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Building Change Detection by Using Past Map Information and
Optical Aerial Images

Motohiro TAKAGI†a), Kazuya HAYASE††, Masaki KITAHARA†, and Jun SHIMAMURA†, Members

SUMMARY This paper proposes a change detection method for build-
ings based on convolutional neural networks. The proposed method detects
building changes from pairs of optical aerial images and past map informa-
tion concerning buildings. Using high-resolution image pair and past map
information seamlessly, the proposed method can capture the building areas
more precisely compared to a conventional method. Our experimental re-
sults show that the proposed method outperforms the conventional change
detection method that uses optical aerial images to detect building changes.
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1. Introduction

Due to the development of satellites and unmanned aerial
vehicles, optical aerial images can easily be taken. There-
fore, detecting changes in optical aerial images (change de-
tection) is becoming more important for monitoring changes
in environments and resources.

In change detection, building change detection is one
of the key applications. Building change detection is useful
for updating map information, assessing building damage
caused by natural disasters. Usually, due to changes over
time, it is difficult to detect changes in building accurately
from images. Furthermore, building change areas tend to be
relatively small, detection areas that do not contain building
changes are often falsely detected in conventional methods.

In this paper, we propose a building change detection
method using DNNs with map information. The proposed
model consists of two DNNs: a segmentation network and
a change detection network. The segmentation network de-
tects building areas from optical aerial images. The change
detection network detects changes from masked images by
using building labels that are generated from optical aerial
images and past map information. The proposed method in-
tegrates the segmentation task and the change detection task
with past map information. Furthermore, the segmentation
network and the change detection network are trained with
Lovász hinge loss [1], [2]. Lovász hinge loss makes it pos-
sible to optimize the intersection-over-union (IoU) directly
by DNNs. Using this loss significantly improves accuracy
of change detection. The proposed method was evaluated
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on optical aerial images taken in Tokyo. To evaluate the pro-
posed method, building label images and building change la-
bel images were made automatically from commercial qual-
ity map.

In this paper, we present a new method for building
change detection that incorporates map data seamlessly. The
proposed method can integrate the segmentation task into
the change detection task. This paper is organized as fol-
lows. Section 2 discusses related works. Section 3 presents
the proposed building change detection method using past
map information seamlessly. Section 4 presents the results
of the proposed method. Section 5 summarizes the study
and discusses future work.

2. Related Work

Recently, several change detection methods that use DNNs
have been proposed [3]–[6]. In the studies of Daudt et
al. [5], [6], a fully convolutional network has been used to
detect changes between images. Daudt et al. [5] have used
convolutional neural networks for detecting urban changes
by using multispectral images. These networks were in-
spired by the Siamese network and early fusion network [7].
These networks take two 15×15×c as input, where c is the
number of color channels. Fully convolutional neural net-
work (FCNN) architectures that use a skip-connection struc-
ture [8] have also been proposed [6]. Their FCNN architec-
tures can be trained end-to-end. These networks can learn
changes from images directly. The model proposed in the
present study was inspired by the network structure used in
one of the state-of-the-art methods for change detection [6].
Their method uses optical images as input. However, it is
difficult to detect changes by using images only. There-
fore, map information is used to improve the performance
of change detection.

3. Proposed Method

We propose a new CNN model that incorporates past map
information seamlessly for estimating change areas in opti-
cal aerial images. In addition, to improve change detection
accuracy, we apply the Lovász hinge loss [1], [2], which is a
suitable loss for the change detection task.

3.1 Change Detection with Building Segmentation

Figure 1 shows our proposed framework. Inputs x1, x2,
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Fig. 1 Proposed method for detecting building changes.

and b1 are used to estimate the areas containing building
changes. x1 and x2 are optical aerial images containing ar-
eas with changes in buildings. x1 is a past aerial image, and
x2 is a current aerial image. b1 is the binary building label
of x1, and it is made from vector data of commercial maps.
First, the building areas of image x̃1 (which is the masked
image of x1) is extracted. b1 is used as the mask. Next, the
building areas of x2 are estimated by using a segmentation
network S . b̃2 expresses the estimated building area of x2,
and e2 is the multiple value of x2 and b̃2.

x̃1 and x̃2 are used as the inputs of change detection
network C, which estimates building change areas ỹ. The
loss between ỹ and change label image y is then calculated.
A structure like U-Net [8] is used as the base model of the
segmentation network S and the change detection network
C.

3.2 Integration of Segmentation Network

Our proposed method uses the segmentation network and
the change detection network, which have the same network
structure except for the input. The segmentation network
estimates the building areas of the current images.

b̃2 = S (x2). (1)

b̃2 is the estimated building label image. To make an image
pair with the images that were masked by the building areas
from the past image and the current image, x2 is multiplied
by the estimated building label image b̃2 in each channel.

e2 = b̃2x2. (2)

To simulate the mask operation, a threshold rectified linear
unit (ReLU) R was applied as follows:

x̃2 = R(e2) (3)

= max(e2,T ), (4)

where T is the threshold. x̃2 is used as the input to be paired
with the past image that was masked by using the building
area. This operation can remove false-positive areas that the
segmentation network predicts.

3.3 Model Optimization

An encoder-decoder network like U-Net is effective for de-
tecting building changes [5]. However, it is difficult to cap-

Fig. 2 Proposed network structure of the change detection network.

ture the building area accurately with a building change la-
bel. Buildings are ideally labeled with building change la-
bels according to the shape of the building. To capture the
building change area accurately, we introduce the Lovász
hinge loss [1], [2] to train the networks. Based on the Lovász
extension, the loss is expressed as

loss(ỹ) = ∆J(m(ỹ)). (5)

This is the Lovász hinge loss applied to the Jaccard loss. ∆J

is the Lovász extension of the Jaccard set function [1], [2].
ỹ is the output scores of network C. The i-th element of
misprediction m is defined below:

mi = max(1 − ỹiyi, 0). (6)

ỹi is the i-th element of the output scores C. yi is the i-th
element of the labels y. Equation (5) is used to optimize the
change detection network. The loss of building area detec-
tion can be expressed as

loss(b̃2) = ∆J(m(b̃2)). (7)

b̃2 is the output scores of network S .
As for the order of the learning procedure, first, the

segmentation network is trained by using Eq. (7) to segment
the buildings from the current images. Next, segmentation
network S and change detection network C are trained end-
to-end by using Eq. (5).

3.4 Network Structure

The structure of the change detection network is shown
in Fig. 2. The encoder of the network consists of a re-
peated structure with 3×3 convolutions, batch normaliza-
tion, ReLU, and 2 × 2 max pooling operation. The convolu-
tional filters are initialized by the normalization method pro-
posed by He et al. [9]. The decoder of the network consists
of a repeated structure with 3 × 3 convolutions, batch nor-
malization, ReLU, and transposed convolution with stride 2.
The decoder concatenates the output of the max pooling of
the encoder with the output of the transposed convolution.
Dropout [10] is used to improve the generalization. After
dropout is used, two convolutional filters are applied, and
the network outputs the estimated change labels. The output
of the network is not activated by a sigmoid function. The
segmentation network has a similar structure to the change
detection network. The only difference between the struc-
tures is their input. The segmentation network uses a single
optical aerial image as input.
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4. Experiments

4.1 Experimental Setting

Optical aerial images taken in Tokyo were used as evalua-
tion data. Building changes in regard to the optical aerial
images taken in 2016 and the optical aerial images taken in
2017 were extracted from the vector data (shapefile) of the
GEOSPACE electronic map [11], which contains seasonal,
shadow, and brightness changes. Change labels for the
buildings were created by taking the difference between the
vector data of the buildings created from the GEOSPACE
electronic map. There are two change cases of the change
labels: one is when the building demolished, and the other
is when the building is newly built. Hence, we estimate the
change areas, building areas to non-building areas and non-
building areas to building areas. The areas where buildings
become different types of buildings are not targeted. The
original size of the optical aerial images is 8000 × 6000
with a ground resolution of 25 cm/pixel. The images were
divided into 128 × 128. The divided images containing a
building change area were extracted from the optical aerial
images taken in Tokyo. The evaluation data was generated
from 100 optical aerial images. 70 images were used as
training data and validation data, and 30 images were used
as test data. 20% of the images in the training and validation
data were used for validating. 22,656 divided images were
used as training and validation data, and 7,813 divided im-
ages were used as test data. AdaBound [12] was used for op-
timizing model parameters, and the initial learning rate was
set to 0.001. The batch size was 16, and the maximum num-
ber of training epochs was 200. The threshold of ReLU T
was set to 0.05. This parameter was decided experimentally.

Table 1 shows the results obtained by applying each
method. The proposed method was compared to the fully
convolutional neural network (FCNN) proposed by Daudt
et al. [6]. Three cases were evaluated. In the first case, the
change detection network with the Lovász hinge loss (CD-
Net) learns the parameters from images only. The input and
output are the same as those used by FCNN [6]. The net-
work structure is the same as that of the proposed change
detection network C. In the second case, the segmentation
network and the change detection network learned indepen-
dently (Independent). The segmentation network learned
the parameters and estimated current building areas. The
masked images of the current images were made by using
the estimated building labels, and those of the past images
were made by using the past building labels obtained from
the map information. The estimated building labels were ob-
tained by thresholding the output values of the segmentation
network manually. A threshold is the same as the threshold
of the ReLU (0.05). The change detection network used the
masked images as input and learned the parameters indepen-
dently. In the third case, the proposed method (end-to-end)
connected the segmentation network and the change detec-
tion network seamlessly and learned the parameters in an

Table 1 Evaluation of building change detection.

Method Precision Recall F-score mIoU
FCNN [6] 0.332 0.523 0.391 0.258

CDNet 0.517 0.534 0.503 0.358
Independent 0.710 0.549 0.591 0.455
End-to-end 0.760 0.647 0.675 0.541

end-to-end manner.
As shown in the table, the proposed method outper-

forms the conventional method in terms of each metric. The
mean IoU (mIoU) of CDNet is 0.358. CDNet has a higher
mean IoU than that of FCNN (i.e., 0.258). This result means
the Lovász hinge loss is effective in regard to improving the
accuracy of change detection. The mIoU of the indepen-
dent model is 0.455. The independent model has a higher
mIoU than that of CDNet. The independent model used the
segmentation network with mIoU, precision, recall of 0.708,
0.775, and 0.841, respectively, for building detection. This
result shows that masking the building areas in advance is
effective, and the estimated building label estimated by the
segmentation network is effective as the mask of the cur-
rent images. The end-to-end model has higher values for
all metrics. Back propagating the loss of the change de-
tection network to the segmentation network is effective for
improving mIoU. In the end-to-end model, the segmentation
network was optimized to detect change areas. Hence, the
performance of the segmentation network is an important
factor for change detection. We used the segmentation net-
work that has a low mIoU (0.356) for evaluating the differ-
ence of the segmentation network in the end-to-end model.
In our experiment, the mIoU of the end-to-end model was
0.539. If the segmentation network has low mIoU, the end-
to-end model can obtain similar mIoU when the segmenta-
tion network that has high mIoU is used. A more accurate
segmentation model can improve change-detection results
intuitively. Therefore, by replacing the segmentation net-
work with the more accurate segmentation model, there is a
possibility that the model will achieve higher mIoU.

4.2 Performance of Building Change Detection

Examples of the estimated change labels used in each
method are shown in Fig. 3. As shown in the figure, the
conventional method cannot capture the building areas pre-
cisely. On the other hand, CDNet can capture the building
areas. CDNet tends to estimate a more integrated area than
FCNN. This is considered to be due to the direct optimiza-
tion of the Lovász hinge loss that represents IoU. However,
CDNet gives many false-negative areas, and false detection
occurs due to various differences such as color changes. The
independent model and the end-to-end model give less false-
negative areas compared to CDNet and FCNN. In addition,
the end-to-end model can capture the building areas more
precisely compared to the change areas estimated by the in-
dependent model. The end-to-end model used the segmen-
tation network that is the same network as the segmenta-
tion network that was used in the independent model. The
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Fig. 3 Estimated change label images: (a) past images, (b) current images, (c) change label images
estimated by FCNN [6], (d) change label images estimated by CDNet, (e) change label images estimated
by the independent model, (f) change label images estimated by the proposed end-to-end model, and
(g) correct change label images.

main difference between the independent model and pro-
posed end-to-end model is thresholding. The end-to-end
model applies the threshold ReLU to e2 instead of thresh-
olding manually. By training the segmentation network in
an end-to-end manner, the output values of the segmenta-
tion network were optimized to detect change areas, and
the estimated building areas were also optimized for the
threshold ReLU. Hence, the end-to-end model can remove
false-positive and false-negative areas properly and improve
performance compared to the independent model. There-
fore, it is concluded that the end-to-end model is signifi-
cantly better compared to FCNN by using end-to-end learn-
ing with the past map information and Lovász hinge loss.
This conclusion shows that the end-to-end learning can ob-
tain a shape representing the estimated building change ar-
eas that is closer to the shape of the actual buildings.

5. Conclusion

This paper proposes a building change detection method that
incorporates map data seamlessly. The proposed method
integrates the segmentation task and the building change
detection task with past map information. The proposed
method improves the accuracy of detecting building change
compared to the method that uses images only as input.
For future work, we will apply the proposed network to de-
tect changes in various classes of objects such as roads and
rivers.
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