
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.6 JUNE 2021
919

LETTER

Low-Complexity Training for Binary Convolutional Neural
Networks Based on Clipping-Aware Weight Update

Changho RYU†, Nonmember and Tae-Hwan KIM†a), Member

SUMMARY This letter presents an efficient technique to reduce the
computational complexity involved in training binary convolutional neu-
ral networks (BCNN). The BCNN training shall be conducted focusing on
the optimization of the sign of each weight element rather than the exact
value itself in convention; in which, the sign of an element is not likely
to be flipped anymore after it has been updated to have such a large mag-
nitude to be clipped out. The proposed technique does not update such
elements that have been clipped out and eliminates the computations in-
volved in their optimization accordingly. The complexity reduction by the
proposed technique is as high as 25.52% in training the BCNN model for
the CIFAR-10 classification task, while the accuracy is maintained without
severe degradation.
key words: binarized neural networks, low complexity, quantization-aware
training, convolutional neural networks

1. Introduction

Binary convolutional neural networks (BCNN) are convo-
lutional neural networks in which each element in the fea-
ture and weight is binarized so that can be represented with
a single bit [1]. BCNN can achieve an efficient inference
owing to the reduced memory bandwidth for the binarized
data. The accuracy degradation caused by the binarization
can be relieved to great extent if the training is performed in
a quantization-aware manner [1], [2], exceptionally for the
small or medium-scale classification tasks such as CIFAR-
10 [3] and SVHN [4]. The quantization-aware training how-
ever entails intractably high complexity because it still needs
to be performed with real-valued data.

There are several previous researches regarding
BCNN; some of them developed novel BCNN models to
alleviate the accuracy degradation caused by the binariza-
tion [1], [2], [5] and others tried to achieve efficient training
of them [6]. BinaryConnect [5] is a pioneering work that
showed a potential to achieve a comparable accuracy even
with the binarized weight. Binarized Neural Network [1]
binarizes the feature as well as weight without degrading
the accuracy severely. XNOR-Net [2] employs the scaling
factors to compensate for the loss due to the binarization
thereby improving the accuracy. The empirical study in [6]
provides several practical techniques to achieve an efficient
BCNN training.

Manuscript received November 3, 2020.
Manuscript revised January 29, 2021.
Manuscript publicized March 17, 2021.
†The authors are with School of Electronics & Information En-

gineering, Korea Aerospace University, 76, Hanggongdaehak-ro,
Deogyang-gu, Goyang-si, Gyeonggi-do, Republic of Korea.

a) E-mail: taehwan.kim@kau.kr
DOI: 10.1587/transinf.2020EDL8143

Table 1 Mathematical notations.

Notation Description
∥T∥ Average magnitude of the elements in a tensor or set T.

sign(T)
Bipolarizing each element in a tensor T
by picking its sign.

|T| Number of the elements in a tensor or set T.

clip(T, δ)
Clipping each element in a tensor T
to be in the range from −δ to δ, where δ ≥ 0.

This letter presents a novel technique to achieve a low-
complexity BCNN training. In the proposed technique, the
weight elements, which have been clipped out and thus their
signs are not likely to be flipped any more, are not updated.
The computations involved in updating them are thus elim-
inated effectively to reduce the complexity. In training the
BCNN model for the CIFAR-10 classification task, the com-
plexity reduction is as high as 25.52%, while the accuracy is
maintained without severe degradation. Table 1 summarizes
the mathematical notations that will be used throughout this
letter.

2. BCNN Training

BCNN are formed by stacking several blocks of identical
processing structure. Figure 1 shows the structure of the
BCNN block with the dimension of each tensor annotated.
In the figure, L denotes the overall loss. R is the set of the
real numbers and B is the set of two numbers, i.e., the car-
dinality of B is 2. Activation binarizes the feature. Scaled-
Sign binarizes the (real-valued) elements in the weight W
and scales them by ∥W∥ to calculate the approximate weight
elements in Ŵ [2]; that is, Ŵ = ∥W∥ sign(W). It should be
noted that ScaledSign has only to be carried out in the train-
ing because the inference can be performed directly with
Ŵ without necessitating W. The mathematical delineation
of each procedure in the block processing has been omit-
ted for brevity as it can be found from other previous litera-
tures [1], [2].

The BCNN training optimizes the parameters (W, β,
and γ in every block) iteratively. Each iteration is performed
in the order of the forward propagation, backward propaga-
tion, and update. Here, β and γ denote the biasing and scal-
ing parameters of BatchNormalization. Table 2 summa-
rizes the computational complexity involved in the forward
and backward propagations of the tensors whose dimen-
sions are annotated in Fig. 1. In analyzing the computational
complexity, the real-valued operation has been considered

Copyright c⃝ 2021 The Institute of Electronics, Information and Communication Engineers

920
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.6 JUNE 2021

Fig. 1 Processing structure of the basic building block of BCNN [2],
where the input feature F is processed to produce the output feature F′.

Table 2 Analysis of the computational complexity involved in process-
ing the block illustrated in Fig. 1.

Procedure Forward Backward

Convolution 2dchwk2
∂L
∂F 2dchwk2 + dhw
∂L
∂Ŵ

2dchwk2 − dck2

Pooling dhw ∂L
∂FC

dhw

BatchNormalization

∂L
∂FP

19dhw/s2 + 8d

8dhw/s2 + 2d ∂L
∂β dhw/s2 − d
∂L
∂γ 2dhw/s2 − d

Activation dhw/s2 ∂L
∂FB

dhw/s2

ScaledSign 2dck2 ∂L
∂W 8dck2 − d

even for the forward propagation through Convolution, so
that conforms to the practical implementations [7], [8] of
the quantization-aware training. The one multiplication has
been counted by 1.

The complexity directly involved in the weight up-
date is considerably high. The gradient of W is calculated
through the branch, which has been highlighted with a dif-
ferent color in Fig. 1, from the main backward propagation
path. This involves calculating ∂L

∂Ŵ
as well as ∂L

∂W , and its
complexity is relatively high as analyzed in Table 2. W can
be updated by clip

(
W − η · ∂L

∂W , δ
)
, where η represents the

learning rate and δ is a clipping value that needs set to a pos-
itive value so as to avoid exploding the magnitude of each
element [1], [6].

3. Clipping-Aware Weight Update

It can be expected that the sign of a weight element will be
flipped with a low probability after its magnitude has been
updated to such a large value to be clipped out in the BCNN
training. This may be convinced by the fact that the update
amount is gradually decreased according as the overall loss
is decreased with decaying learning rate as the training goes.
To observe the realization for the expectation above, experi-
ment has been conducted as follows: a BCNN model for the
CIFAR-10 classification task has been designed based on the
structure presented in [1], [5] and trained conventionally as
presented in the previous section with the clipping value of
0.1. Figure 2 shows the statistical results obtained by the ex-
periment, where each iteration has been executed with each
batch of 500 data. In the figure, P(i) is the sign-flipping prob-
ability for the elements in W̄(i) from the (i + 1)-th iteration
through the end of the training, i ≥ 1, where W̄(i) is the set of
the elements that have become clipped while in the i-th iter-

Fig. 2 Statistical results in training the BCNN model for the CIFAR-10
classification task, where CVn and FCn represent the n-th convolutional
and fully-connected blocks, respectively: (a) sign-flipping probability of
the clipped elements and (b) cumulative proportion of the clipped elements.

ation. |C(i)|/|W| is the cumulative proportion of the clipped
elements, where C(i+1) ≜ C(i) ∪ W̄(i) is the cumulative set
of the clipped elements by the i-th iteration, where C(1) is
initialized to null.

The results shown in Fig. 2 correspond well to our ex-
pectation. The probability of the sign-flipping event for the
clipped elements is very low and diminishes further as the
training goes. The last block (FC3) does not perform Acti-
vation to produce the real-valued results and thus the gra-
dient is unlimitedly propagated from the loss, so the update
amount of each weight is relatively large; nonetheless, the
probability of the sign-flipping event for the clipped ele-
ments is not so high even in the last block. In Fig. 2b, the
proportion of the clipped elements grows rapidly to a high
value. It is interesting to find that most of the elements be-
comes clipped after some iterations and their signs are rarely
flipped until the end of the training.

It is less meaningful to update the weight elements
whose signs will not be flipped any more, noting that we
do not need their exact values but their signs after the train-
ing ends. Considering that the clipped weight elements will
be flipped with a low probability as observed in Fig. 2a, the
proposed technique does not update them any more until the

LETTER
921

training ends and forces current values (which have been
clipped) to their optimization results. This can eliminate
the computations involved in their update, where the related
complexity is considerably high as analyzed in the previous
section.

The proposed technique can be applied on a per-block
basis. It does not update entire weight elements associated
with a block only after the proportion of the cumulative
number of the clipped elements in the block has become
larger than a threshold. Listing 1 describes the backward
propagation and update within the block illustrated in Fig. 1
based on the proposed technique with the threshold denoted
by τ. As applied on the per-block basis, the proposed tech-
nique can be carried out in such a structured way that can
eliminate entire computations regarding the update of W
within a block, which is useful for the vectorized implemen-
tation.

Some additional remarks that are worth noting are fol-
lowed.

• The complexity reduction by the proposed technique
is affected by the proportion of the elements that have
been determined so as not to be updated as well as the
amount of the eliminated computations with respect to
them.

• The accuracy can be affected by the proposed tech-
nique because the training results may become differ-
ent. This is because it is not absolutely impossible that
the clipped elements are going to be flipped.

• The clipping-aware update cannot be applied for the
BatchNormalization parameters (β and γ) because
those parameters are not binarized. Therefore, even in
the case that the entire weight elements have been de-
termined so as not to be updated, we cannot eliminate

Listing 1 Backward propagation and update within the
block illustrated in Fig. 1 for the i-th iteration based on the
proposed technique.

Input: Gradient of F′: ∂L∂F′
Output: Gradient of F: ∂L∂F
1: Calculate ∂L

∂FB
using ∂L∂F′ .

2: Calculate ∂L∂FP
using ∂L

∂FB
.

3: Calculate ∂L
∂FC

using ∂L
∂FP

.

4: Calculate ∂L∂γ using ∂L
∂FB

.

5: Update γ using ∂L∂γ .

6: Calculate ∂L∂β using ∂L
∂FB

.

7: Update β using ∂L∂β .

8: if |C(i) |
|W| < τ then ▷ Do not update W unless this condition is met.

9: Calculate ∂L
∂Ŵ

using ∂L
∂FC

.

10: Calculate ∂L∂W using ∂L
∂Ŵ

.

11: Update W using ∂L∂W .
12: C(i+1) ← C(i) ∪ W̄(i), where C(1) is initialized to null and W̄(i)

is the set of the elements that have become clipped while executing the
11-th line.

13: end if
14: Calculate ∂L∂F using ∂L

∂FC
and return it.

the computations of other gradients except for those re-
lated with the weight elements.

The next section investigates the effect of the proposed tech-
nique on the complexity and accuracy in practice.

4. Evaluation

The effectiveness of the proposed technique has been eval-
uated for the BCNN training of the models for the CIFAR-
10 and SVHN classification tasks. The BCNN model for
the CIFAR-10 classification task has been designed with the
structure described in [1], [5], and that for the SVHN clas-
sification task has been designed based on AlexNet [9], by
adapting the dimensions of its first and last blocks appropri-
ately. They have been trained with 60000 and 604388 im-
ages, respectively. The proposed technique has been applied
since the 6000-th and the 12000-th iterations in training the
models for the two classification tasks, respectively, and the

Fig. 3 Complexity reduction and proportion of the elements that have
been determined so as not to be updated further by the proposed technique,
in training the BCNN models for (a) the CIFAR-10 classification and (b)
SVHN classification tasks, respectively.

922
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.6 JUNE 2021

clipping value has been set to 0.1 consistently. The proposed
technique does not update the entire weight elements asso-
ciated with a block only after the cumulative proportion of
the clipped ones is larger than 0.9 and 0.8 in training the
two models, respectively. The stochastic-gradient-descent
optimizer has been employed with the momentum of 0.9.

The proposed technique reduces the overall complexity
involved in the BCNN training significantly. Figure 3 shows
the complexity reduction in each iteration for the BCNN
training along with the proportion of the elements that have
been determined so as not to be updated by the proposed
technique. The complexity has been estimated by count-
ing the number of the arithmetic operations involved in the
forward and backward propagations as described in the pre-
vious section. The complexity reduction becomes more sig-
nificant as the proportion of the elements that have been de-
termined so as not to be updated increases. The proportion
of the elements that are determined so as not to be updated
increases stepwise as the proposed technique is applied per
block. The proposed technique reduces the overall complex-
ity by 25.52% and 28.83% for the two models designed for
the CIFAR-10 and SVHN classification tasks, respectively.

The proposed technique maintains the accuracy with-
out severe degradation. Figure 4 shows that some difference
exists between the training curves obtained with and without
the proposed technique but is not noticeable in terms of the
final loss. Table 3 compares the test accuracy achieved by

Fig. 4 Validation loss in training the BCNN models for (a) the CIFAR-10
classification and (b) SVHN classification tasks, respectively.

Table 3 Test accuracy.

Classification task without proposed tech. with proposed tech.

CIFAR-10 87.73% 84.98%

SVHN 95.37% 94.06%

the BCNN models trained with and without the proposed
technique. The accuracy degradation is not higher than
2.75% and 1.31% for the models designed for the CIFAR-10
and SVHN classification tasks, respectively.

5. Conclusion

A novel technique has been proposed to reduce the com-
plexity involved in the BCNN training. The proposed tech-
nique does not update the weight elements, whose magni-
tudes have been updated to such large values that can be
clipped out, thus eliminating the related computations ef-
fectively. Evaluated for the BCNN model designed for the
CIFAR-10 classification task, the proposed technique can
reduce the overall complexity involved in the training by
25.52% without degrading the accuracy severely.

Acknowledgments

This work was supported by the GRRC program of
Gyeonggi province (2017-B02, Study on 3D Point Cloud
Processing and Application Technology) and Basic Science
Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education
(2018R1D1A1A09082763). The tools were supported by
IDEC, Korea.

References

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Proc. Adv. Neur. Inf. Proc. Syst.,
pp.4107–4115, NeurIPS Foundation, Dec. 2016.

[2] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-net:
Imagenet classification using binary convolutional neural networks,”
Proc. Euro. Conf. Comput. Vis., pp.525–542, Springer, Oct. 2016.

[3] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Rep., Citeseer, April 2009.

[4] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” Proc. NeurIPS Work. Deep Learning & Unsupervised Feature
Learning, pp.1–9, NeurIPS Foundation, Dec. 2011.

[5] M. Courbariaux, Y. Bengio, and J.P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” Proc.
Adv. Neur. Inf. Proc. Syst., pp.3123–3131, Dec. 2015.

[6] M. Alizadeh, J. Fernández-Marqués, N.D. Lane, and Y. Gal, “An
empirical study of binary neural networks’ optimisation,” Proc. Int’l
Conf. Learning & Representation, pp.1–11, 2018.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” Proc. Adv. Neur. Inf. Proc. Syst.,
pp.8026–8037, 2019.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R.
Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” USENIX Symp. Op. Sys. Design &
Impl., pp.265–283, Nov. 2016.

[9] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” Comm. ACM, vol.60,
no.6, pp.84–90, May 2017.

http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386

