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SUMMARY  Most gait recognition approaches rely on silhouette-based
representations due to high recognition accuracy and computational effi-
ciency. A fundamental problem for those approaches is how to extract
individuality-preserved silhouettes from real scenes accurately. Foreground
colors may be similar to background colors, and the background is clut-
tered. Therefore, we propose a method of individuality-preserving sil-
houette extraction for gait recognition using standard gait models (SGMs)
composed of clean silhouette sequences of various training subjects as
shape priors. The SGMs are smoothly introduced into a well-established
graph-cut segmentation framework. Experiments showed that the proposed
method achieved better silhouette extraction accuracy by more than 2.3%
than representative methods and better identification rate of gait recognition
(improved by more than 11.0% at rank 20). Besides, to reduce the com-
putation cost, we introduced approximation in the calculation of dynamic
programming. As a result, without reducing the segmentation accuracy, we
reduced 85.0% of the computational cost.

key words: silhouette extraction, gait recognition, shape prior, graph-cut
segmentation, nearest neighbor search

1. Introduction

Person authentication from surveillance cameras plays an
increasingly important role in forensics (e.g., person re-
identification and verification of a perpetrator and a suspect).
Gait biometrics [1] has been considered a promising cue for
person authentication. It can be utilized even if the perpe-
trator/suspect is captured at a distance from the surveillance
camera.

Approaches to gait recognition mainly fall into two
families [2]: model-based and appearance-based. The
appearance-based approaches (such as [3]-[5]) have been
dominant in the gait recognition community since they work
well even for lower-resolution images with less compu-
tational cost than the model-based ones. In particular, a
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mainstream of the appearance-based approaches exploits
silhouette-based representations [6]—[11] because they are
unaffected by clothing color and texture. Gait recognition
accuracy using silhouette-based representations is, however,
subject to silhouette quality.

Silhouette extraction, i.e., foreground/background seg-
mentation, has been studied for a long time in image pro-
cessing and computer vision fields [12]. While traditional
approaches to background subtraction exploit pixel-wise
background modeling [13], recent approaches take adjacent
connectivity or smoothness into consideration for better seg-
mentation. A seminal work on this topic is graph-cut seg-
mentation [14] and its variants: GrabCut[15] and mutual
GrabCut[16]. In addition, soft segmentation, a.k.a. al-
pha matte process of foreground/background, is also consid-
ered by the image segmentation community [17], and its ef-
fectiveness is demonstrated in the gait recognition commu-
nity [18]. These approaches work well as long as wrongly
assigned regions (e.g., over-segmentation in background
and under-segmentation in foreground) are small enough be-
cause they can be corrected by imposing the smoothness.
However, they do not work if the wrongly assigned regions
are too large to be corrected (e.g., the bulk of the under-
segmentation in the leg region in Fig. 2 (e)). Hence, the seg-
mentation problem for gait recognition is still unsolved and
challenging.

To solve the challenging task, a shape prior is incor-
porated in the segmentation framework [19]. For example,
Liu and Sarkar [20] train an eigen stance, i.e., an eigen space
of silhouettes at each gait stance, from clean silhouettes of
multiple training subjects, and reconstruct silhouettes of a
test subject through the eigen stance. However, the recon-
structed silhouettes may not preserve the individuality of the
test subject since their variations are limited to the eigen
space, i.e., a weighted linear sum of training subjects’ sil-
houettes. Wang et al. [21] also incorporate the shape be-
fore silhouette extraction. They matched a standard gait
model (SGM) to initially extracted silhouettes. They im-
proved the silhouettes while considering a balance between
the matched SGM and the initial silhouettes containing the
test subject’s individuality in the graph-cut segmentation
framework. However, since they use a single SGM, the im-
proved silhouettes tend to be close to the single SGM and
may reduce inter-subject variations.

Therefore, we propose a method of individuality-
preserving silhouette extraction which efficiently exploits

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers
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Fig.1 Sample image from the OU-ISIR Large Population Gait Database.

multiple SGMs in conjunction with the graph-cut segmenta-
tion framework. In this context, contributions of this paper
are summarized as the following two points.
1. Individuality-preserving silhouette extraction using
multiple SGMs: While previous studies [20], [21] may
wash out the individuality in the silhouettes, our proposed
method keeps the individuality as much as possible. It is
realized by selecting the best-fit SGM from multiple SGMs
for each test subject and balancing the matched SGM and
the initial silhouettes containing the test subject’s individu-
ality in the graph-cut segmentation framework.
2. Accuracy improvement in gait recognition: While pre-
vious studies [20], [21] did not report the accuracy improve-
ment in gait recognition, we demonstrate that the proposed
silhouette extraction actually improves gait recognition ac-
curacy thanks to the individuality-preserving property de-
scribed above.

Compared with our previous paper [22], in the current
paper, we made the following extensions.

1. Speeding up of the proposed method
We improve the proposed method to reduce its process-
ing time by introducing an approximate nearest neigh-
bor method.

2. Use of new database
The database used in our previous paper contained im-
age sequences of pupils wearing backpacks, and the
backpacks were included in their silhouettes. In the
current paper, to avoid the backpack problem, we pre-
pared a new database based on OU-ISIR Large Pop-
ulation Gait Database[23]. Since image sequences
of the OU-ISIR Large Population Gait Database were
recorded under a controlled environment (see Fig. 1),
it is easy to segment the body region from the back-
ground. Hence, to make the problem realistic, we syn-
thesized the background for the database images, and
they are not easy to segment anymore.

3. New evaluation criterion
In evaluation, in addition to gait recognition accuracy,
silhouette extraction accuracy is evaluated.
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Fig.2  Framework of the proposed method which leverages a shape prior
(f) derived from multiple SGMs (c) as well as the data (e) and the smooth-
ness (d) in graph-cut segmentation for better results (g).

2. Proposed Method
2.1 Problem Setting

In this study, we consider the person authentication of
pedestrians captured by two different cameras. Under this
problem setting, we assume that the cameras are static and
background image sequences without pedestrians for back-
ground modeling are available. Moreover, since we focus
on silhouette extraction for gait recognition, we assume that
well-established pedestrian detectors [24] and trackers [25]
give bounding box sequences for individual pedestrians.

2.2 Framework

As with most segmentation approaches, we adopt a
graph-cut segmentation framework [14] that assigns a fore-
ground/background label to each pixel through energy min-
imization. Figure 2 illustrates the framework of the pro-
posed method. Given an original image (Fig. 2(a)) and back-
ground image (Fig.2(b)), a foreground/background likeli-
hood as a data term (Fig.2(e)) based on background sub-
traction, and a smoothness term (Fig. 2(d)) to enhance fore-
ground/background label consistency in the spatio-temporal
proximity are computed. Besides, the best-matched SGM is
found by matching SGMs of multiple persons (Fig. 2(c)) to
the data term to compute the shape-prior term (Fig. 2(f)).
Then, an energy function E(X) is defined as a weighted
linear sum of the data term Eg(X,), the smoothness term
Egn(Xp, Xy), and the shape-prior term Eg,(X,) as

EX) =wa ) EalX) + wan D En(Xp, X,)
q€Q (p.@)eP

+wa Y En(Xy), (M
qeQ

where Q and P are sets of sites (pixels) and edges
(pairs of spatio-temporally adjacent pixels), X, is a fore-
ground/background label at the site g (FG: foreground, BG:
background), X is a set of labels for all the sites Q, and
Wi, Wsm, and wyy, are weights to consider the tradeoff among
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individual terms. Finally, the optimal label assignment is
obtained by minimizing the energy function E(X) with the
min-cut algorithm. We describe the details of the individual
procedures in the following subsections.

2.2.1 Data Term

The data term (corresponding to Fig.2(e)) is to segment
the given input image into the foreground and background
regions. In this section, we present how to calculate the
background and foreground data terms. The background
data term is calculated as follows. First, a pixel-wise back-
ground model is trained as a single Gaussian from the given
background image sequence. Specifically, as the pixel-wise
background model, a mean color vector ﬁbg,q € R¥and a
covariance matrix Zy,, € R¥* are computed at each site g.
Then, the Mahalanobis distance dyg , between an input color
vector ¢, and the trained background model {fpg 4, Zg 4} is
computed at each site ¢ as

dvgq = (E)q - /jbg,q)T E};;,q (E)q - ﬁbg,q) : 2

Finally, the background data term Eq (X, = BG) is defined
as

Ea(Xy = BG) = exp (—#vgdgq) » (3)

where kg is a hyper-parameter.

Once we obtain the background data term, then we cal-
culate the foreground data term. The foreground color is
represented as a Gaussian mixture model (GMM). Specif-
ically, foreground sample regions are extracted by back-
ground subtraction (i.e., thresholding the background data
term (Eq. (3)), followed by applying morphological oper-
ations containing closing, opening, and area filter. Then,
by applying k-mean clustering algorithms to a set of color
vectors within the foreground sample regions, a set of
means and covariance matrices for the GMM, denoted by
{ﬁ’f‘g, ZIf‘g} (k=1,...,K), where K is the number of mixtures,
are obtained. Thirdly, Mahalanobis distances dfg’q between
an input color vector &, are calculated at each site ¢ and the
k-th component of the trained foreground GMM as

d]fcg,q = (E)‘? _ﬁ]gg)T E]fcg_] (E)‘? _ﬁ]gg)' S

Finally, the foreground data term Eq (X, = FG) is defined as

Ea(X, = FG) = exp (—ng min d{.‘g,q), )

where ki, is a hyper-parameter.
2.2.2  Smoothness Term

The smoothness term (corresponding to Fig. 2(d)) enhances
foreground/background label consistency in the spatio-
temporal proximity. First, a set of edges P is defined as
pairs of spatio-temporally adjacent pixels. While we simply
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use four connected neighbors for the spatial domain, we use
optical flow correspondences [26] for the temporal domain.
Then, the smoothness term is defined as

0 itX, =X,
Egn(Xp, X,) = I, =, P : ()
exp ~Km a1z Pre otherwise.
where &, is an RGB color vector at the site g, || - || stands for

the L, norm, and «,, and € are hyper-parameters.
2.2.3 Shape-Prior Term

We introduce the shape-prior term to preserve the individ-
uality. The shape-prior term is calculated by selecting the
best-match SGM from SGMs of multiple persons (Fig. 2(c))
in the following manner; a sequence of background subtrac-
tion images (i.e., the foreground images of the data term
calculated in Sect.2.2.1) is matched to the SGMs for each
frame, and the most similar one is found as the best-match
SGM. More specifically, we prepare a sequence of images
whose pixel values are set to the background data term at
the corresponding site. Then, as the foreground images, we
extract a sequence of cropped images based on given bond-
ing boxes, {ﬂn)} (n=1,...,N), where N is the number of
frames.

We then introduce a set of SGMs from M training sub-
jects. The SGM for the m-th training subject is composed of
an entire period (let it be N”) of clean silhouette sequences,
as shown in Fig. 3 (left). The SGM is regarded as a period
image with regard to frames, and an index for the frame (or
phase, gait stance) is denoted as ¢ (¢ = 1,... ,N,‘Z .

Since the given bounding box sequences for a target
person may contain small deviations from the ground truth,
we consider variations to scaling s, horizontal translating
t, and vertical translating f,, in addition to the gait stance
¢. More specifically, we quantize each variation with em-
pirically determined quantization steps as s = 1 + 0.01s;,
ty = 0.01hsy, t, = 0.01hs,, where h is the image height
of the SGM, and s,, s, and s, are all integers (let a set of
the variations of scaling, translation, and phase be a vec-
tor § = [¢, sy, Sy, sy]T). We further consider the variation
range empirically as S = {§'| ¢ = 1,...,N£, Iss] < 5], <
5,15yl < 25}, where N,i is a complete period (i.e., the num-
ber of frames) for the m-th SGM. We can now define an
unfolded image vector for the m-th subject’s SGM with the
variation §as g, () m=1,...,M,5€ S).

Since the variation is represented by a 4-dimensional
vector § € R*, selection of the best-match SGM is cast as
a search problem in the 4-dimensional state space by min-
imizing a certain cost function composed of two terms: a
matching cost and a transition cost.

The matching cost for a specific pair of the SGM g,,,(5)
and f(n) is defined by Tanimoto distance [27], which is a
standard dissimilarity measure for shape matching, as
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2y MIn{ £ (x, y; 1), gi(x, y; 5)}

Doy Max{f(x, ys n), gm(x, ys 5)}
(7N

Dmatch(f—)(n)s gm(@) =1-

where f(x,y;n) and g(x,y; 5) are pixel values at the posi-
tion (x,y) for the background subtraction image f(n) and
the SGM ¢(5), respectively. Note that the Tanimoto distance
is zero when the two images f(n) and g(3) are identical, and
that it is one when there is no overlapping between them.

If we search the best-match SGM just by minimizing
the matching cost frame-by-frame, it may contain abrupt
changes of the variation (e.g., abrupt change of the phase,
the scale, or the translation between adjacent frames). We
therefore consider the transition cost from state §,(n — 1) at
the (n — 1)-th frame to §,,(n) at the n-th frame for the m-th
SGM to ensure the smoothness as

Dtrans(f)m(n -1, Em(”)) =Nu(Pm(n — 1), du(n))
+ |Sm,s(n) - Sm,s(n - 1)
+ |Sm,x(n) - sm,x(n = 1)

+ |sm,y(n) - Sm,y(n - 1)| (8)

An(@m(n = 1), ¢m(n)) = minf|p(n) — (¢(n — 1) + )],

= lp(n) = (p(n = 1) + DI}.
(€))

Note that the phase smoothness is defined by considering
periodicity as well as the phase evolution (i.e., the gait
stance is evolved as the frame is incremented).

Consequently, the search problem in the 4-dimensional
state space is defined as a minimization problem of the
weighted sum of the matching cost and the transition cost
as

(3,,(m)) = arg min {Z Dinaaen (£, G (Fon(m)))

{8 (m)} i=1

N
+ @ Digans (Sl = 1), s*m<n>>} :
i=2
(10)

where « is a weight for the transition cost and set to be 0.05
empirically.

For the efficient optimization of the above cost func-
tion, we employ a DP framework and introduce the optimal
cumulative cost up to the n-th frame for the m-th SGM at
the state §,,(n) as C,,(n, 5,,(n)). We assume that the optimal
path from the first frame to the state §,(n) at the n-th frame
is selected.

First, the cumulative cost for the first frame is initial-
ized as follows.

Cu(L,5x(1) =0 ¥5,(1) (1)

Next, we define a set of previous states, S(n — 1; §,(n)),
which can be transited to a current state §,,(n) as

995

EEEESSEEEEE

Fig.3  SGMs (left) and its DP matching (right)

S = 1;5,() = {Su(n = DIAWGn(n = 1), () < ¢,

tol

|Sm,s(n) sm s(n - l)l < S
|sm,x(n) Sm x(n - 1)| < Sm]
|Sm,y(n) - Sm,y(n -1 < sty()l},

12)

where ¢*!, st 59 and s‘y"' are transition tolerance parame-
ters. We set them to 1, respectively, so as to limit the transi-
tion to the adjacent states.

We then select the optimal previous state, which tran-

sits to the current state §,(n) as

SP(n = 1; §,(n)) =

arg min
Sn(n—1)eS (n—1;5,,(n))

+@Dirans (Sn(n —

{Cm(n - 1, 57)771(” - 1))

D, Su@m)}.  (13)

Now, we can calculate the cumulative cost at the n-th
frame as a sum of the cumulative cost at the previous frame,
the transition cost, and the Tanimoto distance at the current
frame in a recursive way as

Cn(n, 5,(n)) =Cp(n —

+ aDtrans(sm (I’l -

L5 (n — 15 5,(n)))
15 8,(1)), §u(n))
+ Dinatcn(f (1), Gon(S())). (14)

Once the cumulative costs are calculated, the optimal path
is found by backtracking from the optimal state at the last
frame as follows.

§,(N) = arg min C,,(N, 5,,(N)) (15)
Sin(N)
Sn—1)= 5~ 1;5,0) (16)

We do this process for all the training subjects and se-
lect the best training subject with minimal cost as

m" = arg min C,,(N, §,(N)). 17

Subsequently, we formulate the shape-prior term based
on the matched SGM {g,, (5.(n))} (we denote it {§*(n)} for
simplicity). After we compute the signed distance dg, , of
the matched SGM {g*(n)} for the site ¢ (i.e., positive and
negative values for inside and outside of the silhouette, re-
spectively), we compute the background/foreground shape-
prior terms using a sigmoid function as
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Eq(X, =BG) = ; (18)
e = 1+ exp(—Kshdsh)
Esh(Xq =FG)=1- Esh(Xq = BG), (19)

where kg, is the gain for this sigmoid function.

A property of this representation is that the shape-prior
is mitigated near the silhouette contour while it becomes
stronger as the site is further from the silhouette contour
(i.e., probable inside or outside, see Fig.2(f)). Thanks to
this property, we avoid making the segmentation results too
close to the matched SGM, which is beneficial when the
matched SGM deviates from the ground truth of a test sub-
ject. Moreover, thanks to the multiple SGMs, we can sup-
press this deviation by selecting the best matched SGM.
Therefore, we successfully handle the tradeoff between the
data and the shape prior.

2.3 Speedup of Selecting the Matched SGM

Though the proposed framework described in Sect. 2.2 is ef-
fective, it requires a long processing time. It is because all
the dissimilarities between the input sequence and SGMs are
calculated, as shown in Fig. 4. However, only a part of them
is actually used. Hence, we propose to reduce the compu-
tational cost by limiting the calculation of dissimilarities, as
shown in Fig. 5.

Before explaining the proposed method, let us see the
detailed process of finding the matched SGM. The process
consists of two steps. One is to calculate all the dissimi-
larities between the input sequence and SGMs. The other
is global optimization based on DP matching. Most of the
computational cost is spent on the former. However, not
all dissimilarities are used in DP matching. Hence, it is
preferable to predict dissimilarities required for DP match-
ing and to calculate only the required dissimilarities. To re-
duce the computational cost, the predicting process should
be achieved with less computational cost than calculating
the not-required dissimilarities.

We propose to use a k-approximate nearest neighbor
search method to meet the requirement above. The k-
nearest neighbor search is finding the closest k points (near-
est neighbors) in the dataset to the given query. The naive
way to find them is to calculate the distances (dissimilar-
ities) between the query and all points in the dataset, and
then output the k points which have the minimum distances.
While the k-nearest neighbor search problem can always be
solved, the necessary computational time increases as the
number of points in the dataset increases. Hence, an approx-
imation is often introduced to the k-nearest neighbor search
problem to drastically reduce computational time while it
finds a wrong nearest neighbor with some probability. Usu-
ally, k-(approximate) nearest neighbor search is realized by
following two steps. In the first step, relatively close points
are selected from the points in the dataset in a concise way.
In the second step, similarly to the naive way, the distances
between the query and points in the dataset are calculated,
and the k points whose distances are the minimum are se-
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Fig.4 In the conventional way, all the dissimilarities between the input
sequence and SGMs are calculated before DP matching.
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Fig.5 In the proposed way, only selected dissimilarities are calculated.
Red crosses represent the dissimilarities that are not calculated.

lected. Of the two steps, the first step is suitable for selecting
SGMs close to the input.

The procedure of the proposed speedup method is as
follows. First, the dimensionality of the feature of an in-
put and SGMs is reduced by principal component analysis
(PCA). Next, some SGMs close to the input are selected by
a k-approximate nearest neighbor search method. As the k-
approximate nearest neighbor search method, in this paper,
we use Bucket Distance Hashing (BDH) [28]. Then, the se-
lected dissimilarities are calculated, as shown in Fig.5. As
for the dissimilarities that are not calculated (red crosses in
Fig.5), we assign the maximum dissimilarity. Finally, the
global optimization based on DP matching is performed.

3. Experiments
3.1 Setup

We used image sequences of 109 subjects from OU-ISIR
Large Population Gait Database [23]. In the database, the
image sequences were captured in 30 frames per second, and
the resolution of the images was 800 x 600. Of 4,007 sub-
jects, we used 109 in the experiments; nine for SGMs and
100 for training and test in the task of person authentication.
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(a) Original

(b) Enrollment (Gallery)

(c) Query (Probe)

Fig.6 (a) Original image in OU-ISIR Large Population Gait Database and (b) (c) images used in

experiment.

(b) (©) (@ (e) () (€9

Fig.7 Results of silhouette extraction. (a) Original image, (b) Ground truth, (c) GrabCut[15],
(d) Graph-cut [29], (e) RefineNet [30], (f) Graph-cut with a single SGM [21], (g) Proposed method.

For each subject, two image sequences are available. Hence,
one was used as an enrollment (gallery), and the other a
query (probe). Each image sequence consisted of from 26
to 39 frames. For SGMs, we selected subjects whose im-
age sequences have 30 frames or more and cropped them to
30 frames per image sequence by extracting 30 consecutive
frames. The database was captured under a green-screen
background (see Fig.6(a)). Hence, as shown in Figs. 6(b)
and 6(c), we synthesized images using Adobe Photoshop
CS6 so that the person parts of the database were put on
a realistic background image. Moreover, for increasing the
reality by degrading the image quality, we added Gaussian
noise which changed for each sequence and converted to
JPEG format using lossy compression. Since person detec-
tion itself is not a scope of this study, we substituted it by
manually annotating rough bounding boxes to pedestrians
in a test sequence.

We set the hyper-parameters as follows. The weights
in the objective function are wg; = 0.7, wgy, = 1.0, and wg, =
0.3. Those of the data term, the smoothness term, the shape-
prior term are kg, = 0.3 and kyg = 0.02; kg = 0.01 and & =
63; and kg, = 0.2. As for Graph-cut [29], we experimentally
set the hyper-parameters of term weights as wg; = 1.0 and
wsm = 1.0. In the proposed speedup method, the hyper-
parameters of BDH are experimentally set as k = 100, and
c=10.

We employed the computer where the CPU (Intel Core
17-5820K CPU@3.30GHz), 16GB memory, and OS (Win-
dows 10 Education) were installed.

3.2 Comparison with Benchmarks

We compared the proposed method with four benchmarks:
GrabCut [15], Graph-cut[29], RefineNet [30], and Graph-
cut with a single SGM [21]. As the proposed method
uses multiple SGMs, the comparison with Graph-cut with
a single SGM [21] shows the effectiveness of using mul-
tiple SGMs. We selected RefineNet as a representative of
deep neural networks because it is one of the most standard
method for semantic segmentation at the time of the exper-
iment. As of the time of the paper submission, it is still
ranked in a high position in the leaderboard of Cityscapes
dataset [31] among those whose source codes are publicly
released.

First, we evaluate silhouette extraction performance on
two image sequences of 100 subjects. Figured 7 shows typ-
ical silhouette extraction results for a qualitative evaluation.
Table 1 shows the silhouette extraction accuracy evaluated
by Intersection over Union (IoU). They show that the bench-
marks without the shape priors (Fig. 7(c), (d), and (e)) suf-
fered from the noise and over-segmentation. In particular,
the GrabCut (Fig. 7(c)) was of far less accurate than the oth-
ers because it was affected by the small color difference be-
tween the foreground and background. On the other hand,
the benchmarks with the shape prior (Fig. 7(f), and (g)) suc-
ceeded in extracting detailed body parts such as as legs,
and achieved higher accuracies. Compared with Graph-cut
with a single SGM (Fig.7(f)), the proposed method could
extract the silhouette more accurately guided by selecting
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Table 1  Quantitative evaluation on silhouette extraction.

Method ToU

GrabCut [15] 19.3

Graph-cut [29] 68.2

RefineNet [30] 69.2

Graph-cut with a single SGM [21] | 74.8

Proposed method 77.1

more suitable SGM, and improved the accuracy by 2.3%.
RefineNet was no better than Graph-cut. In the experiment,
we used the pre-trained network on Person_Parts dataset,
which was provided by the authors, without fine-tuning as
the dataset was small.

Second, we evaluated the effectiveness of the proposed
silhouette extraction in gait recognition, i.e., gait-based per-
son authentication. For this purpose, we adopted GEI [6]
as the most widely used silhouette-based gait feature and
matched them by Euclidean distance for simplicity. The
gait recognition accuracy was evaluated by the cumulative
matching characteristics (CMC) curve for an identification
scenario (i.e., one-to-many matching). One image sequence
of 100 subjects was used for gallery, and the other was used
for probe. Figure 8 shows the recognition accuracy of four
methods, which exclude GrabCut, where the silhouette ex-
traction was so less accurate that we could not extract GEI.
The graph shows that the proposed method improved the
accuracy of all other methods while the advantage of the
proposed method against Graph-cut with a single SGM dis-
appeared in ranks 68 and above. The second best method
was Graph-cut with a single SGM, which achieved better
accuracy than Graph-cut in ranks 10 and above. The third
best method was Graph-cut, which achieved better accuracy
than Graph-cut in ranks 1 to 49. The order of the methods
was almost the same as the quantitative evaluation on the
silhouette extraction shown in Table 1, except for RefineNet
and Graph-cut. The order of the proposed method (using
nine SGMs), Graph-cut with a single SGM (using 1 SGM),
and Graph-cut (without using SGM) tells that use of more
SGMs improves the accuracy.

3.3 Speedup

We evaluated the proposed speedup method with regard to
the reduction of computational cost and recognition accu-
racy by comparing the presence and absence of the approx-
imate nearest neighbor search method. Before applying the
approximate nearest neighbor search method, we reduced
the dimensionality to 100. Table 2 shows the average com-
putational cost, which is defined as the average time to find
the matched SGM over all frames of all input sequences.
The table shows that the proposed speedup method (“ap-
proximated” in the table) reduced 85% of the computational
time of the conventional way (“brute force search”). Ta-
ble 3 shows the silhouette extraction performance evaluated
by Intersection over Union (IoU). Figure 9 shows that the
gait recognition accuracy evaluated by cumulative matching
characteristics (CMC) curve. Table 3 and Fig. 9 show that

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.7 JULY 2021

o)
T 07
C
Qo6
©
(&)
Q05
<
® 0.4 .
o RefineNet
0.3 — Graph-cut
s — Graph-cut with a single SGM i
— Proposed method (brute force search)
0% 20 40 60 80 100
Rank
Fig.8 Quantitative evaluation on gait recognition.
Table 2  Average computational time to find the matched SGM.
Method Time [ms]
Proposed method (brute force search) 103,982
Proposed method (approximated) 15,567
Table 3  Quantitative evaluation on silhouette extraction.
Method TIoU
Proposed method (brute force search) | 77.1
Proposed method (approximated) 77.2
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Fig.9  Quantitative evaluation on gait recognition.

the proposed speedup method did not lose accuracy by in-
troducing the approximation dispite 85% of computational
cost is reduced.

4. Conclusion

We proposed a method of individuality-preserving silhou-
ette extraction for gait recognition. In the problem of silhou-
ette extraction, how to cope with low quality images suffer-
ing from noises is an important problem. A feasible solution
for this problem is to use a prior for the person’s silhouette.
The prior can be a silhouette of someone else (i.e., standard
gait model (SGM)). However, if the SGM is used as a prior,
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the individuality of the person of interest can be spoiled be-
cause a similar silhouette to that of SGM can be extracted.
In this paper, to mitigate the problem, we introduced the use
of multiple SGMs. As exploring multiple SGMs takes time,
we also proposed a speedup method by using an approxi-
mate nearest neighbor search method. The experimental re-
sults on silhouette extraction and gait recognition show that
the proposed method, which uses multiple SGMs, improved
accuracy on both tasks compared to representative methods.
Besides, the proposed speedup method reduced 85% of the
computational cost without loss of accuracy.
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