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S ech signal is 1nev1tably corru ted w1th reverberatlon

- Tpdtfs d
t hglblhty and the alcuracy of speech recognltlon eP

Mications although the early reverberation can be ad-
ntageous [1], [2]. Many speech enhancement methods
press the late reverberation and background noise, such
as the spectral subtraction [3], wiener filtering [4], statis-
tic model-based approach [5], blind probabilistic modeling-
based method [6]. Overall the traditional methods are de-
pendent on the prior assumption, parameter setting and man-
ual experience, which limit the denoising and dereverbera-
tion performance.
In the last decades, deep neural networks (DNN) have
been increasingly used in automatic speech recognition
(ASR) and shown impressive performance[7], [8]. Con-
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compute a time-frequency mask to recover the enhanced si

nal
f Multi-task learning scheme improves learning e

ciency and generalization performance by using shared re|
resentations to jointly learn multiple related tasks, such t

alization in another task. In [17], the authors use the multi-
task network to learn desired magnitude and noise magni-
tude simultaneously, then the network outputs are used to
derive the time-frequency mask. In this paper, we propose
a novel multi-task scheme for statistics estimation in speech
enhancement, where speech presence probability (SPP) es-
timation serves as the secondary task to improve the es-
timation accuracy of the primary task (i.e., desired signal
magnitude, time-frequency mask, interference PSD, or SIR
estimation tasks). SPP is a helpful parameter in the tradi-
tional single-channel speech enhancement techniques [18]—
[20] and highly related with the primary task. Hence, we
consider SPP as the secondary target to assist the primary
target in learning a more robust and generalizable represen-
tation. The loss of the multi-task learning network is the
weighted sum of sub-task’s losses, and the weights can be
manually assigned. Since tuning the weights can be expen-
sive, we propose to use the adaptive weighting method of
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losses derived from the homoscedastic uncertainty of tasks
in [21].

In the experiment, the performance of single-task tech-
niques for estimating different targets is evaluated and com-
pared. The direct mask estimation is proven to outperform
others on both reverberant and noisy datasets. The perfor-
mance of proposed multi-task scheme using SPP as a sec-
ondary target is also evaluated and compared. The adaptive
weighting method for the loss of multi-task network shows
superiority compared to the fixed weighting method. Ad-
ditionally, simulation results prove that the proposed multi-
task scheme improves the speech enhancement performance
in most cases. And the joint direct mask and SPP estimation
yields the best speech enhancement performance among all
considered techniques.

2. DNN-Based Speech Enhancement

Assuming there is a single microphone which records a de-
sired speech source interfered by reverberation and additive
noise, the recorded microphone signal at time index ¢ can be
represented by,

V(1) = he(2) * (1) + hy(2) * 5(7) + n(1) ]

= x(t) + r(t) + n(t), M

where * indicates convolution operation, s(f) is the clean
speech signal, n(r) is the additive noise signal, h,(t) is
impulse response for the direct sound and early reflectf¥n,
hy(¢) is the late reflection impulse response, x(t) = h.(f)
is the direct and early reverberation component and r(¢
hi(?) = s(¢) is the late reverberation component. In the short-
time Fourier transform (STFT) domain, the micr
nal is given by,

Y(k,) = X(k, 1) + R(k, ) + N(k, ])
= X(k, 1) + I(k, ]),

where k is the frequency index, [ is t
R(k,l) and N(k,I) are the STFTs of
spectively, and I(k, ) = R(
of inteference r(t) + n(t
are uncorrelated, the P
given by

D} (k, 1) = E{IY (K, D), 3)
with & denoting the expecte tor and ®3(k, [) and
<Dl.2(k, 1) denoting the PSDs of X(k, [) and I(k, ), respectively.

Our goal in this work is to estimate X(k,[) and sup-
press I(k,I), as early reverberation component is beneficial
to speech intelligibility improvement but the late reverber-
ation combined with additive noise is detrimental to the
speech intelligibility. Typical DNN-based techniques aim-
ing to recover X(k,/) use DNN learning a mapping from
reverberant and noisy input features to a user-defined tar-
get. Depending on the target definition, such techniques
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can be broadly categorized into magnitude estimation [9]—
[11] and mask estimation techniques [12]-[16]. Mask es-
timation techniques can be additionally categorized into
three subcategories, i.e., techniques that directly estimate
a time-frequency mask [9]-[11], techniques that estimate
the interference PSD required to compute a time-frequency
mask [15], and teclniques that estimate the a priori SIR re-
quired to computg g-frequency mask [16]. It should be
DNN architectures. 1§

noted that these t¢ o

get definition, but also jg ed input features and
ywever, 18 able to provide a sys-

tematic review and to §pare theferformance for different

targets in Sect. 4, in this'§

with temporal
remainder of

speech enhancement is to estimate the
erberation component X(k,[) from the

x()=0X(1, DL IXQ2,DLIXE, DL, XK DI ()

corporate temporal context, the DNN input can be de-
ned as the K(2T + 1)-dimensional vector made by con-
catenating the spectral magnitude of Y(k,[) from the past
and future T time frames across all frequency bins X, i.e.,

yO=[0YQ,l=-7),....IY(K,I-T),...

e YALIH T, .. LYK L+ DT )

Using the estimated spectral magnitude |X(k, )] and the
phase information of the noisy signal, the enhanced signal

is obtained as Kmg(k. 1) = BaDly(k, I).

2.2 Mask Approximation
2.2.1 Direct Mask Estimation

Noise and reverberation can be removed by directly apply-
ing a reference mask on the spectrum of recorded signal.
Although different time-frequency masks have been investi-
gated in the literature [13], [22], the commonly used Wiener
gain is considered in this paper, which is represented as,

(k. D)

Gl l) = ——>"2
&5 D2(k, ) + D2(k, ])

(6)

where ®2(k, [) is PSD of the target signal calculated from
X(k, ) as,
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DUk, 1) = BBk, [ = 1) + (1 = B)IX(k, DI, (7

where f is a recursive smoothing parameter. Similarly,
(I)iz(k, 1) is the PSD of the interference signal computed from
I(k, ) using recursive averaging. The DNN target vector is
the K—dimensional vector constructed using the gain G(k, [)
at time frame [ across all frequency bin K,

G() = [G(1,]), G(2,1), G3,D),...,G(K,D]". ®)

The DNN input vector is the K(2T + 1)-dimensional vec-
tor in Eq. (5). Using the estimated Wiener gain G(k, [), the
enhanced signal is obtained as Xgin(1) = G(k, DY (k, ).

2.2.2 Interference PSD Estimation

Instead of directly estimating the gain in (6), in [15] it has
been proposed to use a DNN for estimating the interference
PSD CI)I.Z(k, ). The target vector is (I)iz(k, [) at time frame [
across all frequency bin K,

@ (1) =[D(1,1), D?(2,1), DX3,D),...,PXK,D]". (9)

Further, the DNN input vector can be defined as the K(2T +
1)-dimensional vector constructed by concatenating the mi-
crophone signal PSD (1)3(1) from the past and future T time
frames as in (5), i.e.,

O () = [|0}(1, 1= T)|,....| 03K, [ - T),...
L DAL+ T, DK L+ TN

To compute the enhanced signal, first the estim
interference PSD Ci)iz(k, ) is used to obtain an estimate
the a-priori SIR fpsd(k, ) based on the decision di
proach [23], i.e.,

2  RpakEDP ,
Epsak, )= Fa +(1-a) max 3

with @ being the smoothing factor and (i)?(
mated interference PSD. The estimated
is then exploited to compute the Wien@ ma

~

gpsd(l@ l)

A

psd = %

The enhanced signal i§@btained as Xpsd(k, = Gpsd Y(k,I).

2.2.3 A-Prior SIR Esti

Moreover, in [16] it has been proposed to use a DNN for
estimating the a-prior SIR &(k, [), which is defined as,
_ kD)

Ok, 1)

&k, 1) 13)

In this case, the target vector is £(k, [) at time frame [ across
all frequency bin K,

E(D) = [E1,D, E2,D, €B3,D), ... &K, DI (14)
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And the DNN input vector is the K(27 + 1)-dimensional
vector y(/) defined in (5). The estimated SIR &g;,(k, [) is used
to compute the Wiener mask as

G" _ ‘fsir(k: l)

sir — % — . 15
§sir(k’ l) +1 ( )

The enhanced sig obtained as Xsir(k, D= Gsir Yk, D).

Instead of using a s
one of the user-defined
nal magnitude, 4

N that only estimates
ect.2 (i.e., desired sig-

ce, for improving the speech en-
ormance [18]. We hypothesize that jointly
e user-defined target and the SPP
layers within a multi-task learning
ore robust and generalizable represen-
ary task (i.e., estimating the user-defined

P(Ho) -
P(q_ﬁ)(1+§%)e i , (16)

i 7’(1|Y)=[1+

wiire P(H;) and P(H)) are the prior probabilities of speech
sence or absence respectively, &4, is the optimal fixed a-
prior SNR, and (Di2 is the interference PSD calculated by
recursive smoothing. For notational convenience, the time
and frequency indexes are omitted. In line with the target
definitions in Sect. 2, the target vector for SPP estimation is
given by

SPP() = [SPP(1,1), SPP(2,0), ... ,SPP(K,D]". (17)

Figures 1 (c)-1(e) depict examples of the considered DNN
architectures for jointly learning two tasks, with the first
task being the estimation of a target vector as presented in
Sect. 2 and the second task being the estimation of the SPP
in (17). After obtaining the estimated target from the first
task’s output, the enhanced speech signals are obtained from
tpe approacAhes descriAbed in Sect. 2, which are referred as
Xn“fag(k, D, ngin(k’ D, XS’S[ (k. D), XM (k, ) respectively.

The loss function of multi-task network plays an im-
portant role in learning performance. The most common
formulation is to sum the weighted loss of every sub-task. In
this paper, we mainly concern the loss function of a multi-
task learning network with two sub-tasks, i.e.,

Linea(W) = 1LIW) + L LW) (18)

with £; being the loss function for estimating a target vec-
tor from Sect.2, L, being the loss function for estimating
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the SPP in (17), A;, A, being the user-defined weighting
scalars, and W being the model parameters. When using
the loss function in (18), the performance of the model can
be sensitive to the values of A; and A, and finding optimal
values can be expensive [21]. To avoid tuning 4; and A, we
propose to use the adaptive loss function derived in [21] to
automatically weigh the task-specific loss functions, i.e.,

1 1

Laaa(W,01,02)= = L1(W) + 5 Lo(W) +logor10,
7 7

(19)

where o1, 0, are the observation noise parameter of each
tasks. While minimizing the loss function, the value of o,
o, would also be adjusted, which is regarded as learning the
weight of losses £ (W) and L(W).

In [17], the multi-task network is used to learn desired
magnitude and noise magnitude simultaneously, then the
time-frequency mask is derived, which obtains impressive
performance. In this case, the equal weight parameters are
adopted and good estimation for both targets are required
to ensure the accuracy of mask estimation. In our proposed
multi-task scheme, the SPP is incorporated as an auxiliary
target in model training and only the the primary task is con-
cerned with the speech enhancement performance, and the
adaptive weighting method is considered to optimize the ac-
curacy of primary target estimation.

4. Experimental Setup and Result

In this section, firstly the performance of all single-task te
niques discussed in Sect. 2 is compared on the same dataset
and DNN architectures. To the best of our know
the performance of magnitude and direct mas
techniques has been compared on the sam
DNN architectures in [13], while the perf
more recently proposed interference PSD and SIR
tion techniques has not been considere ther, the
formance of the proposed multi-task f]
as a secondary task is investigated.

4.1 Datasets

verberation level and varyin types of noise. The
clean utterances are from the TIMIT database [24].

For the reverberant dataset, 500 clean utterances are
convolved with 16 room impulse responses (RIRs) to com-
prise 8000 training utterances totally. The validation dataset
is generated by convolving 200 clean utterances with 8
RIRs, resulting in 1600 utterances totally. The test dataset is
generated by convolving 200 clean utterances with 8 RIRs,
resulting in 1600 utterances totally. There is no overlap be-
tween utterance files for different sets. The RIRs are se-
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Table 1  Reverberation times of training dataset, validation dataset and
test dataset in the reverberant dataset.

Database Teo (ms)

200, 250, 300, 390, 410, 440, 520, 580,
640, 680, 700, 749, 800, 880, 930, 1000

220, 370, 450, 570, 650, 730, 850, 980
280, 360, 430, 560, 670, 760, 830, 910

Train set

Validation set

Test set

tasets. Further, for the training, vali-
, 5 different noise types (DKITCHEN,
CAFETER, OMEETING) at 3 different

Every
is divided into 3 parts for training, validation,
s respectively, and for every utterance, a ran-

noisy test dataset is also generated by adding 3 unseen
types (DLIVING, OHALLWAY, PSTATION) at un-
n broadband SNRs to the test reverberant signals, with
SNRe{-3dB, 3dB, 10dB}.

4.2 Algorithmic Settings, Network Settings and Metrics

Signals are processed in the STFT domain using a weighted
overlap-add framework with a tight analysis window of 256
samples and an overlap of 50% at a sampling frequency
fs = 16kHz. Considering only half of the spectrum, the
number of frequency bins is K = 129. Further, the num-
ber of time frames used for temporal context is 7 = 3.
The PSDs CD)Z,(k, D), (Di(k, ) and <I>l.2(k, ) are computed as
in (7) using recursive averaging with a smoothing factor of
B = 0.85. In the interference PSD estimation, to compute the
estimated SIR, we use the decision-directed approach repre-
sented in (11) with a smoothing factor of @ = 0.9. The val-
ues of @, S and T have been fine tuned according to the effec-
tiveness. For the Wiener gain mask in (12) and (15), a min-
imum gain of —12 dB is used. To compute the SPP in (16),
weuse P(H,;) = 0.5, P(Hp) = 0.5, and 101og;, &4, = 15dB
according to [18]. Prior to training, the input vectors y(/),
@ (/) and target vectors x(I), ®(]), £() are transformed to
the log-domain and are globally normalized into zero mean
and unit variance.

To exploit network’s ability of statistical estimation,
we adopt networks with 2 and 3 hidden layers respectively.



WANG et al.: A MULTI-TASK SCHEME FOR SUPERVISED DNN-BASED SINGLE-CHANNEL SPEECH ENHANCEMENT BY USING SPP

(@)

1967
Output Output Output Output
Output Output (Task 1) (Task 2) (Task 1) (Task 2)
(Task 1) (Task 2) | K | | K | | K | | K |
Ny | | Ny hyt; hsr | Ny | | Ny | h; 1,
hZ, T1 hZ, T2

(b) ©)

Fig.1  Schematic illustration of the considered DNN architectures: (a) single-t&

followed by one task-specific layer, (d) multi-task estimation with two s

task-specific layer, and (e) multi-task estimation with one shared layer §

layers.

Specifically, for single-task statistical estimation, the con-
sidered network architectures are shown in Figs. 1 (a), (b),
where n,, is the unit number of hidden layers. For multi-task

y direct mask estimation and SPP estima-
ion in (18) (with 41 = 1) and (19) on the test noisy and

statistical estimation, the considered network architectures y Test Dataset UTZSS‘:eDnaI:;(:g
are shown in Figs. 1 (c)—(e). As previously mentioned, two PESQ fwSSNR PESQ
different tasks are jointly learned, with the 1st task being the 121 | 424 1.26
estimation of a target as presented in Sect. 2 and the 2nd task 1.43 6.41 1.48
being the estimation of the SPP in (17). In Fig. 1 (c) both 1.42 6.34 1.47
tasks share a hidden layer followed by a task-specific layer, 1.44 6.73 1.49
in Fig. 1 (d) both tasks share two hidden layers followed by 1.44 6.74 150
. . . 1.45 6.70 1.51
a taek-spemﬁc layer, whereas in Fig. 1 (e) l?oth tasks sh, L2 6.74 147
a hidden layer followed by two task-specific layers. [or daptive | 145 | 688 151

all architectures, we use rectifying linear unit (ReL
non-linearity on all hidden layers and input layers. For
timating an unbounded target (i.e., the desired m,
the interference PSD, or the SIR), there iS no ni
on the output layer. For estimating the Wiener

task networks. All consid
different n, using the A
parameters, i.e., learni
training for 200 epoc
ing to the epoch with
considered architecture
model parameters.

The dereverberation an sing performance is
measured by the perceptual evaluation of speech quality
(PESQ) [30] and frequency-weighted segmental signal to
noise ratio (fwSSNR) [31].

4.3 Performance Evaluation of Multi-Task Loss Functions

For the multi-task DNN, the loss function is defined as
a weighted sum of the task-specific loss functions of two

tasks. To compare the performance of adaptive weighting
in (19) and fixed weighting in (18) for the multi-task loss
function, the two weighting methods is used for jointly di-
rect mask estimation and SPP estimation on noisy dataset.
In fixed weighting method, we set 4y = 1 and A, €
{0.001,0.01,0.1, 1, 10, 100}. For all considered fixed weight
parameters and the adaptive weighting, the two-layer net-
work depicted in Fig. 1 (c) is trained for n, = 500 and differ-
ent hyper-parameters, i.e., learning rate /, € {0.001,0.0001}
and weight decay wy; € {0,0.001}. The final network is
selected as the one yielding the minimum validation loss.
The average PESQ and fwSSNR scores obtained on the test
noisy and unseen noisy datasets, as well as the scores of
unprocessed input speech are presented in Table 2. From
the table, adaptive weighting outperforms fixed weighting
at any values of {1;,1,} on all the considered test datasets
and metrics. Hence the adaptive weighted loss in (19) is
adopted in the following experiment.

4.4 Performance Evaluation of Single-Task and Proposed
Multi-Task Techniques

In this section, the performance of the single-task techniques
presented in Sect. 2 is evaluated and compared The s1ngle-
task techniques are referred to as Xmag, Xgam, ngd and Xglr
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Table 3
gets on the test reverberant dataset.
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Performance comparison for single-task and proposed multi-task techniques of different tar-

fwSSNR Unprocessed Xmag ngain Xpsd Xir
280 9.69 11.30 1229 1024 10.62
360 12.98 1278 1333 1293 1285
430 8.37 1133 11.75  9.71 10.07
Teo | 560 10.30 12.07 12.85 11.50 12.23
(ms) | 670 10.61 12.46 1329 10.69 12.14
760 10.67 11.86 1190 11.34 1045
830 2.15 4.86 4.90 4.67 4.75
910 478 7.31 7.45 7.06 7.00
Average | 8.70 | 10.50 1097  9.77 10.01 |
PESQ | Unprocessed | )A(mag }A(gain )?psd Keir |
280 1.59 1.73 1.82 1.63 1.68
360 1.73 1.95 2.11 1.96 1.99
430 1.40 1.63 1.60 1.46 1.49
Teo | 560 1.50 1.63 1.83 1.76 1.74
(ms) | 670 1.63 1.76 1.97
760 1.49 1.72 1.73
830 1.32 1.34 1.36
910 1.25 1.32 1.34
Average | 1.49 | 1.63 1.72

Table 4

gets on the test noisy dataset.

Performance comparison for single-task and propose

chniques of different tar-

M M M

fwSSNR Unprocessed Xgain XpS X

SNR 5 1.58 465 498 312 341
@B) 0 3.24 597 650 496 5.5
5 4.94 6.83 761 631 643

DKITCHEN 337 678 705 502 567

Noi NPARK 217 513 553 393 416
T"‘S: OMETTING 3.08 577 617 463 4.69
YP¢ | PCAFETER 1.90 449 507 395 381
TBUS 578 692 799 645 6.65

Average 582 636 4.80 5.00

M M M oM

PESQ Xmag Xgain Xpsd Xsir

5 124 133 122 121

fgg 0 132 145 134 132
5 137 156 146 143

DKITCHEN 143 153 139 137

Noi NPARK 131 140 130 129
T" ¢ | OMETTING 124 136 126 124
YP¢ | PCAFETER 123 132 126 124
135 163 150 145

130 | 131 145 134 132

respectively. The net
considered as the singl
ate the performance of p
ferent targets presented in ntly estimated with
SPP as the secondary target. The multi-task techniques are
referred to as Xﬁ;’ag, )A(g;’in, XM and X respectively. The net-
works depicted in Figs. 1 (c';—(e) are considered as the multi-
task networks.

For each technique, the considered networks are
trained for several numbers of hidden units n, € {500, 1000,
1500} and different hyper-parameters, i.e., learning rate /, €
{0.001,0.0001} and weight decay wy € {0,0.001}. The final
network is selected as the one yielding the minimum vali-

dation loss. Tables 3-5 presents the average fwSSNR and
PESQ scores of the unprocessed input speech and the en-
hanced speech processed by single-task or proposed multi-
task techniques on the test reverberant, noisy, and unseen
noisy datasets respectively, where the results for each rever-
beration time, noise type, and SNR are also listed.

In single-task experiment, compared to the unpro-
cessed speech, all considered techniques generally yield an
improvement in PESQ and fwSSNR on all datasets, with
the direct mask estimation technique (i.e., Xgain) yielding
the best performance. The advantageous performance of
the direct mask estimation technique in comparison to mag-
nitude estimation was already established in [13]. How-
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Table 5  Performance comparison for single-task and proposed multi-task techniques of different tar-
gets on the test unseen noisy dataset.

fwSSNR Unprocessed )A(mag Xgain Xpsd Kiir )?rl\fag XgMain Xg;ld )A(E‘:Ir
SNR 3 2.08 412 494 409 353 | 495 545 399 401
@B) 3 421 547 679 608 538 | 644 7.3 589 588
10 6.42 629 811 766 672 | 721 834 729 726
Noise |  DLIVING 4.16 531 661 586 509 | 622 695 564 563
oS | OHALLWAY 5.70 594 172 696 624 6.68 678
IP¢ | pPSTATION 2.85 464 550 500 430
Average | 424 | 529 661 594 521 |
PESQ | Unprocessed | Xmag Xgam Xpsd Keir
3 1.15 120 135 128 124
fé\g 3 1.26 127 150 143 139
10 1.37 131 163 156 151
Noise | DLIVING 1.24 125 147 140 1.35
Toos | OHALLWAY 1.34 129 160 153
M PSTATION 1.20 124 141
Average | 1.26 | 126 149

ever, also the more recently proposed interference PSD and

SIR estimation techniques show a lower dereverberation and

noise reduction performance than the direct mask estima-

tion technique on all datasets. Additionally, except mag-
nitude estimation on reverberant dataset and interference

PSD estimation on the noisy dataset, the proposed multi-

task scheme outperforms the traditional single-task scheme

in most cases. And the score improvement for each rever-
beration time, noise type, and SNR is generally balance, »Warzybok, I. Kodrasi, J.O. Jungmann, E. Habets, T. Gerkmann,
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