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PAPER

Exploring the Outer Boundary of a Simple Polygon

Qi WEI†a), Member, Xiaolin YAO††, Luan LIU†, and Yan ZHANG†, Nonmembers

SUMMARY We investigate an online problem of a robot exploring the
outer boundary of an unknown simple polygon P. The robot starts from
a specified vertex s and walks an exploration tour outside P. It has to see
all points of the polygon’s outer boundary and to return to the start. We
provide lower and upper bounds on the ratio of the distance traveled by the
robot in comparison to the length of the shortest path. We consider P in two
scenarios: convex polygon and concave polygon. For the first scenario, we
prove a lower bound of 5 and propose a 23.78-competitive strategy. For
the second scenario, we prove a lower bound of 5.03 and propose a 26.5-
competitive strategy.
key words: computational geometry, online algorithm, path planning, ex-
ploration, competitive analysis

1. Introduction

A fundamental problem in computational geometry and
robotics is that of exploring an unknown environment [1]–
[3]. In many cases, the robot is equipped with a vision
system that can continuously provides the visibility of its
current position. The robot has to inspect an unknown envi-
ronment based only on what it has seen so far and to return
to the starting point. This problem has important applica-
tions [4]–[6], such as rescuing human beings in disaster area,
exploring damaged nuclear base and so on.

Over the last two decades, many geometric and graph
theoretic versions of this problem have been studied. A gen-
eral model was introduced by Deng et al. [7]. The robot is
placed in a polygon possibly with holes. It is equipped with
a 360◦ vision system that can see infinite range as long as
no obstacle blocks the view. It’s task is to see all points in
the polygon and to return to the start. Deng et al. [7] first
showed that competitive strategy exists. For general poly-
gon without holes, they proposed a 2016-competitive strat-
egy inspired by a greedy offline approach. Later, Hoffmann
et al. [8] improved the competitive ratio to 26.5. There is
still a gap between the competitive ratio 26.5 and the lower
bound 1.207 given by Deng et al. [7]. Deng et al. [7] also
proposed a 2-competitive strategy for rectilinear polygon
without holes. Later, Hammar et al. [9] improved the com-
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petitive ratio to 3/2. They used L1-metric to measure the
length of the robot’s path. Kleinberg [10] showed that the
lower bound for this case is 5/4. Fekete et al. [11] studied the
exploration of rectilinear polygon without holes under dis-
crete visibility. They showed an O(logA)-competitive strat-
egy, where A is the aspect ratio of the polygon. Premkumar
et al. [12] used multiple robots to explore a rectilinear poly-

gon without holes. They proposed a 2(
√

2p+log p)
1+log p -competitive

strategy, where p is the number of robots.
For the case that the polygon contains holes, Albers

et al. [13] showed that the lower bound is Ω(h), where h is
the number of the holes. Deng et al. [7] proposed an O(h)-
competitive strategy for orthogonal polygons with h holes.
Czyzowicz et al. [14] proposed an O(P+D

√
k)-competitive

strategy for exploring general polygon with holes, where P
is the total perimeter of the region (including perimeters of
holes), D is the diameter of the convex hull of the polygon,
and k is the number of holes. Georges et al. [15] proposed an
(h+c0)!-competitive strategy for general polygon with holes
under the assumption that each hole is marked with a special
color, where c0 is a constant, h is the number of holes. They
also showed a lower bound 2.618 for this case. Disser et
al. [16] considered the problem of mapping a polygon with
holes using a compass.

Previous research mainly focuses on the exploration of
the interior of the polygon. In this paper, we are interest in
a new related model (i.e. the exploration of the outer bound-
ary of the polygon). It can be motivated by the following
application. Imagine that a robot wants to explore the shore-
line of a lake or to know the shape of an obstacle during
the exploration of an environment. In this model, the robot
equipped with an unlimited vision system starts from a ver-
tex of a simple polygon. The goal of it is to see all points of
the polygon’s outer boundary and to return to the start. The
robot can not enter the polygon and has no previous knowl-
edge of it. The major difference between previous work and
ours is that the robot’s path must be outside the polygon.
We ask for the strategy that can compute a short exploration
tour. The performance of the strategy is measured by the
competitive ratio.

It is difficult to give such a competitive strategy. Be-
cause we should consider not only the correctness of the
strategy but also the competitiveness of the strategy. The
robot can not always afford to encircle the polygon [17]. If
the polygon is a thin long one, the exploration tour is not
related to its perimeter. This will lose the competitiveness.
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Fig. 1 (a) Visibility and the cut. (b) An optimal exploration tour.

See Fig. 1 (b) for an example. One might wonder if the prob-
lem can be solved by converting it into the problem of ex-
ploring a polygon with one hole by placing an outer bound-
ary box. In fact we can not add this boundary box because
the shape of the polygon is unknown in advance. Not to
mention that there is no strategy with constant competitive
ratio known for general polygons with holes.

This paper is organized as follows. In Sect. 2, we give
the model of the outer boundary exploration problem and
some preliminary results. In Sect. 3, we show lower bounds
for both convex and concave polygons. In Sect. 4, we pro-
pose an exploration strategy for convex polygons together
with the analysis. In Sect. 5, we propose and analyze a strat-
egy for concave polygons. In Sect. 6, we make some con-
cluding remarks.

2. Preliminaries

This section formally defines the problem and gives some
preliminary results.

2.1 Definitions

Let P be a simple polygon which has no holes. Let bd denote
the outer boundary of P. The robot is modeled as a point.
It is equipped with an unlimited 360◦ vision system. It can
walk along a trajectory in arbitrary number of units. The unit
is a constant distance specified by the robot’s manufacturer.
It’s task is to walk an exploration tour T starting from s. T
must be outside of P. Every point on bd must be visible
from some point on T . We want T to be as short as possible.
Let S P(s, t) denote the shortest path outside P from s to a
point t. If the robot walks S P(s, q) to a vertex q of P, one
of its adjacent polygon edges will not be visible until q is
reached. The extension of this invisible edge is called a cut
C of P with respect to s. See Fig. 1 (a) for an example.

When a vertex is visible to the robot, we say it is dis-
covered. When the cut of a vertex is reached, we say it is

explored. Exploring bd of P is equivalent to exploring all
vertices of P, i.e., to visiting all cuts of P with respect to
s. Figure 1 (b) shows an optimal exploration tour with full
knowledge of P. From this instance, we know that the ex-
ploration tour is not necessarily related to the perimeter.

In this paper, competitive ratio is used to measure the
performance of the strategy,

r = supP
|T (P)|
|Topt(P)| ,

where |T (P)| is the length of the robot’s path, |Topt(P)| is the
length of the shortest exploration path.

2.2 Preliminary Results

For exploring a vertex without loss of competitiveness,
Hoffmann et al. [8] let the robot approach the vertex along a
clockwise oriented circle circ(s, t) spanned by s and t, where
s is the local start and t is the target vertex. For analyzing
the relation between the robot’s path and the shortest path,
they also define a geometric structure called angle hull. D
is denoted by a polygon in the plane. The set of all points
that can see two points of D at a right angle is called the
angle hull of D, denoted by AH(D). They showed that the
perimeter of AH(D) is at most π/2 times the perimeter of
D if there is no further obstacles. Exploring a polygon P is
equivalent to explore all of its reflect vertices. Hoffmann et
al. [8] divides these vertices into two types: left reflect ver-
tex and right reflect vertex. They show a strategy that can
recursively explore groups of left and right reflect vertices
and prove that the competitive ratio is 26.5.

For the problem of searching an unknown target on a
line, Baezayates et al. [18] proposed a 9-competitive strat-
egy called doubling and prove that it is optimal by showing
a matching lower bound. The robot starts from the origin
O and walks to the left and right along the line alternately.
In the first step, the robot walks 20 units to the right. If the
target is not reached, it walks back to the origin O. Then,
it walks 21 units to the left. If the target is not reached, it
walks back to the origin O. In the next steps, it walks twice
the units of previous step (2i units) to the right or left alter-
nately, until the target is reached.

3. Lower Bounds

In this section, we analyze the lower bound of the problem
of exploring the outer boundary of a simple polygon. We
consider the simple polygon in two scenarios: convex poly-
gon and concave polygon.

Theorem 1. The competitive ratio of exploring the outer
boundary of a convex polygon is no less than 5.

Proof. Since P may be a thin long one, the exploration tour
is not necessarily related to the perimeter of P. See Fig. 1 (b)
for an example. To analyze the lower bound, we construct
a special instance shown in Fig. 2 (a) depending on the be-
havior of the strategy. We set that there is only one cut that
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Fig. 2 (a) A lower bound instance for convex scenario. (b) A lower
bound instance for concave scenario.

should be visited. Then, Topt(P) is only on the left side of the
polygon. At the starting vertex s, the robot does not know
which side the cut is located. Without loss of competitive-
ness, any deterministic competitive strategy will explore bd
on both left and right sides. In this instance, when the cut pa
is reached, bd is explored. We assume that the robot walks
along sa to explore bd on the left side, and walks along st
to explore bd on the other side, where sa is the shortest path
from s to pa. This can be seen as the problem of searching a
point on a line, where s is the starting point and a is the tar-
get point. Baezayates et al. [18] showed that 9 is the lower
bound on the competitive ratio for this problem. Thus, for
any deterministic competitive strategy, we have

r =
|T (P)|
|Topt(P)|

≥ 9|sa| + |sa|
2|sa|

≥ 5,

the proof is complete. �

Theorem 2. The competitive ratio of exploring the outer
boundary of a concave polygon is at least 5.03.

Proof. To prove the lower bound, we give a special instance
shown in Fig. 2 (b). We show that any strategy will neces-
sarily make a detour compared to the shortest path. In this
instance, bd consists of two parts: bd1, the boundary chain
from vertex a to d which is in a rectangular triangle pocket;
bd2, the other parts of bd.

For the rectangular triangle pocket(bd1), a is at the right
angle, and there are two very small pockets at the other two
corners. These two small pockets are formed such that the
one at point c must be visited and the other one at point b
is not. We call the line segment connecting vertex b and c
threshold. When the threshold is reached, the robot can see
which small pocket is still to visit. It is easy to see that the

lower bound for exploring bd1 is (1 +
√

2)/2 ≈ 1.2071.
Next, we consider the exploration of bd2. It is equiva-

lent to explore the relative convex hull(RCH) of P. As dis-
cussed in the proof of Theorem 1, we set Topt(RCH(P)) only
on the left side of the polygon. When the robot reaches the
cut de, bd2 is explored. Let se denote the shortest path from
s to the cut de. Since the exploration tour is not necessarily
related to the perimeter of P, without loss of competitive-
ness, any deterministic competitive strategy will explore bd2

on both left and right sides. This can be seen as the problem
of searching a point on a line, where s is the starting point
and e is the target point. Baezayates et al. [18] showed that 9
is the lower bound on the competitive ratio for this problem.

Let Topt(bd1) and Topt(bd2) denote the shortest path to
explore bd1 and bd2 respectively. Thus, for any determinis-
tic competitive strategy, we have

r =
|T (P)|
|Topt(P)|

≥ 9|se| + |ea| + 1.2071|Topt(bd1)| + |sa|
|Topt(P)|

≥ 9|se| + |ea| + 1.2071|Topt(bd1)| + |sa|
2|sa| + |Topt(bd1)| .

To achieve the worst case, assume that vertex a almost
coincides with vertex d. In �sea, let θ denote ∠ase and |sa| =
1, then |se| = cos θ and |ea| = sin θ. The maximum value
of 9|se| + |ea| is 9.06|sa| by taking θ = 0.12. In the view
of the simple inequality a+b

c+d ≤ max( a
c ,

b
d ), we assume that

|Topt(bd1)| approaches zero in this instance. As above, we
have

r ≥ 10.06|sa| + 1.2071|Topt(bd1)|
2|sa| + |Topt(bd1)|

≥ 10.06|sa|
2|sa|

≥ 5.03,

thus, the proof is complete. �

4. Exploring the Outer Boundary of Convex Polygons

In this section, we first consider how to explore a single ver-
tex on bd. Then, we consider the exploration of all vertices
and give a 23.78-competitive strategy.

4.1 The Strategy

Exploring a single vertex on bd is a essential subtask of
our strategy. It needs a little care. The robot can not walk
straight to the vertex to reach the cut because the cut may
passes by the robot’s initial position very closely. This will
lose competitiveness, see cut C in Fig. 1 (a) for an exam-
ple. The optimal path is sa. Instead, we use a clockwise
half-circle to cope with this situation. Assume that the robot
wants to explore the vertex q visible from the starting point
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Algorithm 1 Explore the outer boundary of a convex poly-
gon
1: procedure ExploreBDCX(P, s)
2: maintain tl and tr;
3: i← 0;
4: repeat
5: j← i%2;
6: if j = 0 then
7: ExploreVertex(P, s, tl, cw, i);
8: else
9: ExploreVertex(P, s, tr , ccw, i);

10: end if
11: i = i + 1;
12: until tl = tr
13: end procedure

Algorithm 2 Explore a vertex on bd
1: procedure ExploreVertex(P, s, target, orientation, i)
2: maintain the target;
3: S P1 ← 0;
4: if i is not 0 or 1 then
5: walk along the shortest path S P(s, returnlast) from s to the

return point of last step in this orientation.
6: S P1 ← S P(s, returnlast);
7: end if
8: back ← the last vertex before target on S P(s,CP);
9: walk 2i − S P1 units along circ(back, target);

10: whenever back becomes invisible update back;
11: return to s along the shortest path;
12: end procedure

s, it walks a half-circle spanned by q and s, denoted by
circ(s, q). When the robot reaches the cut C of q at a, q
is explored. With Thales’ theorem, we know that the in-
tersection point a is the point on C closest to s. The ratio
between the length of the circular arc from s to a and |sa|
can be bounded by π/2.

Then we consider how to explore all vertices on bd.
If P is a rectilinear polygon, the cut of each visible vertex is
known. The robot can walk to the cut of next vertex in clock-
wise order. But for general polygons, this approach will
lose competitiveness because P can be a thin long one, see
Fig. 1 (b) for an example. The exploration path is not neces-
sarily related to the perimeter of P. We use doubling strategy
to cope with this situation. The robot walks along half-circle
in cw/ccw orientation alternately, such that at each step i, it
walks 2i units in one orientation, comes back to the start-
ing point, then walks 2i+1 units in the other orientation. It
is ending when a vertex is discovered by the robot in both
orientations.

Based on above analysis, we give the strategy for ex-
ploring the outer boundary of a convex polygon. We list the
complete pseudo-code in the forms of Algorithm 1 and 2.

ExploreBDCX is the main program of our strategy. Its
task is to direct the robot to explore the outer boundary of a
given convex polygon. We use tl and tr to denote the robot’s
current target vertex on the left and right side respectively.
During the exploration, the update of tl and tr will be main-
tained. When ExploreBDCX is called, tl (tr) is the first ver-

Fig. 3 An instance of the strategy for convex polygons.

tex that is visible from s and has an invisible edge on the
left(right) side. We call ExploreVertex to explore tl and tr in
cw and ccw orientation alternately until tl is equal to tr, i.e.
all vertices have been explored.

ExploreVertex is the sub program of our strategy. Its
task is to direct the robot to explore a target vertex on bd. We
use CP to denote the robot’s current position. We use back
to denote the last vertex before CP on S P(s,CP). When
ExploreVertex is called for the first time, the robot walks 20

units along circ(back, tl) in cw orientation. Then the robot
returns to s along the shortest path. When ExploreVertex is
called for the second time, the robot walks 21 units along
circ(back, tr) in ccw orientation. Then the robot returns to
s along the shortest path. When ExploreVertex is called
for the third and later times, the robot first walks along
the shortest path from s to the return point of last step in
this orientation, and then walks the remaining units along
circ(back, target). On the exploration way, it may happen
that the target(tl or tr) is explored and a new vertex after it is
discovered. Then the target is updated to this new vertex. It
may also happen that the robot loses sight of back, see point
d in Fig. 3 for an example. In this case, we update back.

Figure 3 shows an instance of our strategy. Initially, tl
is p and tr is n. The robot starts with a half-circle spanned by
s and p. At point a, p is explored and tl is updated to q. The
robot goes on to explore q. Note that the half-circle spanned
by s and q is passing through a. At point b, the robot has
walked one unit in cw orientation. Then, it walks back to
s along the shortest path. In the next step, the robot walks
along a half-circle spanned by s and n in ccw orientation. At
point c, n is explored and tr is updated to r. The robot goes
on to explore r. Note that the half-circle spanned by s and r
is passing through c. At point d, s becomes invisible. back is
updated to n. The robot walks along the half-circle spanned
by n and r. At point e, r is explored and tr is updated to t. At
point f , the robot has walked two units in ccw orientation.
Then, it walks back to s along the shortest path. In the third
step, the robot walks along the shortest path from s to b.
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Then, it walks along the half-circle spanned by s and q. At
point g, q is explored and tl is updated to t. At this time, tl is
equal to tr, bd is explored. Then, the robot returns to s along
the shortest path.

4.2 The Analysis

In this section, we analyze the performance of the strategy
by competitive ratio.

Theorem 3. The strategy for exploring the outer boundary
of a convex polygon is 23.78-competitive.

Proof. For convenience, we give an instance shown in
Fig. 4. Without loss of generality, let e be the last explored
vertex on bd. With our strategy, the robot discovers e at
point er, and explores e at point el. We use S Pl (S Pr) to
denote the shortest path from s to the extension of ed (e f ).
Based on Topt(P), there are two cases to consider.

Case 1. Topt(P) is less than the perimeter of P. We use
S Plm (S Prm) to denote the left (right) part of Topt(P) and
then Topt(P) = 2(S Plm + S Prm). In the instance shown in
Fig. 4, S Plm(S Prm) is the shortest path from s to the exten-
sion of dc(de), i.e., sdl (sg+gdr). Note that the last explored
vertex of T (P) may not be the same as that of Topt(P), see
Fig. 4 for an example, the former is e and the latter is d.
Then, Topt(P) may not be 2(S Pl + S Pr). Obviously, it can
achieve a worse instance if Topt(P) < 2(S Pl + S Pr). In this
case, either |S Plm| > |S Pl| or |S Prm| > |S Pr |. Because ex-
ploring bd is equivalent to discovering a vertex on both left
and right sides, and the length of the shortest path from s
to discover a vertex is longer than that to discover its previ-
ous vertex on the same side, and the last explored vertex of
Topt(P) is the descendant of the last explored vertex of T (P)
on either left or right side. See Fig. 4, the length of the short-
est path to discover d is longer than that to discover e on the
right side, i.e., |S Prm| > |S Pr |. With the property of our
strategy, we have 1

2 |AH(S Pr)| < |AH(S Pl)| ≤ 2|AH(S Pr)|,
|S Pl| < |AH(S Pl)|, |S Pr | < |AH(S Pr)|, |AH(S Pl)| ≤ π2×|S Pl|
and |AH(S Pr)| ≤ π

2 × |S Pr |. Then, |S Pl| < π × |S Pr | and
|S Pr | < π × |S Pl| both holds. If |S Plm| > |S Pl|, |S Pl |+|S Pr |

|S Plm |+|S Prm | <

Fig. 4 An instance for the proof of theorem 3.

(1+π)|S Pl |
|S Plm | < 1 + π. If |S Prm| > |S Pr |, |S Pl |+|S Pr |

|S Plm |+|S Prm | <
(1+π)|S Pr |
|S Prm | <

1 + π. Thus, we have

|S Pl| + |S Pr |
|S Plm| + |S Prm| < 1 + π.

With the competitive ratio 9 of doubling strategy, the
robot walks at most 9 times longer than the length of
AH(S Pl) when it reaches point el. Then, |T (P)| is at most
9|AH(S Pl)| + |S Pl|. We add the length of S Pl because the
robot should return to the start point s. Also, the length
of AH(S Pl) is at most π/2 times longer than |S Pl| and
|S Pl| < π × |S Pr |. Thus, we have

r =
|T (P)|
|Topt(P)|

≤ 9|AH(S Pl)| + |S Pl|
2(|S Plm| + |S Prm|)

≤ 9|AH(S Pl)| + |S Pl|
2(|S Pl| + |S Pr |) × (1 + π)

≤ 9 × π/2 × |S Pl| + |S Pl|
2(1 + π)|S Pl| × (1 + π) × π

≤ 23.78.

Case 2. Topt(P) is the perimeter of P. We use R to
denote the perimeter of P. As discussed in Case 1, we have

r =
|T (P)|
|Topt(P)|

≤ 9|AH(S Pl)| + |S Pl|
|R|

≤ 9|AH(S Pl)| + |S Pl|
|S Pl| + |S Pr |

≤ 9 × π/2 × |S Pl| + |S Pl|
(1 + π)|S Pl| × π

≤ 11.48.

Thus, the proof is complete. �

5. Exploring the Outer Boundary of Concave Polygons

In this section, we first propose a competitive strategy for
concave polygons. And then analyze the performance of it.

5.1 The Strategy

We use two phases to explore bd of a concave polygon.
Phase 1. Explore the boundary of the relative convex hull
(RCH) of P which can be seen as the shape of a rubber band
spanned around P, see Fig. 5 for an example. Since RCH(P)
is a convex polygon, we can use the strategy proposed in
Sect. 4 to complete this task. Phase 2. Explore the pock-
ets on bd. After phase 1, all pockets on bd have been found.
We can compute the shortest path denoted by S Pc to connect
each pocket. Since each pocket is a simple polygon, we use
the 26.5-competitive strategy to explore each of them and
use S Pc to connect them.
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Algorithm 3 Explore the outer boundary of a concave poly-
gon
1: procedure ExploreBDCV(P, s)
2: ExploreBDCX(RCH(P), s) while maintaining the PocketList;
3: compute S Pc;
4: walk along S Pc to visit each pocket and use the

26.5-competitive strategy to explore each pocket.
5: return to s along S Pc;
6: end procedure

Fig. 5 An instance of the strategy for concave polygon.

Based on these two phases, we give the strategy for
exploring the outer boundary of a concave polygon. The
pseudo-code is listed in the form of Algorithm 3.

Figure 5 shows an instance of this strategy. Firstly, the
robot explores the boundary of RCH(P) with algorithm 1
and 2. e is the last explored vertex. The robot discovers e at
point er and explores it at point el. During the exploration,
pockets P1 and P2 found on bd are inserted into PocketList,
as targets for next phase. After phase 1, the robot knows the
shortest path S Pc. Then, the robot first walks along sa to
vertex a and explores P1 with the 26.5-competitive strategy.
Then, it returns to s along sa. Next, the robot walks along
sh to vertex h and explores P2 with the 26.5-competitive
strategy. Then, it returns to s along sh.

5.2 The Analysis

In this section, we analyze the performance of the strategy
by competitive ratio.

Theorem 4. The competitive ratio of the strategy for explor-
ing the outer boundary of a concave polygon is 26.5.

Proof. For convenience, we give an instance shown in
Fig. 5. As above, we use two phases to explore P. Let
T 1(P) and T 1

opt(P) denote the robot’s path and shortest path
in phase 1. Let T 2(P) and T 2

opt(P) denote the robot’s path
and shortest path in phase 2. Without loss of generality, let
e be the last explored vertex on the boundary of RCH(P) in
phase 1. With our strategy, the robot discovers e at point er,
and explores e at point el. We use S Pl (S Pr) to denote the
shortest path from s to the extension of ed (e f ). Based on

T 1
opt(P), there are two cases to consider.

Case 1. T 1
opt(P) is less than the perimeter of RCH(P).

As discussed in theorem 3, we know that T 1(P) is at most
23.78 times T 1

opt(P). Let T (Pi) and Topt(Pi) (i = 1, 2, 3 . . . n)
denote the robot’s path and the shortest path to explore the
pocket Pi on bd. Then, |T 2

opt(P)| = |Topt(P1)| + |Topt(P2)| +
. . . + |Topt(Pn)| + |S Pc|. Since Topt(P) should explores both
the boundary of RCH(P) and the pockets on bd, we have
|Topt(P)| ≥ |T 1

opt(P)|+ |Topt(P1)|+ |Topt(P2)|+ . . .+ |Topt(Pn)|
and |Topt(P)| ≥ |S Pc|+ |Topt(P1)|+ |Topt(P2)|+ . . .+ |Topt(Pn)|.
Together with the 26.5-competitive strategy, we have

r =
|T (P)|
|Topt(P)|
=
|T 1(P)|+ |T 2(P)|
|Topt(P)|

≤ 23.78|T 1
opt(P)|+ 26.5(|Topt(P1)|+Topt(P2))+ |S Pc|

|Topt(P)|
Based on the relation between |T 1

opt(P)| and |S Pc|, we con-
sider two subcases.

Case 1.1. |T 1
opt(P)| ≤ |S Pc|. With the simple inequality

a+b
c+d ≤ max( a

c ,
b
d ), we have

r ≤ 23.78|T 1
opt(P)|+ 26.5(|Topt(P1)|+Topt(P2))+ |S Pc|
|S Pc|+ |Topt(P1)|+ |Topt(P2)|

≤ 24.78|S Pc|+ 26.5(|Topt(P1)|+Topt(P2))

|S Pc|+ (|Topt(P1)|+ |Topt(P2)|)
≤ 26.5.

Case 1.2. |T 1
opt(P)| > |S Pc|. With the simple inequality

a+b
c+d ≤ max( a

c ,
b
d ), we have

r ≤ 23.78|T 1
opt(P)|+ 26.5(|Topt(P1)|+Topt(P2))+ |S Pc|
|T 1

opt(P)|+ |Topt(P1)|+ |Topt(P2)|

≤ 24.78|T 1
opt(P)|+ 26.5(|Topt(P1)|+Topt(P2))

|T 1
opt(P)|+ (|Topt(P1)|+ |Topt(P2)|)

≤ 26.5.

Case 2. T 1
opt(P) is the perimeter of RCH(P). As dis-

cussed in theorem 3, we know that T 1(P) is at most 11.48
times T 1

opt(P). Let R denote the perimeter of RCH(P). Then,
|T 1

opt(P)| = |R|, |Topt(P)| = |Topt(P1)| + |Topt(P2)| + . . . +
|Topt(Pn)| + |R|. Together with |S Pc| ≤ |R| and the 26.5-
competitive strategy, we have

r =
|T (P)|
|Topt(P)|
=
|T 1(P)|+ |T 2(P)|
|Topt(P)|

≤ 11.48|T 1
opt(P)|+ 26.5(|Topt(P1)|+Topt(P2))+ |S Pc|
|R|+ (|Topt(P1)|+ |Topt(P2)|)

≤ 12.48|R|+ 26.5(|Topt(P1)|+Topt(P2))|
|R|+ (|Topt(P1)|+ |Topt(P2)|)
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≤ 26.5

Thus, the proof is complete. �

6. Conclusion

In this paper, we considered the outer boundary exploration
of simple polygons. For convex polygons, we showed a
lower bound of 5 and presented a 23.78-competitive strat-
egy. For concave polygons, we proved a lower bound of
5.03 and proposed a 26.5-competitive strategy.

There is still a gap between the upper bound and the
lower bound. It would be interesting to propose a new strat-
egy to reduce the gap.
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