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PAPER

Attention Voting Network with Prior Distance Augmented Loss for
6DoF Pose Estimation∗

Yong HE†a), Student Member, Ji LI†b), Xuanhong ZHOU†, Zewei CHEN†, and Xin LIU†, Nonmembers

SUMMARY 6DoF pose estimation from a monocular RGB image is a
challenging but fundamental task. The methods based on unit direction
vector-field representation and Hough voting strategy achieved state-of-
the-art performance. Nevertheless, they apply the smooth �1 loss to learn
the two elements of the unit vector separately, resulting in which is not
taken into account that the prior distance between the pixel and the key-
point. While the positioning error is significantly affected by the prior dis-
tance. In this work, we propose a Prior Distance Augmented Loss (PDAL)
to exploit the prior distance for more accurate vector-field representation.
Furthermore, we propose a lightweight channel-level attention module for
adaptive feature fusion. Embedding this Adaptive Fusion Attention Module
(AFAM) into the U-Net, we build an Attention Voting Network to further
improve the performance of our method. We conduct extensive experi-
ments to demonstrate the effectiveness and performance improvement of
our methods on the LINEMOD, OCCLUSION and YCB-Video datasets.
Our experiments show that the proposed methods bring significant perfor-
mance gains and outperform state-of-the-art RGB-based methods without
any post-refinement.
key words: 6DoF pose estimation, semantic segmentation, keypoint local-
ization, deep learning, attention mechanism

1. Introduction

6DoF pose estimation is to detect the known objects and
estimate the 6DoF pose, i.e., the 3D rotation and location,
from an RGB(-D) image with a cluttered scene. It is a
crucial and challenging task for a variety of applications
including autonomous driving [1], [2], robotic manipula-
tion [3], [4], augmented reality [5], etc. With the progress
of deep learning based methods for 6DoF pose estima-
tion, many RGB based methods [6]–[10] and RGB-D based
methods [1], [11]–[14] have been proposed to overcome the
limitations of traditional methods. Benefiting from the ge-
ometric information in the depth image, the latter methods
can usually achieve higher accuracies than the former. How-
ever, these works rely heavily on depth images, which can-
not be readily applied in certain scenes, including outdoor,
underwater, etc. In contrast, 6DoF pose estimation from a
single RGB image is a more challenging and extensive task.

In this work, we focus on estimating the 6DoF pose
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from a monocular RGB image without any post-refinement.
A few recent deep learning-based methods [6], [15]–[17]
build end-to-end Convolutional Neural Networks (CNNs)
to directly estimate the object’s initial 6DoF pose. How-
ever, some time-consuming post processes, such as Iterative
Closest Point (ICP) [18], are implemented by those methods
to refine the rough initial pose. Most recent state-of-the-art
methods, such as [7]–[10], [19], adopt a two-stage pipeline
based on dense prediction. One significant difference be-
tween these two-stage approaches is the intermediate rep-
resentation. [9], [19], [20] locate keypoints by regressing
relative offsets or heatmaps to establish 2D-3D correspon-
dences. [8], [21]–[23] predict the 3D coordinates of each
pixel to establish 3D-3D correspondences. These interme-
diate representation methods are limited by the complexity
of the unlimited 2D or 3D continuous search space. In par-
ticular, in order to reduce the dimension of search space,
Zakharov et al. [8] adopt texture mapping to construct a
quantified 2D correspondence map. Because of the quan-
tization, the pose estimator can only estimate a coarse initial
pose. A post-refinement is exceedingly required to acquire
advanced performance.

Unit direction vector-field representation and Hough
voting scheme were proposed for robust 2D keypoint lo-
calization and demonstrated its superiority in [6], [7], [17].
This manner can address the common occlusion naturally.
Furthermore, this representation limits the search space to
the normalized 2D space, which can dramatically reduce the
output space complexity without quantization. However, the
Hough voting scheme is non-differentiable so that it can-
not be integrated into the learning of vector-field represen-
tation for joint training, and [6], [7], [17] just use smooth �1
loss [24] to learn it. This may cause the learned vector-field
is not accurate enough for the Hough keypoint localization.
More specifically, assuming that the unit vectors of different
points have the same angular error, those points that are fur-
ther away from the keypoint may generate greater locating
deviation. But the distance is not taken into account during
training. In this work, exploiting the context prior informa-
tion of the distance between pixels and keypoints, we pro-
pose a Prior Distance Augmented Loss (PDAL) to enable
distance to be taken into account during training. It aug-
ments the weight of those pixels that may generate larger
positioning errors, thereby further improving the accuracy
and robustness of keypoint localization.

A U-structure fully convolutional network is adopted
by [6], [7], [14], [17] for 6DoF pose estimation. U-Net [25],
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[26] is widely used in medical image segmentation. Due
to the stable structure of human organs and concise se-
mantic information in the medical images, it has highly
efficient performance on a small dataset. However, its rep-
resentation ability is limited for estimating the object’s pose
on a large dataset with cluttered scenes. Some of its vari-
ants [27]–[29] have achieved higher accuracy. Nevertheless,
they suffer from higher model complexity and heavier com-
putational burden. Attention mechanism has attracted a se-
ries of researches on computer vision in recent years, which
shows its great potential. Inspired by [29]–[33], we design
a lightweight channel-level attention module (Adaptive Fu-
sion Attention Module, AFAM) for adaptive feature fusion,
so as to maintain the advantages of the long connection
while enhancing the model’s feature representation ability.
xEmbedding the AFAM into the PVNet [7] (a standard U-
Net), we build an Attention Voting Network to further im-
prove the performance of our method.

In summary, we first propose the PDAL to learn more
accurate vector field representation for 2D keypoint lo-
calization. Then, we propose an Attention Voting Net-
work, which further improves the performance of our
method. To evaluate our approaches, we conduct exper-
iments on three widely-used benchmarks for 6DoF pose
estimation: LINEMOD [34], OCCLUSION [35] and YCB-
Video [6] datasets. The experiments demonstrate that pro-
posed methods significantly improve the performance of
PVNet and outperform state-of-the-art RGB-based methods
without any post-refinement.

2. Related Work

In this section, we introduce the related work of the 6DoF
pose estimation and attention mechanism. The methods of
6DoF pose estimation can be divided into holistic methods
and correspondence based methods.

Holistic methods. Holistic methods estimate the rota-
tion and location parameters of known objects from a given
image in a single shot. Traditionally, template-based ap-
proaches [36], [37] render synthetic image patches by com-
prehensive poses to construct a template database and then
compute the best-matched template pose. The accuracies
of these approaches depend on the completeness of the tem-
plate database and they are not robust to occlusion and light-
ing condition variations. Some early deep learning based
methods [6], [15], [38] are proposed to directly regress the
6DoF pose. Nevertheless, due to the lack of depth infor-
mation and nonlinear rotation space, directly estimating the
pose does not work well. To solve this problem, Kehl
et al. [16] utilize depth information for post-refinement. The
state-of-the-art methods based on dense prediction, includ-
ing [1], [13], [14], etc., regard the depth image as a point
cloud to extract geometric information and then combine
it with the appearance features learned by CNNs to predict
dense poses. While the above methods rely on depth images
and require post-refinement to obtain state-of-the-art perfor-
mance.

Correspondence-based methods. Detecting keypoint
is easier than regressing the rotation and location directly,
therefore correspondence-based methods design a two-stage
pipeline to solve the 6DoF pose estimation problem: they
first estimate the 2D-3D or 3D-3D correspondences by key-
point detection and then solve the 6DoF pose estimation
through PnP [39] or ICP algorithm [18]. Traditional ap-
proaches [4], [34], [40] can establish the correspondence by
detecting keypoints for textured objects. However, these
methods are not robust to lighting variation and background
clutters, rely on handcrafted features, and cannot resolve
texture-less objects. Recent methods take advantage of
CNNs for detecting keypoints to deal with these problems.
Tekin et al. [19] employ the YOLO framework [41] to di-
rectly regress the object’s keypoints by a sparse output grid.
When disturbed by occlusion, it does not work well.

As mentioned in Sect. 1, the most recent state-of-the-
art methods exploit the dense prediction method to solve
occlusion. In detail, [8], [10], [12], [21] establish 3D-3D
correspondences by predicting the 3D coordinates of pix-
els relative to the camera coordinate system. To reduce the
complexity of the 3D output space, Wang et al. [12] normal-
ize the object model coordinates. But it requires additional
scale parameters. Zakharov et al. [8] exploit a quantized tex-
ture mapping and refine the pose through a deep refinement
module. Li et al. [10] use an additional object detector, e.g.,
[41], [42], to extract object image patches and scales them
to a fixed size for the keypoint detector. The real-time per-
formance of this method depends on the object detector. In
contrast, 2D keypoint detection is easier than 3D from an
RGB image. Some methods, e.g., [1], [9], [19], are based on
the 2D-3D correspondences. They define the corners of the
3D model’s bounding box as keypoints and locate their map-
ping position in the 2D image. However, the virtual corner
cannot be explicitly displayed on the image and its mapping
location is far from the object’s pixels, which will lead to
a large localization deviation. [7], [22] demonstrate that se-
lecting the surface point of the 3D model as the keypoint can
acquire more accurate poses. Furthermore, Peng et al. [7]
achieve state-of-the-art performance via their unit direction
vector-field representation and Hough voting scheme.

Attention mechanisms. In recent years, the incorpo-
ration of attention mechanism into CNN has attracted a lot
of researches, showing great potential for improving perfor-
mance. There are two prevalent ways to implement the at-
tention mechanism: channel attention [30], [32], [43]–[45]
and point-wise spatial attention [46]–[49]. Channel atten-
tion is usually designed as a lightweight block and embed-
ded into the standard segmentation architectures to imple-
ment the communication between channels. Spatial atten-
tion is a non-local operation so that each pixel can fully cap-
ture global information. In contrast, the channel attention
mechanism is relatively lightweight, so that it can be flexi-
bly integrated into various CNNs to enhance representation
capabilities. Instead of directly concatenating the low-level
features with the high-level features by skip connection, Li
et al. [31] and Ni et al. [33] design a channel attention mod-
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ule for more effective feature fusion. Their attention mod-
ules first learn an attention vector to recalibrate the low-level
feature and then integrate it into the high-level feature.

3. Method

Given an RGB image, the goal of the 6DoF pose estimation
is to detect objects and estimate their rigid transformation
that transforms the object from the object coordinate system
to the camera coordinate system. The transformation can be
formulated as a rigid transformation matrix [R, t] ∈ SE(3),
a general representation, where R ∈ SO(3) and t ∈ R3 rep-
resent the 3D rotation and location respectively.

To tackle this task, we construct a two-stage pipeline
that first establishes 2D-3D correspondences and then es-
timates the 6DoF pose by a PnP algorithm [39]. As visu-
alized Fig. 1, the Attention Voting Network predicts pixel-
wise semantic labels and vector-field representation, then
the Hough voting layer [7] uses the intermediate representa-
tion to locate the 2D keypoint as described in 3.1. Figure 1
illustrates that learning the vector-field representation and
positioning the keypoint are separated as mentioned above.
We propose the PDAL to solve this problem in 3.2 and intro-
duce the AFAM to further improve the performance of our
method in 3.3. The implementation details of the Attention
Voting Network will be shown in the next section.

3.1 Vector-Field Representation for Keypoint Localization

The purpose of the first stage is to locate the 2D projec-

Fig. 1 Overview of the attention voting network: (a) an input image from the LINEMOD. (b)
The segmentation and vector-field representation predicted by the network, where the dark areas are
the background, the colored areas represent the object and the unit direction vector-field. (c) The 3D
bounding box corresponds to the predicted pose.

tion points of predefined 3D keypoints associated with the
3D object models, where the keypoint localization is im-
plemented through the Hough voting scheme [7] based on
the semantic mask and vector-field representation. More
specifically, we represent the 2D keypoint set as K =

{ki|i = 1, 2, 3, . . . ,K}, where K is set to 8 in all experiments.
Given a keypoint ki of object O and the predicted vector-
field (i.e., pixel-wise direction vectors) for ki, we generate a
candidate point set Ci =

{
ci, j| j = 1, 2, 3, . . . ,C

}
for the key-

point, where a candidate point can be the intersection of any
two direction vectors. Then all the direction vectors vote
for the candidate points if the deviation angle relative to the
direction from the pixel to the candidate point less than a
certain threshold. The candidate point with the most votes
as the keypoint hypothesis, i.e., the positioning result of ki.
Before training, we need to predefine 3D keypoints for each
3D object model and compute the ground truth vector-field
for each image.

Keypoint selection. Some typical methods [1], [15],
[19] select the eight corners of the object 3D bounding box
as the keypoints. However, these virtual points are far away
from the object, which may bring larger localization er-
rors. Instead, we follow [7], [14] to define the 3D point set
for each object by the Farthest Point Sampling (FPS) algo-
rithm [50]. More specifically, FPS initializes the point set
by the object center. Then, it repeatedly searches for the far-
thest point from the current set, and adds the farthest point
to the set until K points are obtained. Naturally, the selected
3D points are spread out on the surface of the object, which
makes the model more robust to occlusion. For an object O,
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Fig. 2 Visualization of prior distance augmented error. p and ki are
a pixel and a keypoint respectively, up is the hypothesis point of ki, ui (p)
is the ground truth unit vector, ui (p) represents the predicted vector, u

′
i (p)

indicates a prediction with greater error, ei (p) represents original error and
pei (p) is prior distance augmented error.

its 3D keypoints are mapped onto the 2D image according
to the ground truth pose to obtain 2D keypoints.

Vector-field representation. Vector-field representa-
tion consists of pixel-wise unit direction vectors for each 2D
keypoint [6], [7], [17]. As visualized in Fig. 1 (b), different
colors overlaid on the object indicate the specific directions
from pixels to a 2D keypoint as shown in the indicator plate.
For a pixel p and a 2D keypoint ki of an object O, the unit
direction vector is defined as

ui(p) =
(ki − p)
‖ki − p‖2

(1)

and we denote the predicted vector corresponding to ui (p)
as ui (p). Its error is expressed by ei(p) = ui (p) − ui (p),
as shown in Fig. 2. Peng et al. [7], Capellen et al. [17] and
Xiang et al. [6] apply smooth �1 loss [24] to learn the vector-
field representation:

Lv =
1

KO

∑

ki∈K

∑

p∈O
�1(ei (p) |x) + �1(ei (p) |y), (2)

where O represents the number of the pixels belonging to
object O, ui (p) represents the ground truth unit vector, ui (p)
is the predicted vector, ei (p) |x and ei (p) |y represent the two
elements of ei (p).

3.2 Prior Distance Augmented Loss

Due to the candidate points are the intersection of two ran-
dom direction vectors, small direction errors can produce
huge positioning errors if the pixels are far from the key-
point. Equation (2) indicates that learning vector-field rep-
resentation does not take the distance d (ki, p) into account,
where d (ki, p) = ‖ki − p‖2 denotes the Euclidean distance
between ki and p. Because the positioning result is unknown
during training and the keypoint localization scheme is non-
differentiable, the positioning error cannot be directly com-
puted for learning vector-field representation.

To avoid this problem, we expand the vector ui (p) by
a factor of d (ki, p) to generate a virtual point up so that

d (up, p) = d (ki, p) ui (p) as shown in Fig. 2. up can be re-
garded as the hypothesis (or proxy) of keypoint ki for pixel
p during training. In this way, the final positioning error can
be approximated by the proxy error, i.e., the error between
up and ki, and it can be described by

pei (p) = d (ki, p) (ui (p) − ui (p)) , (3)

where pei (p) also can be interpreted as the prior distance
augmented error of ui (p), prior information d (ki, p) can be
easily computed before training. For a certain pixel, the
prior distance augmented error pei (p) is positively related
to the deviation angle θ between the predicted and ground
truth vector, even if the deviation exceeds the right angle as
the prediction u

′
i (p) in Fig. 2. This is a crucial reason why

the proposed loss function can be used as a stand-alone loss
for vector-field representation. For different pixels, the error
they generate will be augmented according to the distance
from the keypoint.

Exploiting the prior distance augmented error, we can
augment Lv loss by directly replacing ei (p) with pei (p). So
the Lv with prior distance (PD-Lv) can be defined as

PD-Lv =
1

KO

∑

ki∈K

∑

p∈O
�1(pei (p) |x) + �1(pei (p) |y). (4)

However, we note that the two elements of the direction
vector are regarded as independent outputs by Eq. (3). This
does not correspond to the definition of the unit vector well.
Rather than calculate the error of the two elements sepa-
rately, we use the distance between up and ki as the proxy
positioning error. The ablation studies also show that it is a
better implementation of PDAL. The final PDAL is defined
as

Lpd =
1

KO

∑

ki∈K

∑

p∈O
d (ki, p) ‖ui (p) − ui (p)‖2 . (5)

Essentially, according to the prior distance information,
PDAL augments the weight of those pixels that are further
away from keypoints. In other words, it enables those pixels
that may generate larger positioning errors to be allocated
greater weight. PDAL is numerically close to those methods
that directly predict the coordinate offset of the keypoints,
but it still forces the output to fit the unit vector, which re-
tains the advantages of unit vector representation as men-
tioned in Sect. 1.

3.3 Adaptive Fusion Attention Module

U-Net uses the shallow feature map with shape features, a
crucial component to segmentation, to supplement object
edge details for deep semantic features by long connection
in the encoder. The long connection is an extension of the
residual connection which can further reduce the vanishing
gradient and accelerate the training convergence. Neverthe-
less, low-level features contain plenty of disturbing back-
ground information and each channel of different level fea-
ture maps embeds specific features for segmentation and
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Fig. 3 The architecture of the adaptive fusion attention module. The
inputs of the attention module are the low-level and high-level feature
maps. The output is the fusion feature maps.

pose estimation. Roughly fusing multi-level feature maps
(e.g., channel concatenation) may interfere with the model
to mine effective information. We propose the AFAM for
effective multi-level feature fusion to improve the model’s
representation ability and embed it into PVNet to build our
Attention Voting Network.

The Global Attention Upsample (GAU) and Aug-
mented Attention Module (AAM) proposed by Li et al. [31]
and Ni et al. [33] respectively only learn attention for low-
level features. However, each channel of high-level feature
maps contains semantic features with different importance
and also requires to be calibrated. Our AFAM simultane-
ously recalibrates multiple levels of feature maps and adap-
tively fuses them. Moreover, GAU [31] does not fully utilize
multi-level global features (only high-level) to learn the at-
tention tensor. We follow AAM [33] to fully capture cross-
level and cross-channel interaction.

As illustrated in Fig. 3, we integrate two levels of con-
text information obtained through global average pooling
to achieve cross-level interaction. Before performing the
global average pooling, the channel dimension of the low-
level feature map needs to be increased to Ch by a 1 × 1
convolution layer. Then attention tensors can be learned di-
rectly through a fully connected layer with sigmoid activa-
tion. But this will significantly increase the model complex-
ity. A low-dimensional intermediate layer can be used to
reduce parameters as in [30]. But this dimensionality reduc-
tion destroys the direct correspondence between the chan-
nels and attention weights. Therefore, we follow [32] and
apply 1D convolution with a kernel size of k to achieve lo-
cal cross-channel interaction and obtain attention vectors,
which guarantees both effectiveness and efficiency. Finally,
we achieve multi-level feature fusion by adding the recali-
brated feature maps.

The whole calculation process of our attention module
can be formulated as

G(x, y) = Avg(δ(x)) + Avg(y), (6)

F(x, y) = σx(G(x, y)) ◦ δ(x) + σy(G(x, y)) ◦ y, (7)

where x and y are the low-level and high-level features
respectively, Avg() denotes the global average pooling, δ()
means to perform 1 × 1 convolution, batch normalization
(BN) and ReLU activation, in turn, σ() is similar to δ() but
the activation function and the 2D convolution is replaced
by Sigmoid and 1D convolution respectively, ◦ is channel-
wise multiplication, G refers to the fused global feature, F
represents the final fusion feature maps.

Our attention module only contains a 2D convolution
with a kernel size of 1 × 1 and two efficient 1D convolu-
tions. It introduces negligible parameters and computational
burden while bringing significant performance gains. More-
over, the output channel dimension Ch of our attention mod-
ule is less than the dimension Cl + Ch generated by con-
catenation, resulting in lower parameter complexity of our
attention voting network than PVNet.

4. Experiments

In this section, we discuss the implementation details of our
pipeline, datasets, metrics and evaluation results.

4.1 Implementation Details

We will introduce the implementation details of our pipeline
in three aspects: network architecture, training, and infer-
ence.

Network architecture. As shown in Fig. 1, we build
the Attention Voting Network by replacing the channel con-
catenation of U-Net with the proposed attention module.
Assuming the dataset contains N categories of objects. And
we predefine K keypoints for each object. Taking a H×W×3
image as input, the network outputs a H×W×((N+1)+(N×
K×2)) tensor, where (N+1) channels represent the semantic
labels including object and background labels, the remain-
ing (N × K × 2) channels represent unit vector-field. Specif-
ically, the encoder is a pre-trained ResNet-18 [51] backbone
without the terminal pooling layer, and its fully connected
layers are replaced by a convolution layer. When the size of
the feature map is reduced to H/8×W/8, The residual block
with dilated convolution is applied to expand the receptive
fields while maintaining the size of the feature maps. To
learn pixel-wise prediction, the low-resolution feature maps
be repeatedly performed feature fusion, convolution, and bi-
linear upsampling until the size is restored to H ×W, where
the feature fusion can be implemented via channel connec-
tion as in [7], [25] or our attention module. Then a 3 × 3
convolution and a 1 × 1 convolution are used to acquire the
semantic labels and the direction vector-field representation.
Finally, voting layer is used to estimate the 2D-3D corre-
spondences (described in Sect. 3.1) and the pose parameters
computed by the PnP algorithm.

Training. We exploit the proposed PDAL for learn-
ing vector-field representation. For supervising the segmen-
tation, the multi-class cross-entropy is adopted. Thus loss
function for this multi-task network is defined as

L = αLseg + βLpd, (8)
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where Lseg represents segmentation loss, Lpd is PDAL, α
and β are the balance factor to balance the two tasks, Lpd is
a large value relative to Lseg so that the values of α and β are
of vital importance. We dynamically adjusted their values to
keep the two types of losses at the same order of magnitude.
Adam optimizer is employed to train the network and set the
learning rate as 1e-3 and decay it to 1e-5 by a factor of 0.75
every 10 epochs. The number of images in each sequence is
not enough to train the deep network, thus we use the code
provided by [7] to render 10,000 synthetic images for each
sequence.

Inference. During testing, an image is entered into
the trained voting network to predict the segmentation la-
bel and vector-field, then the predictions are used to locate
keypoints by the voting layer as elaborated in Sect. 3.1. Fi-
nally, the 6DoF pose parameters are estimated by a PnP al-
gorithm [39] that estimates the external parameters of the
camera given 2D-3D correspondences and its intrinsic pa-
rameters. For multiple instances scenes, we generate voting
centers through clustering and assign masks to the nearest
voting center as [7], [14].

4.2 Datasets

We evaluate our methods on three standard benchmarks: the
LINEMOD, OCCLUSION and YCB-Video datasets.

LINEMOD Dataset [34], a standard benchmark for
object detection and 6DoF pose estimation, consists of 13
image sequences with cluttered scenes and occlusion, each
containing CAD model and around 1200 images with in-
stance mask and 6DoF pose for a low-textured object. We
follow previous works [7] to divide the training and testing
set.

OCCLUSION Dataset [35] was generated via addi-
tionally annotating masks and 6DoF poses for each object
of a subset of the LINEMOD. This dataset depicts 8 differ-
ent objects in 1214 images. Because of significant occlusion
between objects, it is a more challenging dataset. And it is
barely used for testing in this work.

YCB-Video Dataset [6], a large benchmark, contains
92 videos, each of which shows a subset of 21 YCB ob-
jects in various indoor scenes and annotates them with 6DoF
poses and masks. The varying lighting conditions, image
noise and occlusions bring great challenges.

4.3 Metrics

In our experiments, we use 2D projection [22] and average
3D distance ADD(-S) [6], [22] metric to evaluate our meth-
ods.

2D Projection metric [22] projects the 3D model
points onto the image by the predicted and ground truth pose
separately, and then computes the average 2D projection dis-
tance. Normally, it is considered as correct if the average 2D
projection distance of a pose does not exceed 5 pixels.

ADD(-S) metric [34] measures the average pairwise
distance of the 3D model points transformed by estimated

poses and ground truth for non-symmetric objects, i.e.,
ADD [34] metric. For symmetric objects, the ADD met-
ric is replaced by ADD-S metric [6], i.e., computes closest
point distance. A pose is considered correct if the mean 3D
transform distance is less than a certain threshold. For the
LINEMOD and OCCLUSION datasets, the threshold is set
to 10% of the model’s diameter. For YCB-Video dataset,
we follow [6], [7] and compute the area under the accuracy-
threshold curve, i.e., the ADD(-S) AUC metric.

4.4 Evaluation

In this section, we explore the effectiveness of our PDAL
and AFAM, discuss the influence of the segmentation ac-
curacy on the 6DoF pose estimation, and compare the pro-
posed methods with state-of-the-art methods. Our work fo-
cus on estimating accurate initial pose from a monocular
RGB image, so we merely compare our methods with those
state-of-the-art methods that are based on RGB images and
do not perform any post-refinement. Besides, we keep other
experimental settings, e.g., K and C (both described in 3.1),
consistent with PVNet. Naturally, PVNet is a baseline for
our methods.

Ablation study. We conduct comparative experiments
on different vector-field representation loss (VFR-Loss)
functions, attention modules and capacities of the network.
As shown in Table 1, both PD-Lv and PDAL bring consider-
able accuracy improvements, which illustrates that the prior
distance information is critical and the final PDAL is a better
implementation. We re-implement GAU [31] and AAM [33]
to compare with our AFAM. Comparing PVNet+GAU and

Table 1 The ablation studies on the LINEMOD dataset in terms of the
ADD(-S) metric. These results show the influence of vector-field represen-
tation loss (VFR-Loss), attention module and capacity of the network.

Model Backbone VFR-Loss Average
PVNet Res-18 Lv 86.27
PVNet Res-18 PD-Lv 89.04
PVNet Res-18 PDAL 90.17
PVNet Res-34 Lv 86.93
PVNet+GAU Res-18 Lv 87.66
PVNet+AAM Res-18 Lv 88.05
PVNet+AFAM Res-18 Lv 89.19
PVNet+AFAM Res-18 PDAL 91.91

Table 2 The example results of the influences of segmentation accuracy
(AP, AR, IoU) on 6-DoF pose estimation on the LINEMOD dataset. The
original results are bold.

cat
PVNet PDAL+AFAM

AP 95.59 29.99 67.05 83.25 94.63 96.96
AR 95.49 87.15 68.53 42.10 77.29 97.17
IoU 91.50 28.71 51.25 39.11 74.05 93.00
ADD(-S) 78.94 20.96 48.60 79.84 86.24 87.72

driller
PVNet PDAL+AFAM

AP 96.63 45.96 67.29 72.08 91.62 96.73
AR 97.14 87.92 68.95 73.70 49.99 97.60
IoU 93.98 43.24 51.64 57.33 47.79 94.23
ADD(-S) 96.63 57.58 77.70 82.66 96.72 99.01
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Table 3 The accuracies of our method and the state-of-the-art methods on the LINEMOD dataset in
terms of the ADD(-S) metric. The name of symmetric object are bold.

Methods
BBS Pix2pose DPOD CDPN PVNet Ours
[15] [23] [8] [10] [7] PDAL AFAM PDAL+AFAM

ape 27.9 58.1 53.28 64.38 43.62 63.14 57.04 69.43
benchwise 62.0 91.0 95.34 97.77 99.90 99.90 99.52 100.00
cam 40.1 60.9 90.36 91.67 86.86 90.88 88.04 92.45
can 48.1 84.4 94.10 95.87 95.47 97.93 98.13 99.21
cat 45.2 65.0 60.38 83.83 79.34 84.83 85.33 87.72
driller 58.6 73.6 97.72 96.23 96.43 98.12 97.52 99.01
duck 32.8 43.8 66.01 66.76 52.58 63.75 62.53 67.79
eggbox 40.0 96.8 99.72 99.72 99.15 99.91 99.53 100.00
glue 27.0 79.4 93.83 99.61 95.66 97.39 96.33 98.94
holepuncher 42.4 74.8 65.83 85.82 81.92 82.87 83.92 86.01
iron 67.0 83.4 99.80 97.85 98.88 99.90 99.08 99.38
lamp 39.9 82.0 88.11 97.89 99.33 99.71 98.94 99.81
phone 35.2 45.0 74.24 90.75 92.41 93.94 93.56 95.10
Average 43.6 72.4 82.98 89.86 86.27 90.17 89.19 91.91

Table 4 The average accuracies of our methods and the state-of-the-art methods on the LINEMOD
and OCCLUSION dataset in terms of the 2D projection metric. ‘-’ indicates that it is not provided in
the original paper.

Methods
BBS CDPN Oberweger PVNet Ours
[15] [10] [20] [7] PDAL AFAM PDAL+AFAM

LINEOMD 83.9 98.10 - 99.00 99.35 99.23 99.43
OCCLUSION 17.1 - 60.9 61.06 62.15 62.88 63.67

Table 5 The accuracies of our methods and the state-of-the-art methods on the OCCLUSION dataset
in terms of the ADD(-S) metric. The name of symmetric object are bold. ‘-’ indicates that it was not
provided in the original paper.

Methods
PoseCNN Pix2pose DPOD PVNet Ours

[6] [23] [8] [7] PDAL AFAM PDAL+AFAM
ape 9.6 22.0 - 15.81 23.50 22.73 25.47
can 45.2 44.7 - 63.30 68.93 67.85 68.20
cat 0.93 22.7 - 16.68 21.48 18.46 22.26
duck 19.6 15.0 - 25.24 28.50 26.11 32.61
driller 41.4 44.7 - 65.65 66.37 67.89 68.33
eggbox 22.0 25.2 - 50.17 40.60 50.04 45.28
glue 38.5 32.4 - 49.62 47.73 50.39 49.28
holepuncher 22.1 49.5 - 39.67 44.19 45.75 47.51
Average 24.9 32.0 32.79 40.77 42.66 43.65 44.87

PVNet+AAM with PVNet+AFAM in Table 1 shows that
the proposed AFAM results in more obvious performance
gains. Moreover, the parameters of PVNet with Res-34
backbone are nearly doubled, but its improvement is very
limited, which shows that simply increasing the capacity of
the network does not bring significant improvement and the
performance gain is indeed due to the layout of AFAM.

We also evaluate the influence of the accuracy of se-
mantic segmentation on 6DoF pose estimation. We ran-
domly change the predicted semantic labels of the fore-
ground and background pixels according to a certain proba-
bility to obtain different segmentation results with different
accuracy. This will not affect the accuracy of the vector-
field representation. We show the evaluation results of three
semantic segmentation metrics, i.e., Average Precision
(AP), Average Recall (AR) and Intersection over Union
(IoU), on the cat and driller objects respectively to evalu-
ate the influence of the segmentation accuracy. As shown in
Table 2, the accuracy of 6Dof pose estimation is positively

correlated with AP but has no obvious correlation with AR
and IoU. This is because only the direction vectors belong-
ing to the foreground pixels are valid (the VFR-Loss only
penalizes the errors of the ground truth foreground pixels),
and the voting layer just uses a part of the foreground pixels
for pose estimation during inference. Moreover, the original
segmentation accuracy of the proposed method is slightly
higher than that of the bassline, but this cannot support the
pose estimation to obtain large performance gains, which
shows that the proposed method does improve the quality of
the vector-field representation.

Evaluation on the LINEMOD dataset. Table 3 sum-
marizes our experimental results for all 13 sequences of
the LINEMOD dataset w.r.t. the ADD(-S) metric. Compar-
ing our methods with PVNet [7], both PDAL and AFAM
have significant improvements on most objects, especially
on ape, cat, duck, etc., which illustrates their effective-
ness. Table 3 also shows the comparison results between our
methods with BB8 [15], Pix2pose [23], DPOD [8],
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Table 6 The average accuracies of our methods and the state-of-the-art methods on the YCB-Video
dataset in terms of the 2D projection metric and ADD(-S) AUC. ‘-’ indicates that it is not provided in
the original paper.

Methods
PoseCNN Oberweger PVNet Ours

[6] [20] [7] PDAL AFAM PDAL+AFAM
2D Projection - 39.4 47.4 51.42 50.65 53.27
ADD(-S) AUC 61.30 72.8 73.4 75.05 74.81 76.12

Fig. 4 Visual comparison examples on the LINEMOD and OCCLU-
SION datasets. Green 3D bounding boxes represent the ground truth
poses, blue 3D bounding boxes correspond to the poses predicted by the
baseline (PVNet [7]), yellow and red 3D bounding boxes respectively rep-
resent the predicted poses of PDAL and AFAM.

CDPN [10] and the PVNet [7]. It shows that our meth-
ods outperform most methods with a large margin. Noted
that CDPN is based on an additional object detector [41],
[42]. Nevertheless, the performances of our PDAL and
PDAL+AFAM still exceed it. As shown in Table 4, our
methods have certain improvements compared to other ad-
vanced methods on the 2D Projection metric.

Evaluation on the OCCLUSION dataset. The OC-
CLUSION dataset is used to evaluate the robustness to oc-
clusion. In Table 5, we show the evaluation results on the
OCCLUSION dataset w.r.t. the ADD(-S) metric. Because
the accuracy on eggbox (a symmetric object) is severely
reduced, the gain of average accuracy on the OCCLU-
SION dataset brought by PDAL is not as significant as
on the LINEMOD dataset. PDAL may not have enough
stability for the symmetric object with severe occlusion,
but AFAM can get more balanced performance improve-
ments. PDAL+AFAM further improves the accuracy of
pose estimation for most objects to show its advantages in
dealing with occlusion. Although their performances do
not have obvious advantages on symmetric objects (eggbox
and glue), they have significant superiority on most non-
symmetric objects.

Comparing with other state-of-the-art methods [8],
[15], [23], as reported in Table 5, our methods significantly
outperform them on most objects, even on symmetric ob-
jects. The final result surpasses them with a large margin of
at least 12.08%. Table 4 compares the results of our methods
and PVNet in terms of the 2D projection metric on the
OCCLUSION dataset, where the quality of our methods

outperform PVNet in keypoint positioning.
Visual comparison examples on the LINEMOD and

OCCLUSION datasets. We also show the visual compari-
son examples of the poses predicted by the baseline and the
proposed methods (PDAL and AFAM). As shown in Fig. 4,
many predefined keypoints of the object are occluded, and
most of the visible pixels of the object are far away from
these keypoints. The accuracy of the direction vectors pre-
dicted by the baseline on these pixels is insufficient, result-
ing in a pose that is completely out of the image range.
PDAL uses the prior distance and AFAM learns more ef-
fective features through the attention mechanism to generate
more accurate direction vectors, which corrects these erro-
neous poses. In other examples, the proposed methods can
further improve the accuracy of 6Dof pose estimation.

Evaluation on the YCB-Video dataset. The pro-
posed methods may benefit from some special settings of
the LINEMOD and OCCLUSION datasets, such as markers
around the objects. We evaluate our methods on the YCB-
Video dataset to further verify that they are not limited to the
LINEMOD and OCCLUSION datasets. Table 6 illustrates
that the proposed methods still have considerable improve-
ment and surpass PoseCNN [6] and Oberweger [20], which
further demonstrates the effectiveness of our methods.

5. Conclusion

In this work, we proposed the PDAL to learn more accurate
vector-field representation for 2D keypoint localization and
the AFAM for the voting network to improve its represen-
tation ability. Extensive experiments demonstrated that the
proposed method significantly improved the performance of
PVNet for 6DoF pose estimation on common evaluation
metrics. Compared with other state-of-the-art RGB-only
methods, our method outperforms them on the LINEMOD
dataset. We also showed the advantages of our methods
to deal with occluded and texture-less objects, which ob-
tained the best accuracy on the OCCLUSION and YCB-
Video datasets. In the case of symmetrical objects with se-
vere occlusion, our methods did not obtain significant per-
formance gains or even negative gains, which requires fur-
ther research and improvement.
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