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LETTER

Differentially Private Neural Networks with Bounded Activation
Function∗

Kijung JUNG†, Hyukki LEE†a), Nonmembers, and Yon Dohn CHUNG†, Member

SUMMARY Deep learning has shown outstanding performance in var-
ious fields, and it is increasingly deployed in privacy-critical domains. If
sensitive data in the deep learning model are exposed, it can cause serious
privacy threats. To protect individual privacy, we propose a novel activation
function and stochastic gradient descent for applying differential privacy to
deep learning. Through experiments, we show that the proposed method
can effectively protect the privacy and the performance of proposed method
is better than the previous approaches.
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1. Introduction

Over the last decades, deep learning has gained enormous
attention in various fields, such as voice recognition, im-
age classification, and medical diagnosis [1]. Deep learn-
ing applications show considerable performance, however
if an adversary can recover the original data used to train
the deep learning model, a critical privacy issue may arise.
For example, training data of a face recognition model could
be reconstructed by the model inversion attack [2], and it
causes a privacy breach. Moreover, the attacker could abuse
the face images to break into other face recognition system.
Therefore, protection of personal privacy should be consid-
ered during the deep learning process.

Differential privacy (DP) is the strongest privacy pro-
tection model for data processing [3], which provides a
mathematically provable guarantee of protecting the privacy
of individuals. The goal of differential privacy is that the
output should not be considerably influenced irrespective of
whether a single data point is added or removed. Noise ad-
dition is a typical method for satisfying the differential pri-
vacy.

Deep learning models can also preserve privacy by sat-
isfying DP. Adding noise to output layer of the model could
be an option to satisfy DP. Note that the intensity of noise is
decided by the maximum influence of a single data point on
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result (i.e., sensitivity). Noisy outputs give more significant
effects to all layer by back propagation than the forward pro-
cess. This means that adding noise to the outputs seriously
hinder the learning process.

There is another direction of research of adding noise
to gradients in gradient descent step. Abadi [4] proposed a
gradient clipping method that restricts the maximum gradi-
ent size by clipping the larger gradients than the given max-
imum threshold. However, it has a problem that the vector
of a batch could change after gradient clipping. To solve
this problem, the size of a gradient should be restricted in
other way. Recently, there is research to bound sensitiv-
ity with bounded activation function such as sigmoid and
tanh [5]. Our work proposes a novel bounded activation
function that has the advantage of ReLU. In this paper, we
present a novel method for differentially private neural net-
works with restricted gradient. A gradient is derived from
(1) an input, (2) weight of a layer, (3) an activation function,
and (4) the derivative of the activation function. To deter-
mine the intensity of the noise, four components of a gra-
dient must be bounded. However, ReLU, the most popular
activation function, is not a bounded function, and thus the
maximum difference is theoretically infinite. We propose a
new bounded activation function, called Bounded Exponen-
tial Linear Unit (BELU). By utilizing BELU as the activa-
tion function, the maximum size of gradients can be effec-
tively controlled.

2. Preliminaries

2.1 Rényi Differential Privacy (RDP)

There are limitations to utilize the original DP because it
does not allow any exceptions. Hence, relaxed DP is pro-
posed to handle worst-case scenario in a statistical man-
ner [6]. RDP defines a neighboring database via the notion
of Rényi divergence. RDP is known to preserve the same
level of DP as (ε, δ)-privacy [7]. It is known that RDP is a
proper model for multiple compositions of DP mechanisms
such as applying DP in deep learning in every gradient de-
scent step [7].

Definition 1 (Rényi Divergence): For two probability dis-
tributions P and Q over R, the rényi divergence of order
α > 1 is
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Dα(P||Q) =
1

1 − α logEx∼Q

(
P(x)
Q(x)

)α
(1)

Definition 2 (Rényi Differential Privacy): A randomized
mechanism f : D −→ R satisfies (α, ε)− Rényi differential
privacy, if for any adjacent D,D′ ∈ D, it holds that

Dα( f (D)|| f (D′)) ≤ ε (2)

3. The Proposed Method

In this chapter, we present the proposed activation function
and differentially private stochastic gradient descent method
with the proposed activation function.

3.1 Bounded Activation Function (BELU)

We propose a novel bounded activation function BELU. The
key idea is to set the thresholds for ReLU, and restrict out-
puts if the inputs are out of thresholds. The lower threshold
is 0, and the upper threshold is determined by a hyperpa-
rameter β. BELU returns an identical result as ReLU if a
value is within the threshold. If an input value is out of
threshold, BELU returns the result of an exponential func-
tion instead of a constant value. An exponential function
has several benefits. First, the derivative of an exponential
function is not zero. This makes training possible in out of
the threshold area. Second, it is easy to calculate the deriva-
tive of exponential function. Hence, exponential boundaries
give better performance. The definition of BELU is shown
in Definition 2.

Definition 3 (Bounded Exponential Linear Unit (BELU)):

BELU(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α (ex − 1) , x < 0

x, 0 ≤ x ≤ β
α
(
−e−x+β + 1

)
+ β, x > β

(3)

The maximum bound of BELU is α + β and the minimum
bound of BELU is −α. The derivation of BELU is:

BELU′(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αex, x < 0

1, 0 ≤ x ≤ β
αe−x+β, x > β

(4)

Figure 1 is a concrete example of a BELU with α = 1
and β = 2. The dotted lines represent the thresholds, 0 and
2, and the dashed lines describe the maximum bound and
the minimum bound, −1 and 3, that are asymptotic line of
the exponential functions.

We can bound the gradient size of all layers of a net-
work by using BELU.

Lemma 1: The gradient size of the i − th layer is bounded
if the weight, loss function is bounded and the activation
function is BELU.

Proof 1: The gradient of the i − th layer is as follows:

∂L
∂wi
= yi · γi+1 (5)

Fig. 1 An example of BELU (α = 1, β = 2)

Algorithm 1: Differentially private SGD with
BELU

Input : Training dataset x1, . . . , xN , Loss function L, Learning
rate ηt , Noise scale σ, Batch size b, Parameter of BELU
α, β

1 Initialize θ0 with He uniform initialization
2 Bi =CalculateBound(L, θ, α, β)
3 for t = 0 to T − 1 do
4 Take a random sample S b

5 foreach i ∈ S b do
6 compute gt(xI )← ∇(θt ) L(θt , xi )

7 g̃t (xi)← gt (xi) + G
(
0, σ2B2

i

)
8 end
9 θt+1 ← θt − ηt g̃t

10 end
Output: θT and privacy cost (ε, δ) of the SGD Step

γi =

{
(yi − Label ) · BELU′ (xi) , if i is the last

(
∑
γi+1 · wi) · BELU′ (xi) , else

(6)

wi, xi and yi refers weights, an input and output of
i − th layer. In the equation (5), (yi − Label) is bounded,
BELU′(x) ≤ 1, and w can be bounded in the algorithm.
Therefore, all the variables in the gradient are bounded. And
thus, gradient size of i − th layer is bounded. �

3.2 Differentially Private Stochastic Gradient Descent
with BELU

Gradient clipping restricts the size of gradients by clipping
gradients if the norm of a gradient is larger than the clipping
size c. This method does not consider the ratio among gra-
dients in the same batch. This means that the vector of the
gradient can be changed after clipping. This could decrease
the learning performance.

For the better performance, the proposed method re-
stricts four components in gradients instead of gradient clip-
ping. Differentially private SGD with BELU proceeds in the
following order. It starts with the initialization of weights
(line 1). He uniform initialization is used [1]. Bound is
calculated with loss function, weights, and parameters of
BELU to determine the intensity of noise (line 2). A batch is
composed by sampling from the data set (line 4). After that,
gradients are computed (line 6) and add Gaussian noise for
each data from the batch (line 7). Subsequently, the descent
step is proceeded with the noisy gradient of a batch (line
9). The entire algorithm is shown in Algorithm 1. Note that
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BELU does not appear explicitly in the algorithm, neverthe-
less it is applied to compute bound and gradients.

4. Experiments

We experimentally evaluate the performance of the pro-
posed method on classification using MNIST [9] that has
60,000 training data and 10,000 test data. The network has
32x32 size input, 32 size linear hidden layer, and 10 size
output layer. We conduct experiments on Intel i9-9900x,
128GB RAM, GeForce RTX 2080 8GB. We use ReLU in
the non-private version. Moreover, we evaluate two the pre-
vious method. First is an experiment using Tanh for acti-
vation function to bound the size of gradients. The second
is gradient clipping, with ReLU varying clipping size. We
measure the accuracy by averaging over 10 epochs. The

Fig. 2 Average accuracy of 10 epochs and accuracy in the last epoch
varying activation function

Fig. 3 Average accuracy of 10 epochs and accuracy in the last epoch
varying β

parameters for the experiments are as follows. The noise
multiplier σ is 1, δ is 10−5,and the batch size is 64. Calcu-
lating privacy losses by described in [8], the privacy loss of
all private models (ε, δ) is (1.10, 10−5).

As shown in Fig. 2, the result demonstrates that the pro-
posed method gets higher accuracy than Tanh and gradient
clipping. Figure 3 shows the effect of the threshold β of
BELU. As the threshold of BELU increases, the gradient
before noise addition is closer to the optimal. Therefore, the
model converges faster. At the same time, the noise gets
stronger as β increases. Consequently, the average accuracy
continuously increases to a certain point (β=5). After the
point, the accuracy decreases. The gap between the accu-
racy in the last epoch and average accuracy is closer as the
threshold increases. This is because the model converges
faster. At the same time, the accuracy decreases because of
noise addition. Figure 4 represents the performance com-
parison of the proposed method and gradient clipping with
ReLU. For each group, the clipping size is identical to the
maximum bound of BELU. The proposed method outper-

Fig. 4 Average accuracy of 10 epochs varying β and clipping size

Table 1 Average accuracy of 10 epochs and accuracy in the last epoch

Activation function Average Accuracy
accuracy(%) in the last epoch(%)

Non-private 93.45 95.12
Tanh 81.81 88.07

ReLU(c = 2) 87.73 90.31
ReLU(c = 3) 85.46 85.68
ReLU(c = 6) 80.47 81.04

ReLU(c = 11) 69.05 66.23
ReLU(c = 16) 58.47 56.15
ReLU(c = 21) 42.67 33.89

BELU (α = 1, β = 1) 87.34 90.3
BELU (α = 1, β = 2) 89.24 90.54
BELU (α = 1, β = 5) 89.73 90.74
BELU (α = 1, β = 10) 89.1 89.55
BELU (α = 1, β = 15) 87.67 87.27
BELU (α = 1, β = 20) 86.03 85.8
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forms gradient clipping with ReLU as the clipping size in-
creases. This is because the noise gives significant effects to
ReLU than BELU. To summarize, BELU converges faster
with better accuracy than Tanh. Additionally, BELU shows
better performance than ReLU if β is the appropriate value.

5. Conclusion

In this paper, we proposed a differentially private neural net-
works with gradient restriction. To restrict the size of gra-
dients in a differentially private manner, we proposed a new
bounded activation function BELU. Through experiments,
we demonstrated that BELU effectively restricts the gradi-
ents and ensures high utility.
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[8] I. Mironov, et al., “Rényi differential privacy of the sampled Gaussian
mechanism,” arXiv preprint arXiv:1908.10530, 2019.

[9] http://yann.lecun.com/exdb/mnist/, accessed Jan. 2021.

http://dx.doi.org/10.1109/iccv.2015.123
http://dx.doi.org/10.1145/2810103.2813677
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1109/isit.2014.6875258
http://dx.doi.org/10.1109/csf.2017.11

