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A Multi-Task Scheme for Supervised DNN-Based Single-Channel
Speech Enhancement by Using Speech Presence Probability as the
Secondary Training Target

Lei WANG†, Jie ZHU†a), Nonmembers, and Kangbo SUN†, Member

SUMMARY To cope with complicated interference scenarios in real-
istic acoustic environment, supervised deep neural networks (DNNs) are
investigated to estimate different user-defined targets. Such techniques
can be broadly categorized into magnitude estimation and time-frequency
mask estimation techniques. Further, the mask such as the Wiener gain
can be estimated directly or derived by the estimated interference power
spectral density (PSD) or the estimated signal-to-interference ratio (SIR).
In this paper, we propose to incorporate the multi-task learning in DNN-
based single-channel speech enhancement by using the speech presence
probability (SPP) as a secondary target to assist the target estimation in
the main task. The domain-specific information is shared between two
tasks to learn a more generalizable representation. Since the performance
of multi-task network is sensitive to the weight parameters of loss func-
tion, the homoscedastic uncertainty is introduced to adaptively learn the
weights, which is proven to outperform the fixed weighting method. Sim-
ulation results show the proposed multi-task scheme improves the speech
enhancement performance overall compared to the conventional single-task
methods. And the joint direct mask and SPP estimation yields the best per-
formance among all the considered techniques.
key words: multi-task learning, supervised deep neural network, speech
presence probability, dereverberation, noise reduction

1. Introduction

In the real world speech communication, the recorded
speech signal is inevitably corrupted with reverberation
or noise, which is detrimental to speech quality and in-
telligibility and the accuracy of speech recognition ap-
plications although the early reverberation can be ad-
vantageous [1], [2]. Many speech enhancement methods
have been developed to recover the target signal and sup-
press the late reverberation and background noise, such
as the spectral subtraction [3], wiener filtering [4], statis-
tic model-based approach [5], blind probabilistic modeling-
based method [6]. Overall the traditional methods are de-
pendent on the prior assumption, parameter setting and man-
ual experience, which limit the denoising and dereverbera-
tion performance.

In the last decades, deep neural networks (DNN) have
been increasingly used in automatic speech recognition
(ASR) and shown impressive performance [7], [8]. Con-
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sequently, DNN is also introduced for noise suppression
and dereverberation. The supervised DNN is investigated
to learn a mapping from reverberant and noisy input fea-
tures to a user-defined target. According to the variety
of targets, the supervised DNN-based technique can be
broadly classified to two categories, i.e., magnitude approx-
imation [9]–[11] and mask estimation techniques [12]–[14].
Magnitude approximation-based method uses DNN to learn
spectral magnitude of desired signal from spectral magni-
tude of the recorded signal. The enhanced signal is then
obtained by combining the estimated magnitude with the
phase of the recorded microphone signal. On the other
hand, the mask estimation technique aims at learning a time-
frequency mask such as the Wiener gain. Then the enhanced
feature is computed as the element-wise product of the es-
timated mask and the recorded signal feature. Other than
directly estimating the time-frequency mask, recently other
methods to obtain the mask have been also proposed, where
the interference power spectral density (PSD) or the signal-
to-interference ratio (SIR) are estimated by DNN [15], [16].
The estimated interference PSD or SIR can then used to
compute a time-frequency mask to recover the enhanced sig-
nal.

Multi-task learning scheme improves learning effi-
ciency and generalization performance by using shared rep-
resentations to jointly learn multiple related tasks, such that
what is learned from one task can help learning and gener-
alization in another task. In [17], the authors use the multi-
task network to learn desired magnitude and noise magni-
tude simultaneously, then the network outputs are used to
derive the time-frequency mask. In this paper, we propose
a novel multi-task scheme for statistics estimation in speech
enhancement, where speech presence probability (SPP) es-
timation serves as the secondary task to improve the es-
timation accuracy of the primary task (i.e., desired signal
magnitude, time-frequency mask, interference PSD, or SIR
estimation tasks). SPP is a helpful parameter in the tradi-
tional single-channel speech enhancement techniques [18]–
[20] and highly related with the primary task. Hence, we
consider SPP as the secondary target to assist the primary
target in learning a more robust and generalizable represen-
tation. The loss of the multi-task learning network is the
weighted sum of sub-task’s losses, and the weights can be
manually assigned. Since tuning the weights can be expen-
sive, we propose to use the adaptive weighting method of
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losses derived from the homoscedastic uncertainty of tasks
in [21].

In the experiment, the performance of single-task tech-
niques for estimating different targets is evaluated and com-
pared. The direct mask estimation is proven to outperform
others on both reverberant and noisy datasets. The perfor-
mance of proposed multi-task scheme using SPP as a sec-
ondary target is also evaluated and compared. The adaptive
weighting method for the loss of multi-task network shows
superiority compared to the fixed weighting method. Ad-
ditionally, simulation results prove that the proposed multi-
task scheme improves the speech enhancement performance
in most cases. And the joint direct mask and SPP estimation
yields the best speech enhancement performance among all
considered techniques.

2. DNN-Based Speech Enhancement

Assuming there is a single microphone which records a de-
sired speech source interfered by reverberation and additive
noise, the recorded microphone signal at time index t can be
represented by,

y(t) = he(t) ∗ s(t) + hl(t) ∗ s(t) + n(t)

= x(t) + r(t) + n(t),
(1)

where ∗ indicates convolution operation, s(t) is the clean
speech signal, n(t) is the additive noise signal, he(t) is the
impulse response for the direct sound and early reflection,
hl(t) is the late reflection impulse response, x(t) = he(t)∗ s(t)
is the direct and early reverberation component and r(t) =
hl(t) ∗ s(t) is the late reverberation component. In the short-
time Fourier transform (STFT) domain, the microphone sig-
nal is given by,

Y(k, l) = X(k, l) + R(k, l) + N(k, l)

= X(k, l) + I(k, l),
(2)

where k is the frequency index, l is the time index, X(k, l),
R(k, l) and N(k, l) are the STFTs of x(t), r(t) and n(t) re-
spectively, and I(k, l) = R(k, l)+N(k, l) represents the STFT
of inteference r(t) + n(t). Assuming that X(k, l) and I(k, l)
are uncorrelated, the PSD of the microphone signal Y(k, l) is
given by

Φ2
y(k, l) = E{|Y(k, l)|2} = Φ2

x(k, l) + Φ2
i (k, l), (3)

with E denoting the expected value operator andΦ2
x(k, l) and

Φ2
i (k, l) denoting the PSDs of X(k, l) and I(k, l), respectively.

Our goal in this work is to estimate X(k, l) and sup-
press I(k, l), as early reverberation component is beneficial
to speech intelligibility improvement but the late reverber-
ation combined with additive noise is detrimental to the
speech intelligibility. Typical DNN-based techniques aim-
ing to recover X(k, l) use DNN learning a mapping from
reverberant and noisy input features to a user-defined tar-
get. Depending on the target definition, such techniques

can be broadly categorized into magnitude estimation [9]–
[11] and mask estimation techniques [12]–[16]. Mask es-
timation techniques can be additionally categorized into
three subcategories, i.e., techniques that directly estimate
a time-frequency mask [9]–[11], techniques that estimate
the interference PSD required to compute a time-frequency
mask [15], and techniques that estimate the a priori SIR re-
quired to compute a time-frequency mask [16]. It should be
noted that these techniques differ not only in terms of the tar-
get definition, but also in terms of the used input features and
DNN architectures. However, to be able to provide a sys-
tematic review and to compare the performance for different
targets in Sect. 4, in this paper we consider only different tar-
get definitions for standard feed-forward DNN architectures
with temporal context depicted in Figs. 1 (a) and 1 (b). In the
remainder of this section, a brief overview of the considered
input and target definitions for such DNNs is provided.

2.1 Magnitude Approximation

Since the objective of speech enhancement is to estimate the
direct and early reverberation component X(k, l) from the
noisy and reverberant observation Y(k, l), one of the associa-
tive solutions is to directly estimating the desired magnitude
|X(k, l)| from the recorded magnitude |Y(k, l)|. The DNN tar-
get vector can be defined as the K–dimensional vector con-
structed using the spectral magnitude of X(k, l) at time frame
l across all frequency bins K,

x(l)= [|X(1, l)|, |X(2, l)|, |X(3, l)|, . . . , |X(K, l)|]T . (4)

To incorporate temporal context, the DNN input can be de-
fined as the K(2T + 1)–dimensional vector made by con-
catenating the spectral magnitude of Y(k, l) from the past
and future T time frames across all frequency bins K, i.e.,

y(l) = [|Y(1, l − T )|, . . . , |Y(K, l − T )|, . . .
. . . , |Y(1, l + T )|, . . . , |Y(K, l + T )|]T .

(5)

Using the estimated spectral magnitude |X̂(k, l)| and the
phase information of the noisy signal, the enhanced signal
is obtained as X̂mag(k, l) = |X̂(k,l)|

|Y(k,l)|Y(k, l).

2.2 Mask Approximation

2.2.1 Direct Mask Estimation

Noise and reverberation can be removed by directly apply-
ing a reference mask on the spectrum of recorded signal.
Although different time-frequency masks have been investi-
gated in the literature [13], [22], the commonly used Wiener
gain is considered in this paper, which is represented as,

G(k, l) =
Φ2

x(k, l)

Φ2
x(k, l) + Φ2

i (k, l)
, (6)

where Φ2
x(k, l) is PSD of the target signal calculated from

X(k, l) as,

 



WANG et al.: A MULTI-TASK SCHEME FOR SUPERVISED DNN-BASED SINGLE-CHANNEL SPEECH ENHANCEMENT BY USING SPP
1965

Φ2
x(k, l) = βΦ2

x(k, l − 1) + (1 − β)|X(k, l)|2, (7)

where β is a recursive smoothing parameter. Similarly,
Φ2

i (k, l) is the PSD of the interference signal computed from
I(k, l) using recursive averaging. The DNN target vector is
the K–dimensional vector constructed using the gain G(k, l)
at time frame l across all frequency bin K,

G(l) = [G(1, l), G(2, l), G(3, l), . . . ,G(K, l)]T . (8)

The DNN input vector is the K(2T + 1)–dimensional vec-
tor in Eq. (5). Using the estimated Wiener gain Ĝ(k, l), the
enhanced signal is obtained as X̂gain(l) = Ĝ(k, l)Y(k, l).

2.2.2 Interference PSD Estimation

Instead of directly estimating the gain in (6), in [15] it has
been proposed to use a DNN for estimating the interference
PSD Φ2

i (k, l). The target vector is Φ2
i (k, l) at time frame l

across all frequency bin K,

Φ2
i (l)= [Φ2

i (1, l), Φ2
i (2, l), Φ2

i (3, l), . . . ,Φ2
i (K, l)]T . (9)

Further, the DNN input vector can be defined as the K(2T +
1)–dimensional vector constructed by concatenating the mi-
crophone signal PSD Φ2

y(l) from the past and future T time
frames as in (5), i.e.,

Φ2
y(l) = [|Φ2

y(1, l − T )|, . . . , |Φ2
y(K, l − T )|, . . .

. . . , |Φ2
y(1, l + T )|, . . . , |Φ2

y(K, l + T )|]T .
(10)

To compute the enhanced signal, first the estimated
interference PSD Φ̂2

i (k, l) is used to obtain an estimate of
the a-priori SIR ξ̂psd(k, l) based on the decision directed ap-
proach [23], i.e.,

ξ̂psd(k, l)=α |X̂psd(k,l−1)|2
Φ̂2

i (k,l−1) +(1−α) max
[
|Y(k,l)|2
Φ̂2

i (k,l)
−1, 0

]
(11)

with α being the smoothing factor and Φ̂2
i (k, l) being the esti-

mated interference PSD. The estimated a-priori SIR ξ̂psd(k, l)
is then exploited to compute the Wiener mask Ĝpsd as,

Ĝpsd =
ξ̂psd(k, l)

ξ̂psd(k, l) + 1
. (12)

The enhanced signal is obtained as X̂psd(k, l) = ĜpsdY(k, l).

2.2.3 A-Prior SIR Estimation

Moreover, in [16] it has been proposed to use a DNN for
estimating the a-prior SIR ξ(k, l), which is defined as,

ξ(k, l) =
Φ2

x(k, l)

Φ2
i (k, l)

. (13)

In this case, the target vector is ξ(k, l) at time frame l across
all frequency bin K,

ξ(l) = [ξ(1, l), ξ(2, l), ξ(3, l), . . . , ξ(K, l)]T . (14)

And the DNN input vector is the K(2T + 1)–dimensional
vector y(l) defined in (5). The estimated SIR ξ̂sir(k, l) is used
to compute the Wiener mask as

Ĝsir =
ξ̂sir(k, l)

ξ̂sir(k, l) + 1
. (15)

The enhanced signal is obtained as X̂sir(k, l) = ĜsirY(k, l).

3. Multi-Task Learning for Statistical Estimation

Instead of using a single-task DNN that only estimates
one of the user-defined targets in Sect. 2 (i.e., desired sig-
nal magnitude, time-frequency mask, interference PSD, or
SIR), we propose to use a multi-task DNN that addition-
ally estimates the SPP. The SPP is a useful parameter in sin-
gle channel speech enhancement for accurately tracking the
interference PSD, and hence, for improving the speech en-
hancement performance [18]. We hypothesize that jointly
learning to estimate the user-defined target and the SPP
through shared DNN layers within a multi-task learning
framework yields more robust and generalizable represen-
tations for the primary task (i.e., estimating the user-defined
target described in Sect. 2). Assuming that the desired sig-
nal and interference STFT coefficients are complex Gaus-
sian distributed, the SPP can be computed as [18]

P(H1|y)=

⎛⎜⎜⎜⎜⎜⎝1+ P(H0)
P(H1)

(1+ξH1 )e
− |y|2
Φ2

i

ξH1
1+ξH1

⎞⎟⎟⎟⎟⎟⎠
−1

, (16)

where P(H1) and P(H0) are the prior probabilities of speech
presence or absence respectively, ξH1 is the optimal fixed a-
prior SNR, and Φ2

i is the interference PSD calculated by
recursive smoothing. For notational convenience, the time
and frequency indexes are omitted. In line with the target
definitions in Sect. 2, the target vector for SPP estimation is
given by

SPP(l) = [SPP(1, l), SPP(2, l), . . . ,SPP(K, l)]T . (17)

Figures 1 (c)–1(e) depict examples of the considered DNN
architectures for jointly learning two tasks, with the first
task being the estimation of a target vector as presented in
Sect. 2 and the second task being the estimation of the SPP
in (17). After obtaining the estimated target from the first
task’s output, the enhanced speech signals are obtained from
the approaches described in Sect. 2, which are referred as
X̂M

mag(k, l), X̂M
gain(k, l), X̂M

psd(k, l), X̂M
sir(k, l) respectively.

The loss function of multi-task network plays an im-
portant role in learning performance. The most common
formulation is to sum the weighted loss of every sub-task. In
this paper, we mainly concern the loss function of a multi-
task learning network with two sub-tasks, i.e.,

Lfixed(W) = λ1L1(W) + λ2L2(W) (18)

with L1 being the loss function for estimating a target vec-
tor from Sect. 2, L2 being the loss function for estimating
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the SPP in (17), λ1, λ2 being the user-defined weighting
scalars, and W being the model parameters. When using
the loss function in (18), the performance of the model can
be sensitive to the values of λ1 and λ2 and finding optimal
values can be expensive [21]. To avoid tuning λ1 and λ2, we
propose to use the adaptive loss function derived in [21] to
automatically weigh the task-specific loss functions, i.e.,

Lada(W, σ1, σ2)=
1

σ2
1

L1(W) +
1

σ2
2

L2(W) + logσ1σ2,

(19)

where σ1, σ2 are the observation noise parameter of each
tasks. While minimizing the loss function, the value of σ1,
σ2 would also be adjusted, which is regarded as learning the
weight of losses L1(W) and L2(W).

In [17], the multi-task network is used to learn desired
magnitude and noise magnitude simultaneously, then the
time-frequency mask is derived, which obtains impressive
performance. In this case, the equal weight parameters are
adopted and good estimation for both targets are required
to ensure the accuracy of mask estimation. In our proposed
multi-task scheme, the SPP is incorporated as an auxiliary
target in model training and only the the primary task is con-
cerned with the speech enhancement performance, and the
adaptive weighting method is considered to optimize the ac-
curacy of primary target estimation.

4. Experimental Setup and Result

In this section, firstly the performance of all single-task tech-
niques discussed in Sect. 2 is compared on the same datasets
and DNN architectures. To the best of our knowledge, only
the performance of magnitude and direct mask estimation
techniques has been compared on the same datasets and
DNN architectures in [13], while the performance of the
more recently proposed interference PSD and SIR estima-
tion techniques has not been considered. Further, the per-
formance of the proposed multi-task framework using SPP
as a secondary task is investigated.

4.1 Datasets

Two datasets are considered, i.e., a reverberant dataset
where the interference consists of different reverberation
levels and a reverberant and noisy dataset (referred to as a
noisy dataset) where the interference consists of a fixed re-
verberation level and varying levels and types of noise. The
clean utterances are from the TIMIT database [24].

For the reverberant dataset, 500 clean utterances are
convolved with 16 room impulse responses (RIRs) to com-
prise 8000 training utterances totally. The validation dataset
is generated by convolving 200 clean utterances with 8
RIRs, resulting in 1600 utterances totally. The test dataset is
generated by convolving 200 clean utterances with 8 RIRs,
resulting in 1600 utterances totally. There is no overlap be-
tween utterance files for different sets. The RIRs are se-

Table 1 Reverberation times of training dataset, validation dataset and
test dataset in the reverberant dataset.

Database T60 (ms)

Train set
200, 250, 300, 390, 410, 440, 520, 580,
640, 680, 700, 749, 800, 880, 930, 1000

Validation set 220, 370, 450, 570, 650, 730, 850, 980

Test set 280, 360, 430, 560, 670, 760, 830, 910

lected from multiple databases measured in real environ-
ments [25]–[28]. The reverberation times of RIRs used in
train, validation and test datasets are listed in Table 1, which
range from 200 ms to 1 s.

To generate the noisy dataset, clean utterances are
firstly convolved with one measured RIR and corrupted with
different noise types from the DEMAND database [29]. For
the training, validation, and test sets, we have used 250, 100,
and 100 clean speech files convolved with an RIR with re-
verberation time 580 ms, 570 ms, and 560 ms, respectively.
There is no overlap between the clean speech files and the
RIRs for different datasets. Further, for the training, vali-
dation, and test sets, 5 different noise types (DKITCHEN,
NPARK, TBUS, PCAFETER, OMEETING) at 3 different
broadband signal-to-noise ratio (SNR) are added to the re-
verberant signals, with SNR ∈ {−5dB, 0dB, 5dB}. Every
noise signal is divided into 3 parts for training, validation,
and test sets respectively, and for every utterance, a ran-
dom cut from the noisy signal is used. To analyze the
generalization capabilities of the proposed models, an un-
seen noisy test dataset is also generated by adding 3 unseen
noise types (DLIVING, OHALLWAY, PSTATION) at un-
seen broadband SNRs to the test reverberant signals, with
SNR∈{−3dB, 3dB, 10dB}.

4.2 Algorithmic Settings, Network Settings and Metrics

Signals are processed in the STFT domain using a weighted
overlap-add framework with a tight analysis window of 256
samples and an overlap of 50% at a sampling frequency
fs = 16 kHz. Considering only half of the spectrum, the
number of frequency bins is K = 129. Further, the num-
ber of time frames used for temporal context is T = 3.
The PSDs Φ2

y(k, l), Φ2
x(k, l) and Φ2

i (k, l) are computed as
in (7) using recursive averaging with a smoothing factor of
β = 0.85. In the interference PSD estimation, to compute the
estimated SIR, we use the decision-directed approach repre-
sented in (11) with a smoothing factor of α = 0.9. The val-
ues of α, β and T have been fine tuned according to the effec-
tiveness. For the Wiener gain mask in (12) and (15), a min-
imum gain of −12 dB is used. To compute the SPP in (16),
we use P(H1) = 0.5, P(H0) = 0.5, and 10 log10 ξH1 = 15 dB
according to [18]. Prior to training, the input vectors y(l),
Φ2

y(l) and target vectors x(l), Φ2
i (l), ξ(l) are transformed to

the log-domain and are globally normalized into zero mean
and unit variance.

To exploit network’s ability of statistical estimation,
we adopt networks with 2 and 3 hidden layers respectively.
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Fig. 1 Schematic illustration of the considered DNN architectures: (a) single-task estimation with
two layers, (b) single-task estimation with three layers, (c) multi-task estimation with one shared layer
followed by one task-specific layer, (d) multi-task estimation with two shared layers followed by one
task-specific layer, and (e) multi-task estimation with one shared layer followed by two task-specific
layers.

Specifically, for single-task statistical estimation, the con-
sidered network architectures are shown in Figs. 1 (a), (b),
where nu is the unit number of hidden layers. For multi-task
statistical estimation, the considered network architectures
are shown in Figs. 1 (c)–(e). As previously mentioned, two
different tasks are jointly learned, with the 1st task being the
estimation of a target as presented in Sect. 2 and the 2nd task
being the estimation of the SPP in (17). In Fig. 1 (c) both
tasks share a hidden layer followed by a task-specific layer,
in Fig. 1 (d) both tasks share two hidden layers followed by
a task-specific layer, whereas in Fig. 1 (e) both tasks share
a hidden layer followed by two task-specific layers. For
all architectures, we use rectifying linear unit (ReLU) as
non-linearity on all hidden layers and input layers. For es-
timating an unbounded target (i.e., the desired magnitude,
the interference PSD, or the SIR), there is no non-linearity
on the output layer. For estimating the Wiener gain or the
SPP which are bounded between 0 and 1, a sigmoid non-
linearity is used on the output layer. Mean square error is
used as the loss function for training the single-task net-
works in Figs. 1 (a), (b) and as the loss function L1 for train-
ing the multi-task networks in Figs. 1 (c)–(e). Cross-entropy
loss is used as the loss function L2 for training the multi-
task networks. All considered architectures are trained for
different nu using the Adam optimizer with different hyper-
parameters, i.e., learning rate lr and weight decay wd. After
training for 200 epochs, the model parameters correspond-
ing to the epoch with the lowest validation error (out of all
considered architectures, nu, lr, and wd) are used as the final
model parameters.

The dereverberation and denoising performance is
measured by the perceptual evaluation of speech quality
(PESQ) [30] and frequency-weighted segmental signal to
noise ratio (fwSSNR) [31].

4.3 Performance Evaluation of Multi-Task Loss Functions

For the multi-task DNN, the loss function is defined as
a weighted sum of the task-specific loss functions of two

Table 2 Performance of jointly direct mask estimation and SPP estima-
tion using loss function in (18) (with λ1 = 1) and (19) on the test noisy and
unseen noisy datasets.

Weighting
Methods

Noisy Test Dataset
Unseen Noisy
Test Dataset

fwSSNR PESQ fwSSNR PESQ

Unprocessed 3.26 1.21 4.24 1.26

λ2

0.001 5.82 1.43 6.41 1.48
0.01 5.76 1.42 6.34 1.47
0.1 6.10 1.44 6.73 1.49
1 6.05 1.44 6.74 1.50
10 6.12 1.45 6.70 1.51

100 6.13 1.42 6.74 1.47

Adaptive 6.26 1.45 6.88 1.51

tasks. To compare the performance of adaptive weighting
in (19) and fixed weighting in (18) for the multi-task loss
function, the two weighting methods is used for jointly di-
rect mask estimation and SPP estimation on noisy dataset.
In fixed weighting method, we set λ1 = 1 and λ2 ∈
{0.001, 0.01, 0.1, 1, 10, 100}. For all considered fixed weight
parameters and the adaptive weighting, the two-layer net-
work depicted in Fig. 1 (c) is trained for nu = 500 and differ-
ent hyper-parameters, i.e., learning rate lr ∈ {0.001, 0.0001}
and weight decay wd ∈ {0, 0.001}. The final network is
selected as the one yielding the minimum validation loss.
The average PESQ and fwSSNR scores obtained on the test
noisy and unseen noisy datasets, as well as the scores of
unprocessed input speech are presented in Table 2. From
the table, adaptive weighting outperforms fixed weighting
at any values of {λ1, λ2} on all the considered test datasets
and metrics. Hence the adaptive weighted loss in (19) is
adopted in the following experiment.

4.4 Performance Evaluation of Single-Task and Proposed
Multi-Task Techniques

In this section, the performance of the single-task techniques
presented in Sect. 2 is evaluated and compared. The single-
task techniques are referred to as X̂mag, X̂gain, X̂psd and X̂sir
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Table 3 Performance comparison for single-task and proposed multi-task techniques of different tar-
gets on the test reverberant dataset.

fwSSNR Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

T60
(ms)

280 9.69 11.30 12.29 10.24 10.62 11.37 12.46 10.13 10.82
360 12.98 12.78 13.33 12.93 12.85 12.59 13.56 12.73 12.98
430 8.37 11.33 11.75 9.71 10.07 11.08 12.02 9.99 10.36
560 10.30 12.07 12.85 11.50 12.23 11.93 12.94 11.49 12.25
670 10.61 12.46 13.29 10.69 12.14 12.37 13.58 11.08 12.56
760 10.67 11.86 11.90 11.34 10.45 11.68 11.77 11.53 10.63
830 2.15 4.86 4.90 4.67 4.75 4.78 4.91 4.61 4.90
910 4.78 7.31 7.45 7.06 7.00 7.25 7.48 7.22 7.02

Average 8.70 10.50 10.97 9.77 10.01 10.38 11.09 9.85 10.19

PESQ Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

T60
(ms)

280 1.59 1.73 1.82 1.63 1.68 1.72 1.84 1.63 1.70
360 1.73 1.95 2.11 1.96 1.99 1.87 2.14 1.98 2.00
430 1.40 1.63 1.60 1.46 1.49 1.56 1.60 1.47 1.50
560 1.50 1.63 1.83 1.76 1.74 1.68 1.83 1.76 1.74
670 1.63 1.76 1.97 1.81 1.84 1.81 2.00 1.85 1.85
760 1.49 1.72 1.73 1.63 1.64 1.71 1.74 1.65 1.65
830 1.32 1.34 1.36 1.35 1.37 1.32 1.37 1.36 1.37
910 1.25 1.32 1.34 1.34 1.32 1.32 1.34 1.34 1.33

Average 1.49 1.63 1.72 1.62 1.63 1.62 1.73 1.63 1.64

Table 4 Performance comparison for single-task and proposed multi-task techniques of different tar-
gets on the test noisy dataset.

fwSSNR Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

SNR
(dB)

-5 1.58 3.96 4.46 3.16 2.91 4.65 4.98 3.12 3.41
0 3.24 5.20 6.08 5.05 4.60 5.97 6.50 4.96 5.15
5 4.94 5.93 7.26 6.49 5.84 6.83 7.61 6.31 6.43

Noise
Type

DKITCHEN 3.37 5.88 6.46 4.92 4.85 6.78 7.05 5.02 5.67
NPARK 2.17 4.46 5.00 3.95 3.66 5.13 5.53 3.93 4.16

OMETTING 3.08 4.85 5.77 4.79 4.11 5.77 6.17 4.63 4.69
PCAFETER 1.90 4.02 4.68 4.04 3.40 4.49 5.07 3.95 3.81

TBUS 5.78 5.94 7.77 6.80 6.23 6.92 7.99 6.45 6.65

Average 3.26 5.03 5.94 4.90 4.45 5.82 6.36 4.80 5.00

PESQ Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

SNR
(dB)

-5 1.12 1.19 1.31 1.22 1.19 1.24 1.33 1.22 1.21
0 1.20 1.25 1.43 1.34 1.31 1.32 1.45 1.34 1.32
5 1.29 1.30 1.54 1.46 1.42 1.37 1.56 1.46 1.43

Noise
Type

DKITCHEN 1.23 1.33 1.50 1.38 1.33 1.43 1.53 1.39 1.37
NPARK 1.18 1.23 1.38 1.30 1.27 1.31 1.40 1.30 1.29

OMETTING 1.15 1.19 1.33 1.26 1.23 1.24 1.36 1.26 1.24
PCAFETER 1.16 1.19 1.30 1.26 1.23 1.23 1.32 1.26 1.24

TBUS 1.31 1.28 1.61 1.50 1.45 1.35 1.63 1.50 1.45

Average 1.21 1.25 1.43 1.34 1.30 1.31 1.45 1.34 1.32

respectively. The networks depicted in Figs. 1 (a), (b) are
considered as the single-task networks. Moreover, to evalu-
ate the performance of proposed multi-task scheme, the dif-
ferent targets presented in Sect. 2 are jointly estimated with
SPP as the secondary target. The multi-task techniques are
referred to as X̂M

mag, X̂M
gain, X̂M

psd and X̂M
sir respectively. The net-

works depicted in Figs. 1 (c)–(e) are considered as the multi-
task networks.

For each technique, the considered networks are
trained for several numbers of hidden units nu ∈ {500, 1000,
1500} and different hyper-parameters, i.e., learning rate lr ∈
{0.001, 0.0001} and weight decay wd ∈ {0, 0.001}. The final
network is selected as the one yielding the minimum vali-

dation loss. Tables 3–5 presents the average fwSSNR and
PESQ scores of the unprocessed input speech and the en-
hanced speech processed by single-task or proposed multi-
task techniques on the test reverberant, noisy, and unseen
noisy datasets respectively, where the results for each rever-
beration time, noise type, and SNR are also listed.

In single-task experiment, compared to the unpro-
cessed speech, all considered techniques generally yield an
improvement in PESQ and fwSSNR on all datasets, with
the direct mask estimation technique (i.e., X̂gain) yielding
the best performance. The advantageous performance of
the direct mask estimation technique in comparison to mag-
nitude estimation was already established in [13]. How-
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Table 5 Performance comparison for single-task and proposed multi-task techniques of different tar-
gets on the test unseen noisy dataset.

fwSSNR Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

SNR
(dB)

-3 2.08 4.12 4.94 4.09 3.53 4.95 5.45 3.99 4.01
3 4.21 5.47 6.79 6.08 5.38 6.44 7.13 5.89 5.88

10 6.42 6.29 8.11 7.66 6.72 7.21 8.34 7.29 7.26

Noise
Type

DLIVING 4.16 5.31 6.61 5.86 5.09 6.22 6.95 5.64 5.63
OHALLWAY 5.70 5.94 7.72 6.96 6.24 6.96 7.99 6.68 6.78
PSTATION 2.85 4.64 5.50 5.00 4.30 5.43 5.98 4.84 4.73

Average 4.24 5.29 6.61 5.94 5.21 6.20 6.97 5.72 5.71

PESQ Unprocessed X̂mag X̂gain X̂psd X̂sir X̂M
mag X̂M

gain X̂M
psd X̂M

sir

SNR
(dB)

-3 1.15 1.20 1.35 1.28 1.24 1.26 1.38 1.28 1.25
3 1.26 1.27 1.50 1.43 1.39 1.34 1.53 1.43 1.40

10 1.37 1.31 1.63 1.56 1.51 1.39 1.64 1.56 1.52

Noise
Type

DLIVING 1.24 1.25 1.47 1.40 1.35 1.32 1.49 1.40 1.36
OHALLWAY 1.34 1.29 1.60 1.53 1.47 1.37 1.62 1.52 1.48
PSTATION 1.20 1.24 1.41 1.35 1.31 1.30 1.44 1.35 1.32

Average 1.26 1.26 1.49 1.43 1.38 1.33 1.52 1.42 1.39

ever, also the more recently proposed interference PSD and
SIR estimation techniques show a lower dereverberation and
noise reduction performance than the direct mask estima-
tion technique on all datasets. Additionally, except mag-
nitude estimation on reverberant dataset and interference
PSD estimation on the noisy dataset, the proposed multi-
task scheme outperforms the traditional single-task scheme
in most cases. And the score improvement for each rever-
beration time, noise type, and SNR is generally balanced.
Among all the techniques using single-task and multi-task
schemes, the technique of jointly direct mask estimation and
SPP estimation obtains the best performance.

5. Conclusion

In this paper, multi-task learning using SPP as the secondary
target has been proposed to improve the accuracy and gen-
eralization of supervised DNN-based single-channel speech
enhancement techniques. Instead of only estimating a user-
defined target (e.g., the desired signal magnitude, a time-
frequency mask such as the Wiener gain derived directly
or from the interference PSD, or the SIR), the SPP serves
as the secondary task to provide the domain-specific infor-
mation for the main task. In the multi-task scheme, we
have used a recently proposed adaptive weighting method
of losses derived from the homoscedastic uncertainty of
tasks. The simulation results result proves that the pro-
posed multi-task learning framework outperforms single-
task learning on most test datasets. And direct mask ap-
proximation jointly with SPP estimation outperforms other
state-of-art techniques in all of the reverberant and noisy test
datasets.
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