



T (RS C) =
M∑

i=1
T

(
RS j

i

)
In (RS C) =

M∑
i=1

In
(
RS j

i

)/
M

Cp (RS C) =
M∏

i=1
Cp

(
RS j

i

)
Ca (RS C) =

M∑
i=0

(
M+1∑
t=t+1

Ca (RS i,RS t)

/
M − i

)/
M

(8)

The dimensions of the evaluative indexes from the
combinations of STRS are different and cannot be directly
used for calculation; thus, the dimensions should be sim-
ply normalized. For those “the more the better” beneficial
indexes In, Cp, and Ca,

yi =

{ ui(In,Cp,Ca)−min ui(In,Cp,Ca)
max ui(In,Cp,Ca)−min ui(In,Cp,Ca) , max ui , min ui

1, max ui = min ui

(9)

and for the “the smaller the better” index T,

yi =

{ max vi(T )−vi(T )
max vi(T )−min ui(T ) , max ui , min ui

1, max ui = min ui
(10)

where ui indicates the service evaluative indexes In,
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Cp, and Ca, vi is the service evaluative index T , and yi is
the normalized service value.

Therefore, the combinations that consist of m resource

services have
m∏

i=1
n combinations, as each service has n can-

didate resources.The evaluative index system of combined
services, which is composed of the response time, innova-
tion, composability, and correlations, can construct an opti-
mal combined plan for STRS. Because users may have dif-
ferent requests for the same evaluative index under different
service circumstances, the optimization of multi-tasks can
be transformed into the optimization of a single task, and
weighting indexes can then be used to reflect the user’s re-
quest under specific circumstances. The optimization and
combination of the targeted formula are as follows:

max Q(RS C) = ωT
1

yT (RS C)
+ ωIny

In(RS C) +

ωCpy
Cp(RS C) + ωCay

Ca(RS C) (11)

s.t.


ωT + ωIn + ωCp + ωCa = 1;
u(RS C) ≥ u(Task), u = In,Cp,Ca;
v(RS C) ≤ v(Task), v = T.

(12)

where ωT , ωIn, ωCp, and ωCa are weighting indexes,
ω ∈ (0, 1), and Task is the request for services.

3.3 Optimal Combined Algorithms for STRS Based on
Multi-Community Collaborative Search

The particle swarm optimization algorithm is an algorithm
with which to find optimal answers via cooperation and it-
erative operation among particles. Many studies have sug-
gested that this algorithm can be used in the optimization
of multi-tasks. However, basic particle swarm algorithms,
which core on optimal particles, are the optimal modes
for a single community. Thus, they cannot be used to
solve problems with dynamic data. To expand this mode
into multi-community levels, the multi-community collab-
orative search algorithm (MCCSA), which is highly adap-
tive to tasks, was created. In this study, MCCSA was used
to solve the problems of combination in STRS. Consider-
ing the differences between real problems in combination
and the function of general multi-tasks in STRS, the oper-
ational algorithms are defined and the discrete iterations of
the speed and positions of particles are completed, thereby
achieving service combinations from particle searching sys-
tems.

(1) Co-evolution algorithms Rule 1: Iteration in com-
munities. During the co-evolution of multi-communities,
particles in a single community are iterated according to the
speed and position of basic particle swarms, thereby opti-
mizing the values in communities:

vt+1
id = ω · vtid + c1 · r1 · (Pt

id − xt
id)+

c2 · r2 · (Pt
gd − xt

id)
xt+1

id = xt
id + v

t+1
id

i = 1, 2, . . . ,m d = 1, 2, . . . ,D

(13)

where t is the time of the iterations during the particle
searching processes, ω is the inertia weight, c1 = c2 = 2 in-
dicates the accelerating constants, and r1 and r2 are random
functions in the interval of [0, 1].

Rule 2: Two-way co-evolution rules among communi-
ties

Rule 2.1: General communities are denoted as gbest,
model communities are denoted as Gbest, model learn-

ing factors are denoted as Pnd =

n∑
i=1

Gbesti

n , CC rep-
resents the particles in general communities, MC in-
dicates the particles in model communities, ∀(r1 :⟨
CCi,MC j

⟩
) ∈ R, gbesti = max {gbest1, gbest2, . . . , gbestm},

Gbest j = min {Gbest1,Gbest2, . . . ,Gbestn}, and gbesti ≥ Gbest j.
If particles CCi go into CCi, the last community MCi is
eliminated. Thus, the new iterative algorithm is:

vt+1
id = ω · vtid + c1 · r1 ·

(
Pt

id − xt
id

)
+

c2 · r2

(
Pt
gd − xt

id

)
+ c3(Pt

nd − xt
id)

xt+1
id = xt

id + v
t+1
id

i = 1, 2, · · · ,m d = 1, 2, · · · ,D

(14)

where c3 is the random function and satisfies the algo-
rithm convergence c1r1 + c2r2 + c3 ∈ [0, 4].

Rule 2.2: ∀(r2 :
⟨
MCi,MC j

⟩
) ∈ R, where the collabo-

rative intensity in a model community is sMCi . To arbitrate
sMCj , sMCi ≥ sMCj . The optimal value in a model community
is PG = Gbesti.

Rule 2.3: ∀(r3 :
⟨
CCi,CC j

⟩
) ∈ R, where the collabo-

rative intensity in a general community is sCCi . To arbitrate
sCCj , sCCi ≥ sCCj . The optimal value in a general community
is Pg = gbesti.

(2) Strategies for discretions and iterations. To solve
the issues of the combination of multi-services in discre-
tions, the operators in the algorithms were re-defined. A
matrix X has n rows and n columns; n × n is the vector
matrix of particle positions. Xi =< xi1, xi2, . . . , xin > in-
dicates the position of the i-th particle with specific com-
bined services. xi j ( j = 1, 2, . . . , n) is a positive integer, in-
dicating the numbers of candidate services in T j selections.
V : n × n is then defined as the vector matrix of particle
speeds. Vi =< Vi1,Vi2, . . . ,Vin > is the speed of the i-th par-
ticle, and vi j ( j = 1, 2, . . . , n) is the integrative efficiency of a
specific combined service. Based on the discretions and it-
erations of the particles speeds and positions, the algorithms
(13) and (14) are updated to:

vt+1
id = ω · vtid + c1 · r1 · (Pt

idΘxt
id)+

c2 · r2 · (Pt
gdΘxt

id)
xt+1

id = xt
id ⊕ vt+1

id
i = 1, 2, . . . ,m d = 1, 2, . . . ,D

(15)


vt+1

id = ω · vtid + c1 · r1 ·
(
Pt

idΘxt
id

)
+

c2 · r2

(
Pt
gdΘxt

id

)
+ c3(Pt

ndΘxt
id)

xt+1
id = xt

id ⊕ vt+1
id

i = 1, 2, · · · ,m d = 1, 2, · · · ,D

(16)

where operator Θ is the difference between the ef-
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ficiency of two particles in their dimensions, and oper-
ator ⊕ is the selection of the new position of an ar-
bitrary particle in different dimensions; xki ⊕ vki ={

j| min
j=1,2,...,m

∣∣∣ f (QIJ(RS C)) − (VKI + f (Qixki (RS C)))
∣∣∣}.

(3) Algorithm steps. Based on the two-way co-
evolutionary rules and discrete iterative strategies, the steps
of the optimal algorithms for combined multi-services are
as follows.

Step 1: Initialize the particles. Set up the number of
communities, the times of iterations, accelerating indexes,
and inertia weight coefficient.

Step 2: Assign the initialized particles averagely into 1
process, contributing to a community with a size of int(n/l).
Then calculate the adaptive values in 1 communities accord-
ing to Eq. (11).

Step 3: Put the communities into 1 processes and con-
duct asynchronous parallel evolutive calculation.

Step 4: Calculate the adaptive values Fi in different
communities, and then divide the communities into model
communities and general communities according to the
thresholds.

Step 5: Update the speeds and positions of particles in
the communities by Eq. (16) according to the mechanisms of
discretion and iteration, and then save the optimal positions
of the particles.

Step 6: The algorithms will finish and output optimal
combinations if all the particles can satisfy the ending re-
quirements; otherwise, return to step 5.

4. Simulation Experiments and Results

4.1 Experimental Conditions

The proposed model and algorithms of STRS were verified
based on the analysis of the issues of one manufacturing en-
terprise. JDK 1.7 and Eclipse software were used as the inte-
grated developmental environment, Tomacat 7.0 was used as
the server, MySQL5.0 was used as the dataset, Hadoop was
used as the big-data platform software, and VMware10 was
used as the virtual instruments. The staple software mpi-
BLAS was introduced as service-transferring instructions to
build up cloud platforms for STR. The simulated environ-
ments of the optimal algorithms were based on MATLAB
(2016b) and a computer with a 4.00 GHz processor, 16 GB
RAM, and the Windows 7 operating system. The input data
for simulated experiments included the numbers of users’
requests per second, which were randomly selected from
10-100. The types of STRS were randomly selected from
Rs1, Rs2, . . . . . . ,Rs6, and included several services such as
searching, analyzing, and matching of resources. The re-
quests of each RSC were randomly selected from 1-20. The
combined evaluative indexes were the response time, inno-
vation, composability, and correlation.

Embedded rhombus thought particle swarm optimiza-
tion (ERTPSO), the modified hybrid genetic algorithm
(MHGA), discrete particle swarm optimization (DPSO), and Fig. 3 The convergence performance of different algorithms for different

numbers of subtasks.
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Table 2 The comparison of convergence accuracy of four algorithms .

Fun PSize Algorithms Best Worst Mean SD AD

Q

50

ERPSO 8.54e-001 1.82e-001 6.03e-001 2.41e-001 1.93e-001
DPSO 8.17e-001 2.04e-001 5.60e-001 3.26e-001 2.65e-001
MHGA 7.64e-001 1.84e-001 5.34e-001 3.49e-001 2.86e-001
MCCSA 9.12e-001 4.47e-001 8.17e-001 1.13e-001 9.11e-002

100

ERPSO 9.16e-001 1.67e-001 6.58e-001 3.22e-001 2.60e-001
DPSO 8.32e-001 1.91e-001 6.02e-001 3.33e-001 2.65e-001
MHGA 8.71e-001 1.63e-001 5.93e-001 3.89e-001 3.18e-001
MCCSA 9.36e-001 4.33e-001 8.56e-001 1.32e-001 1.07e-001

400

ERPSO 9.23e-001 1.24e-001 7.22e-001 4.55e-001 3.62e-001
DPSO 8.41e-001 1.54e-001 6.41e-001 3.57e-001 2.82e-001
MHGA 8.73e-001 1.40e-001 6.59e-001 5.00e-001 4.13e-001
MCCSA 1 3.26e-001 9.02e-001 1.90e-001 1.51e-001

MCCSA were used to solve the issues of the combination
and optimization of STRS. The initialized parameters of the
algorithms were set as follows: the number of populations
was 100, the maximum evolutionary time was 200, the in-
ertia weight was w = 1.1, the accelerating constant was
c1 = c2 = 2, and the weighting factors of the four index
properties were ωT=0.3, ωIn=0.3, ωCp=0.2, and ωCa=0.2,
respectively. All the simulated experiments were conducted
500 times each, and the results were averaged. All other
parameters were set according to existing references.

4.2 Results and Discussion

To test the convergence performance of MCCSA, the four
algorithms were used to study this problem simultaneously.
During the experiments, the number of candidate services
at each subtask was 120. Figure 3 presents results of al-
gorithms on different numbers of subtasks, and shows the
changes of MCCSA for different numbers of subtasks in the
combination of STRS. The selection and reorganization of
co-evolutionary rules enhanced the characteristics of supe-
rior searches in different communities, thereby leading to
increases of adaptive ability and executive efficiency. With
the increasing number of subtasks, MCCSA rapidly jump
out local optimal points with a relatively fast convergence
speed and consistent and effective regional optimal points.

The following convergence measurement function is
used to test its convergence characteristics.

C =
1
E

E∑
e=1

[
f (e + 1) − f(e)

]
(17)

Let E = 199, the average convergence value of each
algorithm is obtained as follows, CMCCS A = 0.00274,
CERT PS O = 0.00214, CDPS O = 0.00186, CMHGA = 0.00188.
From the results of experiments, it can be concluded that the
performance of MCCSA was significantly better than that of
the other comparison algorithms.

A comparative analysis of the optimal functions of
different population sizes by the four algorithms was con-
ducted. All the vectors of algorithms were 30 and all the
evolutive algebras were 120. The population sizes were 50,
100, and 400. MCCSA was selected for the asymmetric
initialization of spaces. The results are presented Table 2,

and demonstrate that MCCSA exhibited strongly adaptive
abilities, a rapid convergence speed, and relatively high pre-
cision. Moreover, the zero values in the standard deviation
(SD) and average deviation (AD) indicate that MCCSA had
stable convergence ability. The data suggest that MCCSA
can automatically adjust the searching ability of algorithms
according to the cooperative rules in many populations.
Thus, MCCSA can adapt to the changes in multi-service
combinations. These results suggest that MCCSA presents
significant advantages in terms of convergence precision,
convergence stability, and convergence speed.

5. Conclusions

To address the issues of combination in technological se-
ries in the context of deeply aggregated real industries and
service industries, a demand-based frame of STRS in real
industries was developed, and the characteristics of STRS
and their issues of combination were analyzed. In this way,
an optimal evaluative system for multi-services was con-
structed, and a hybrid optimal combined model that includes
several combinations of STRS was designed. A two-way
collaborative searching algorithm for multi-populations was
then used to solve this model. Finally, the results of the sim-
ulated experiments verified the effectiveness of model and
algorithms, and suggest that the proposed methods can ef-
fectively solve the issues of the optimization and combina-
tion of multi-task STRS. Future studies should expand the
proposed model and algorithms for combinations of STRS,
thereby increasing their adaptivity for regional industrial
clusters.
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