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Load Balancing with In-Protocol/Wallet-Level Account Assignment
in Sharded Blockchains∗

Naoya OKANAMI†a), Ryuya NAKAMURA††b), Nonmembers, and Takashi NISHIDE†††, Member

SUMMARY Sharding is a solution to the blockchain scalability prob-
lem. A sharded blockchain divides consensus nodes (validators) into
groups called shards and processes transactions separately to improve
throughput and latency. In this paper, we analyze the rational behavior of
users in account/balance model-based sharded blockchains and identify a
phenomenon in which accounts (users’ wallets and smart contracts) even-
tually get concentrated in a few shards, making shard loads unfair. This
phenomenon leads to bad user experiences, such as delays in transaction
inclusions and increased transaction fees. To solve this problem, we pro-
pose two load balancing methods in account/balance model-based sharded
blockchains. Both methods perform load balancing by periodically reas-
signing accounts: in the first method, the blockchain protocol itself per-
forms load balancing and in the second method, wallets perform load bal-
ancing. We discuss the pros and cons of the two protocols, and apply the
protocols to the execution sharding in Ethereum 2.0, an existing sharding
design. Further, we analyze by simulation how the protocols behave to con-
firm that we can observe smaller transaction delays and fees. As a result,
we released the simulation program as “Shargri-La,” a simulator designed
for general-purpose user behavior analysis on the execution sharding in
Ethereum 2.0.
key words: sharding, blockchain, load balancing, game theory, heuristics,
simulated annealing

1. Introduction

Traditional distributed ledgers do not increase transaction
processing capacity, no matter how many nodes exist in
the network. To improve the scalability of such distributed
ledgers, methods such as off-chain protocols and sharded
blockchains have been proposed. One of them, sharding,
implements parallelization by dividing validators that verify
transactions into different groups and processing different
transactions in each shard [2]–[5]. Sharding will be used in
Ethereum [6] in the future.

There are two blockchain transaction models, the
Un-spent Transaction-Output (UTXO) model and the ac-
count/balance model. The blockchain with the ac-
count/balance model is more compatible with implementing
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smart contracts. Ethereum, the most popular smart contract
platform, uses the account/balance model.

Sharded blockchains with the account/balance model
allow users to choose the shard to which their accounts be-
long freely. Users spend less fee and have less latency when
their accounts belong to the same shard as the contracts that
frequently communicate with them. Therefore, in reality, it
is easier to collect accounts for shards to which popular con-
tracts belong. As a result, the load on the shards is increas-
ingly imbalanced. On the other hand, in a shard, the higher
the load is, the more the fee increases. Users do not want
to use shards with high fees, so no extreme imbalances will
occur. In other words, when users act to improve their user
experience (UX), there should be no extreme imbalance that
all accounts are concentrated in one shard, and some load
balancing will be performed. A user can actually have mul-
tiple accounts, but the same phenomenon still occurs.

We expected that, due to these two characteristics, if
the user behaves selfishly, the account assignment state con-
verges approximately to a state where all users have no in-
centive to go to another shard (ε-Nash equilibrium). That is,
we expected that the sharding protocol already has a mech-
anism that performs load balancing when the user acts self-
ishly. In theoretical computer science and distributed sys-
tems, the fact that load balancing is performed by users act-
ing selfishly as described above is called selfish load balanc-
ing [7]–[9]. However, we observed that the load imbalance
still occurred among the shards in our simulation.

If the load on the shards is imbalanced, sharding proto-
cols have the following issues.

• The hardware specs required for the validator will be
higher than when the load is balanced. This prevents
new validators from entering.

• The gas price differs across shards and the fact worsens
the UX of cross-shard communications.

• Validators favor an environment, e.g., on Amazon Web
Services (AWS), which can efficiently scale in/out.

• The incentive analysis around parameterization of re-
wards or gas costs might become complicated.

Monoxide is one of the sharded blockchains in the ac-
count/balance model [10]. The Monoxide paper mentions a
solution to the load concentration in the upper layers, where
application operators create one address for each shard and
distribute the load.

However, as explained earlier, it is not that there is
an imbalance just because there is a heavily loaded ac-
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count. If many users are selfish, the imbalance will be
more widespread, and the load will be concentrated in a few
shards. If all the shards do not have the same load, the over-
all UX becomes worse than they do.

To solve the above problem, we propose in-protocol
load balancing, in which the blockchain protocol periodi-
cally reassigns accounts, and wallet-level load balancing, in
which each user’s wallet selects a shard to achieve a global
optimum, as a way to reduce shard load imbalance. There
are trade-offs between the two methods.

In-protocol load balancing is a new method we propose
in which the blockchain protocol optimally assigns accounts
based on past transactions. To do in-protocol load balanc-
ing, we formulate load balancing as an optimization prob-
lem. As a result of the formulation, we show that this prob-
lem is NP-hard. Since it is NP-hard, there is no polynomial-
time algorithm for finding an exact solution for the load bal-
ancing problem. Thus, it is necessary to use an approxima-
tion algorithm or heuristics, but it is very computationally
expensive to obtain a good solution. Doing the calculation
itself on-chain is not worth the cost. Therefore, in-protocol
load balancing is done in a competition style where the prob-
lem is disclosed and delegated to the outside, and the best
solution among the submitted ones is adopted. This pro-
vides a better solution than on-chain calculation. We ap-
ply this load balancing framework to the execution sharding
in Ethereum 2.0 (Eth2) [11] and construct an algorithm that
solves the load balancing problem using simulated anneal-
ing, which is one of metaheuristics. Also, comparing selfish
load balancing with the proposed algorithm, we show that
the total transaction fee and total transaction delay can be
smaller.

Wallet-level load balancing is a new method we pro-
pose in which individual wallets cooperate in the assign-
ments of globally optimal accounts based on past transac-
tions. In the Eth2 execution sharding, we experiment with
an environment where wallets are equipped with a shard
switching algorithm that reduces user transaction fees by
moving assets. We then show the effectiveness of the al-
gorithm, which increases the benefit of all users. The source
code of the program for the experiments are available on
GitHub, and we have also designed a more generalized ver-
sion of the program and released it as open-source software
called “Shargri-La.”† Shargri-La helps researchers to design
and improve the Eth2 execution sharding protocol.

In summary, our contributions are:

• We propose in-protocol load balancing in which the
sharded blockchain protocol periodically reassigns ac-
counts (in Sect. 3).

• We apply the in-protocol load balancing to the Eth2
execution sharding, an existing sharding design, and
demonstrate that transaction fees and latencies can be
reduced (in Sect. 4).

• We propose wallet-level load balancing in which each
user’s wallet selects a shard to achieve a global opti-

†https://github.com/shargri-la/shargri-la

mum in a sharded blockchain (in Sect. 5).
• We also apply the wallet-level load balancing to the

Eth2 execution sharding, and demonstrate that the load
concentrates on a small number of shards and can be
reduced (in Sect. 6).

• We released the simulation program as “Shargri-La,” a
simulator designed for general-purpose user behavior
analysis on the Eth2 execution sharding.

2. Preliminaries

2.1 Task Assignment Problem (TAP)

The following mathematical optimization problem, called
task assignment problem exists:

M resources (e.g., CPUs) and N tasks are given.
It takes ci to execute task i. Further, when task i
and task j are assigned to different resources, the
resources to which task i and task j are assigned
cost di j and d ji, respectively. Each task can be as-
signed to one resource. Then what is the smallest
cost to complete all the tasks?

TAP is a well-known NP-hard problem, and various al-
gorithms for solving it have been proposed [12], [13].

2.2 Cross Shard Transaction

A transaction sent from one shard to another is called a
cross-shard transaction. A cross-shard transaction has to go
through another shard or parent chain and has a higher fee
and latency than a single-shard transaction. For example,
the problem of how to handle hotel room reservations and
train seat reservations atomically is called train-and-hotel
problem. In sharding, it is a problem of handling contracts
in one shard and contracts in another shard atomically.

2.3 Ethereum 2.0 (Eth2)

Ethereum 2.0 is a major upgrade to improve the security and
scalability of Ethereum, which introduces proof-of-stake,
sharding, etc. The Eth2 execution sharding (formerly known
as Eth2 Phase 2) consists of one beacon chain and multiple
shard chains. A shard chain is a sharded blockchain, and a
beacon chain is a blockchain that manages the shard chain.
The beacon chain mediates cross-shard communications.

Eth2 solves the train-and-hotel problem by introducing
an operation called yank [14]. A yank is to delete a contract
on one shard, issue a transaction receipt, and instantiate the
contract on another shard. Then the yank performs some
operation on the shard to which it is yanked. For example, to
make an atomic reservation in the train-and-hotel problem,
we yank a contract to reserve a room for a hotel to a shard
that has a contract to reserve a train.

In Eth2, the unit commonly referred to as a block in a
blockchain is a slot. One slot is 12 seconds. One epoch is
consisting of 32 slots.
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In the current Ethereum, there are two account types,
Externally Owned Account (EOA) and Smart Contract, but
in Ethereum 2.0, they will be integrated into Account, thus
we use the term Account in this paper.

3. In-Protocol Load Balancing

In this section, we propose the blockchain protocol that per-
forms load balancing (i.e., in-protocol load balancing).

The process flow of in-protocol load balancing is as
follows.

1. Competition coordinators collect necessary transaction
load information of accounts.

2. Coordinators formulate load balancing as an optimiza-
tion problem.

3. Competition participants calculate good account as-
signment candidates.

4. Coordinators move accounts based on the new selected
assignment.

3.1 Problem Definition

The formulation of the optimization problem varies depend-
ing on what metrics the community and users value.

We formulate minimizing the highest load among loads
of shards as an optimization problem. Let S be a mapping
from account to shard id. Let li j be the load of a shard that
accounts i and j belong to when they belong to the same
shard. Further, let l′i j be a load for the shard to which the ac-
count i belongs when the accounts i and j belong to different
shards. The total load Lk(S ) in shard k per unit time is

Lk(S ) �
∑

i, j,S (i)=k∧S ( j)=k

li j +
∑

i, j,S (i)=k∧S ( j)�k

l′i j (1)

There is a correlation between shard fees and shard
load. Let the overall load of a shard be L, the fee for pro-
cessing the load l be C(L, l). In reality, the function C can-
not be determined exactly because the fees are proposed by
users, and the auction determines which transaction is incor-
porated into the block by validators.

There are several optimization problems that can be
used to improve UX by equalizing the load on all users
— for example, minimizing the load on the heaviest shard.
Shards with heavy loads have higher transaction fees, and
reducing them can significantly reduce overall fees. We for-
mulate this as follows.

minimize max
k

Lk(S ) (2)

We name this optimization problem maximum load
minimization problem (MLMP). TAP is polynomial-time re-
ducible to MLMP with simple formula transformations. If
MLMP could be solved in polynomial time, TAP can be
solved in polynomial time using that algorithm. Therefore,
MLMP is NP-hard.

Good results can also be obtained by minimizing the

overall fee. In order to reduce the overall cost, it is neces-
sary to reduce the load on the shard, which is the bottleneck
and has the highest load. Thus, the load on all the shards
is equalized, and the overall fee is reduced. In addition, the
fee is reduced when the number of cross-shard transactions
is reduced. Therefore, that optimization is performed so that
the number of cross-shard transactions is reduced. This also
reduces latency. We formulate this as follows.

minimize
∑

k

C(Lk(S ), Lk(S )) (3)

This problem is as difficult as MLMP.

3.2 Competition

Since the above optimization problems are difficult, heuris-
tics and approximate algorithms must be used to find a good
solution. However, running such heavy processing algo-
rithms on-chain is not worth the cost, so in our design, any-
one can submit a solution, and we build a game that rewards
the player who submitted the best solution.

For each epoch, the account assignment at the next
epoch is determined using the information of the previous
epoch. If too old information is used for the past epoch in-
formation, load balancing suitable for the transaction in the
next epoch is not performed, so it is necessary to use appro-
priate information of the previous epoch.

If we use transaction load information of all accounts,
the amount of information is O(n2), where n is the number
of accounts. In actual operation, the transaction information
of the account selected by some algorithm is used for each
epoch because of the limited capacity of the beacon chain.
For example, there is a method of randomly selecting half of
the active accounts or 10% of contracts in descending order
of load.

To host a competition, we have nodes that act as com-
petition coordinators. The coordinators formulate and pub-
licize the account assignment as an optimization problem
using past epoch transaction load information. The compe-
tition players obtain the optimization problem, work on op-
timization, and submit candidate solutions before the dead-
line. After the epoch, the coordinators evaluate the candi-
date solutions and rewards the player who submits the best
solution. Rewards are paid as a pool or newly issued coins.
Since a malicious player may submit a poorly evaluated so-
lution and put an unnecessary load on the coordinators, the
player must pay a fee when submitting the solution. Also, if
there are multiple players who have both submitted the best
solution, the winner is the one with the fastest submission
time.

Coordinators are elected for each epoch. In Ethereum
2.0, a coordinator is a validator who was elected as the first
block proposer in an epoch.

3.2.1 Collecting Transaction Data

Every shard has transaction load information for accounts
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belonging to that shard. To perform in-protocol load bal-
ancing, this information must be passed to the competition
coordinators. The method differs depending on the sharding
protocol.

In the Eth2 execution sharding, the state of each shard
is committed as a Merkle root called crosslink [15], [16] that
is stored in the beacon chain. The validity and data availabil-
ity are checked by the shard’s validator set.

Since the beacon chain cannot handle transaction load
information of all accounts, all shards build data as follows:

1. Every epoch, a shard i randomly samples k contracts
Ai = {ai,1, ai,2, . . . , ai,k}.

2. Accounts not selected by random sampling are merged
as a single virtual account as ai,rest. Let R be the unse-
lected set and Cix, jy be the cross-shard transaction load
from shard i account x to shard j account y.

Cirest, jy =
∑

x∈R
Cix, jy (4)

The shard chain sends the information constructed in
this way to the beacon chain by crosslink.

3.2.2 Player Algorithms

The player selects themselves the algorithm that they will
use. Examples of the algorithm include hill climbing, simu-
lated annealing, and genetic algorithm. Alternatively, play-
ers can use a mathematical optimization solver or a com-
bination of the solver and their algorithm. The longer the
sharding protocol that introduced in-protocol load balanc-
ing operates, the more efficiently the player’s algorithm will
evolve, and the better the load balancing will be.

3.2.3 Commit-Reveal Scheme

If the solution is submitted, another player may copy the so-
lution and submit an improved solution starting from that
solution. If the commit-reveal scheme is adopted, this prob-
lem can be solved by releasing the solution and verifying
the best solution after the competition is over. That is, the
player submits the commitment of (solution ‖ signature).
However, there must be at least one honest player in order
for the user to benefit from in-protocol load balancing.

3.3 Security Analysis

The above protocol only changes the state transition rules,
so it does not affect the safety, liveness, and validity prop-
erties of the blockchain. Also, the consensus protocol and
validator validation rules have not changed radically. On the
other hand, there is room for validators to selfishly choose
a solution to make a profit by external opportunity such as
front-running. The analysis of such potential attacking vec-
tors is left as future work.

4. Experiments with In-Protocol Load Balancing

In this section, we show that applying in-protocol load bal-
ancing to Ethereum 2.0, modeling users, and simulating
them actually lead to reducing shard imbalance, fees and
latency. The optimization problem used in the experiment is
formulation (3), which minimizes the overall fee.

4.1 Simulation Settings

This subsection describes the user strategy, the algorithm
used by the player, and the sharded blockchain model to be
simulated.

4.1.1 User Strategy

We use Berenbrink’s method [8] to model how a user be-
haves. Let m be the number of accounts, n be the number
of shards and m � n. In one unit of time, a user moves an
account with the following strategy.

Let i be a shard to which the user belongs, and j be a
destination shard, and j is selected at random. Let Ci and C j

be the loads of i and j per unit time, respectively. If C j < Ci,
we assume that the user moves to shard j with probability
1 − C j

Ci
. If not, we assume that the user does not move.

When performing in-protocol load balancing, the shard
allocation is changed by the protocol, so the cost of moving
the shard cannot be ignored and should be taken into con-
sideration in defining user behavior. If Ct is the cost of mov-
ing the shard, and the time until the next allocation, that is,
epoch time is T , if C j + Ct/T < Ci, then we assume that

the user moves to shard j with probability 1 − C j+Ct/T
Ci

. If
not, we assume that the user does not move. As T becomes
shorter, Ct/T becomes so large that the user has no incentive
to change the shard.

4.1.2 Simulated Annealing Approach

We use the simulated annealing approach for this simula-
tion. Simulated annealing is a generalization of hill climb-
ing and is a metaheuristic used for difficult problems such as
NP-hard problems [17]. It is difficult to find the global opti-
mal solution by using hill climbing, but simulated annealing
can obtain a value close to the global optimal solution. The
algorithm is such that a solution in the neighborhood of the
provisional solution is selected at random, and the transition
is always made when the score is improved.

The pseudo code is as follows (see Algorithm 1). Let T
be the time to execute this algorithm. Neighbor is a function
that randomly selects a nearby solution, Score is a func-
tion that evaluates the solution, and GetTime is a function
that returns how much time has passed since this algorithm
was executed. The evaluation value of the score function
moves to the better one. Therefore, Score(assignment) is
−(whole total fee). The Probability is a function that re-
turns the probability of transition based on the current time
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Algorithm 1 Simulated annealing approach
1: t ← 0
2: while t < T do
3: next assignment← Neighbor(current assignment)
4: sc ← Score(current assignment)
5: sn ← Score(next assignment)
6: if sn > sc then
7: current assignment← next assignment
8: else
9: p← Probability(t, sc, sn)

10: if p > Random() then
11: current assignment← next assignment
12: end if
13: end if
14: t ← GetTime()
15: end while

t, the current assignment score, and the next assignment
score. The Random function returns a uniform random num-
ber between 0 and 1.

Also, no competition is held, i.e., one person submits
one solution.

4.1.3 Sharded Blockchain Model

Eth2 execution sharding will generate one block every 12
seconds, with 64 shards planned to be introduced first.
Ethereum currently trades 300, 000 accounts a day. Simu-
lating all of them requires a lot of computational resources,
so this time we set T = 0.1 seconds and simulate with 8
shards and 1, 000 accounts. Also, the load information of
all active accounts is used.

We model how accounts trade with other accounts in
a directed graph. The vertex in the graph represents an ac-
count, and the directed edge extending from account i to
account j represents the average load on account i in all
transactions between account i and account j in one unit
time (block). This load includes not only the transaction
from account i to account j, but also the load at the time of
transaction from account j to account i. Since, in reality,
transactions are concentrated on very popular accounts such
as MakerDAO, we set a parameter called account popular-
ity, so that the more popular the account is, the more eas-
ily transactions to that account are sent. The popularity of
the account is simply a quadratic function. In other words,
the popularity of account i is popularityi = i2. However, it
is impossible in reality that one account is trading with all
other accounts. Therefore, considering the total number of
accounts 1000, an account accounts for 5% of all accounts.

We believe this setting is sufficient to show the effect
of our in-protocol load balancing.

4.2 Results and Comparisons

As a result of the simulation, the sum of account fees and
the number of cross-shard transactions have been reduced.
Although this setting is small, the effect of in-protocol load
balancing was confirmed.

Table 1 Simulation parameters

Parameter Value
Number of shards 8
Number of accounts 1000
Load balancing interval 0.1 second
Number of accounts traded by one account 5 %
Number of epochs 1000

Fig. 1 Decrease of total transaction fees when all accounts selfishly
move between shards at each epoch (blue: selfish load balancing, orange:
in-protocol load balancing)

Fig. 2 Decrease of number of cross-shard transactions when all accounts
selfishly move between shards at each epoch (blue: selfish load balancing,
orange: in-protocol load balancing)

Figures 1 and 2 show selfish load balancing and in-
protocol load balancing when all accounts selfishly move
among shards at each epoch. Both have converged to spe-
cific values, but in-protocol load balancing has reached bet-
ter values. This is a natural result because selfish load bal-
ancing converges to ε-Nash equilibrium, while in-protocol
load balancing can obtain a Pareto optimal solution.

5. Wallet-Level Load Balancing

In this section, we propose the method in which a wallet
selects a shard to be used for the global optimal accounts
assignment.

In the real world, users delegate various processes to
wallets. For example, Metamask†, the most popular wal-
let on Ethereum, offers users the best transaction fee when

†https://metamask.io/
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Fig. 3 The simulator’s architecture. The simulator performs a discrete event simulation with two
steps. The components include user, transaction, block proposer, shard block, shard state, account,
receipt, and EIP-1559 base fee, etc.

they send a transaction. Metamask also offers the service
called DEX Aggregator, which allows users to exchange
crypto assets at the best rates among multiple decentralized
exchanges, and users can use it by paying a fee to Metamask.

The fact that the latter aggregator service is viable is
evidence that there are many users who value convenience
at the expense of the cost of fees. This means that even if
a wallet is introduced with an algorithm that does not com-
pletely optimize the user themself, but rather improves the
whole with a moderate improvement of the individual, the
wallet will still be used by the user.

Based on this premise, we implemented a simplified
version of the Eth2 execution sharding that simulates an en-
vironment where wallets are equipped with shard switching
algorithms that reduces transaction fees for users. Users can
reduce the number of cross-shard transactions by following
the wallet’s shard switching algorithm and moving assets to
the shards they use most often. We experimented not only
with algorithms that simply optimize themselves but also
with algorithms that are globally optimal. Those algorithms
are not enforced at a protocol level, but they are supposed to
be enforced at a wallet level. We then compare the results of
the experiments and show that the overall UX is improved
when the global optimal shard switching is implemented in
the wallet.

In addition, the source code of the program for the
experiments we conducted was released on GitHub as the
open-source software “Shargri-La.” Shargri-La is generic
in design and can be reused for various other experiments.

Shargri-La is a simulator that aims to analyze user behav-
ior on the Eth2 execution sharding. Shargri-La can help re-
searchers to design and improve the Eth2 execution sharding
protocols. Also, Shargri-La is fast and robust because it is
implemented in the Rust language. All the parameters used
in the experiments in this paper are publicly available, and
the experiments can be reproduced by running Shargri-La
with those parameters. It is also possible to run Shargri-La
with various parameters other than those.

5.1 Simulation Model

We introduce the model of our simulation. The simulator
follows a model called discrete event simulation and runs
in slots. The blockchain consists of 64 shards. There ex-
ist 10,000 users, and the user set is static throughout the
simulation. Also, the transaction pricing mechanism of the
simulation is EIP-1559 [18].

EIP-1559 introduces a base fee, which is a minimum
transaction fee that must be paid. This base fee increases or
decreases depending on the demand of the transaction. Un-
like the traditional first-price auction transaction fee mech-
anism, users only need to pay this base fee (plus a small
bribe), which will mitigate overpayment.

The simulation proceeds with slots. In a nutshell, as
shown in Fig. 3, the simulator performs the following two
steps for each shard at each slot:

• Step 1: Users create and broadcast transactions.
• Step 2: Block proposers create a shard block.
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Fig. 4 A small example of UserGraph consisting of three users.

At each slot, users create transactions to perform either
one of the following operations:

• Intra-shard transfer
• Cross-shard transfer
• Shard switching (Cross-shard transfer of all the Ether

owned by the user)

We define five transaction types. First, we define three
transaction types where users transfer Ether to another.

• Transfer: Execute intra-shard transfer of Ether (as we
do in the current Ethereum). We define the gas cost as
21,000.

• CreateCrossTransfer: Initiate cross-shard transfer of
Ether, producing a receipt. We define the gas cost as
31,785.

• ApplyCrossTransfer: Process an incoming cross-
shard transfer by submitting the receipt of Create-
CrossTransfer. We define the gas cost as 52,820.

For cross-shard transfers, we assume that there
exist proxy contracts specified in the Eth1x64 pro-
posal [19], which implement CreateCrossTransfer and Ap-
plyCrossTransfer as functions.

Next, we define two transaction types where users
transfer all their Ether for shard switching.

• CreateCrossTransferAll: Initiate cross-shard trans-
fer of all the Ether controlled by the sender, producing
a receipt. We define the gas cost as 31,785.

• ApplyCrossTransferAll: Process an incoming cross-
shard transfer by submitting the receipt of Create-
CrossTransferAll. We define the gas cost as 52,820.

These two transaction types can be implemented sim-
ilarly to CreateCrossTransfer and ApplyCrossTransfer.
We omit the details of their implementations and gas cost
analysis, but these are available on the web.

We formalize users’ demand for transfer transactions
by a UserGraph, i.e., a directed graph where each node
represents a user, each edge represents the demand for the
transfer between users. Figure 4 shows a simple example of
a UserGraph. The simulator creates transactions based on
UserGraph every slot.

We instantiate UserGraph with 10,000 users such that
each node has 0 to 15 outgoing edges (determined ran-
domly). The meaning of the two parameters of each edge

(from Alice to Bob, for example) are:

• transfer probability in slot: The probability
that Alice initiates an intra/cross-shard transfer of Ether
to Bob in a slot. We set transfer probability in
slot randomly such that the transactions created in
each slot are, on average, about as much as the total ca-
pacity (i.e., the sum of block gas limits of each shard).

• transfer fee budget: The maximum fee in total
that Alice is willing to pay to complete the transfer.
Alice calculates the fee cap of the transaction based on
transfer fee budget.

5.2 Shard Switching Algorithms

We describe the concrete process of shard switching. We as-
sume users perform the wallet’s cost-reducing function once
every 100 slots on average, which is modeled as a lottery in
the simulation. Then, the wallet of a user u, who is currently
active in shard inow, executes the following.

First, for each shard i, calculate the expected transac-
tion fee fi for the next 100 slots in the case where u moves
to shard i. The wallet has the estimation of the probabil-
ities that u makes a transfer to other users in a slot. This
is equivalent to the edges directed from u’s node in User-
Graph. Based on those probabilities, the wallet estimates
the number of Transfer, CreateCrossTransfer, and Ap-
plyCrossTransfer transactions on each shard they will cre-
ate. The transfers to receivers active in shard i are con-
sidered as intra-shard, and the other transfers are consid-
ered as cross-shard. Based on those numbers of transac-
tions of each type, the wallet calculates fi. fi is the sum
of (number of expected transactions) × (transaction fee) of
Transfer, CreateCrossTransfer, and ApplyCrossTrans-
fer plus (transaction fee) of shard switching. We assume
the wallet knows the current base fee of each shard. Al-
though the base fee can change over time, the current base
fee is used as the expected base fee in this calculation. I.e.,
(transaction fee) = (gas cost) × (current base fee).

Then, the wallet selects the shard irec to recommend
the user to move the Ether. We define two recommendation
algorithms:

• The minimum selection algorithm. Select the shard
with the minimum expected transaction fee, i.e., irec =

arg min1≤i≤64 fi.
• The weighted random selection algorithm. Let ri

be the expected reduction of the transaction fee if u
switches to shard i, i.e., ri = finow − fi. Select the shard
randomly using the expected reduction as weights, i.e.,
the probability of irec = i is ri/

∑
j∈{ j′ |r j′>0} r j.

6. Experiments with Wallet-Level Load Balancing

In this section, we show that applying wallet-level load bal-
ancing to Ethereum 2.0, modeling users, and simulating
them actually lead to reducing shard imbalance, fees and
latency.
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Fig. 5 The number of active users in each shard over time in Experiment
1. Note that we highlight the lines of only three shards (shard 0, 1, and 2)
in the figures.

We conducted experiments in two different user set set-
tings.

1. Majority (67%) of users execute the minimum selec-
tion algorithm to determine whether to perform shard
switching, and the rest of the users do not execute
the minimum selection algorithm (thus do not perform
shard switching).

2. Majority (67%) of users execute the weighted random
selection algorithm to determine whether to perform
shard switching, and the rest of the users do not execute
the minimum selection algorithm (thus do not perform
shard switching).

6.1 Experiment 1: The Minimum Selection Algorithm

We simulated the case where a majority (67%) of users
adopt the minimum selection algorithm to move to the shard
with the minimum expected transaction fee.

Figure 5 shows that users are flooding the shard with
the minimum fee. We also observed that the rapid increase
in demand caused transactions to accumulate in the EIP-
1559 transaction pool, which would not occur under normal
situations.

6.2 Experiment 2: The Weighted Random Selection Algo-
rithm

Since the minimum selection algorithm becomes ineffective
if more and more users adopt it, we devise the recommen-
dation algorithm that selects a shard randomly using the ex-
pected reduction as weights. We hypothesize that by dis-
persing the destination shards of the switchers based on the
weights, we can avoid the congestions in shards while users
still enjoy the benefit of reducing the overhead of cross-
shard transactions.

We simulated the case where a majority (67%) of users
adopt the weighted random selection.

Figure 6 shows that the congestions in shards are miti-
gated compared to the previous experiment (Fig. 5). This al-

Fig. 6 The number of active users in each shard over time in Experiment
2. The scale of the axis is the same as in Fig. 5.

gorithm solved the sudden congestion and transaction clog-
ging in a particular shard. We also observed a decrease in
fees for users who performed shard switching compared to
users who did not perform shard switching.

7. Comparison of Proposed Load Balancing Methods

In this section, we describe the pros and cons of in-protocol
load balancing and wallet-level load balancing.

7.1 Protocol Complexity

In-protocol load balancing requires modifying the block-
chain protocol (i.e., hard fork) to implement the load balanc-
ing function. On the other hand, Wallet-level load balancing
does not require any changes to the blockchain protocol and
only needs to be implemented by each wallet, resulting in
lower infrastructure costs.

7.2 User Cooperation

In-protocol load balancing is enforced by the blockchain
protocol, and thus users are forced to cooperate in load bal-
ancing. On the other hand, even if wallet-level load bal-
ancing is implemented in a wallet used by many users (e.g.
Metamask), very selfish users such as high-frequency trad-
ing bots and front-running bots can avoid cooperating in the
load balancing, and thus the load balancing is less effective
than in-protocol load balancing.

8. Discussions

In this section, we discuss the cautions regarding the real-
world implementations of the proposed methods and the
room for improving the accuracy of the experiments of the
proposed methods.

8.1 Other Algorithms

In this paper, simulated annealing is used for in-protocol
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load balancing, but it may be possible to find a more ef-
ficient solution by using another heuristic algorithm or by
using mixed-integer optimization with a mathematical opti-
mization solver. The algorithm actually used for in-protocol
sharding will be refined as players compete. What is impor-
tant is not the efficiency of the algorithm used, but the use of
our proposed in-protocol load balancing can improve total
fees and latency better than selfish load balancing.

8.2 Simulation Settings

The simulation settings in this paper have room to be im-
proved in terms of experimentation. A more strict simula-
tion may show that in-protocol load balancing is more ef-
fective. It may also indicate cases where in-protocol load
balancing is not effective, as well as cases where it is effec-
tive. It is desirable that we deal with even larger data to see
whether the results obtained by in-protocol load balancing
can be worth the cost.

In experiments of wallet-level load balancing, although
users put their Ether in only one shard in this simulation,
users can keep their Ether in multiple shards in reality. If a
user regularly makes transfers to specific accounts in differ-
ent shards, they will put some portion of their Ether in each
of those shards.

9. Conclusion

We confirmed the imbalance phenomenon by modeling and
simulating users although we expected that a few shard ac-
counts would be concentrated by acting selfishly in sharded
blockchains with the account/balance model. We also
showed that the shard load imbalance worsens UX due to
higher transaction fees and increased latency. To solve this
problem, we proposed the load balancing framework for
sharded blockchains. This framework achieves in-protocol
load balancing by taking advantage of the incentive to
change shards by changing account assignments frequently.
We also proposed the method for efficiently obtaining good
account assignments in the competition format. Although
small, our simulations showed that transaction fees and la-
tency are lower than the selfish load balancing that occurs
when users act on their own with this in-protocol load bal-
ancing. Furthermore, we showed by simulation that wallet-
level load balancing is effective for Eth2 execution sharding.
We released the program used in the experiments “Shargri-
La,” an Eth2 execution sharding simulator designed for
general-purpose user behavior analysis.
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