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Gray Augmentation Exploration with All-Modality Center-Triplet
Loss for Visible-Infrared Person Re-Identification

Xiaozhou CHENG†,††, Rui LI†, Nonmembers, Yanjing SUN†, Member, Yu ZHOU†a),
and Kaiwen DONG†, Nonmembers

SUMMARY Visible-Infrared Person Re-identification (VI-ReID) is a
challenging pedestrian retrieval task due to the huge modality discrepancy
and appearance discrepancy. To address this tough task, this letter pro-
poses a novel gray augmentation exploration (GAE) method to increase the
diversity of training data and seek the best ratio of gray augmentation for
learning a more focused model. Additionally, we also propose a strong all-
modality center-triplet (AMCT) loss to push the features extracted from the
same pedestrian more compact but those from different persons more sep-
arate. Experiments conducted on the public dataset SYSU-MM01 demon-
strate the superiority of the proposed method in the VI-ReID task.
key words: visible-infrared person re-identification, gray augmentation
exploration, AMCT loss, SYSU-MM01

1. Introduction

Person re-identification (ReID) aims to retrieve the same
person from images captured by disjoint cameras [1]. With
the popularization of infrared cameras that are developed to
complement the collection defects of visible cameras in dark
conditions, the visible-infrared cross-modality ReID (VI-
ReID) [2] has been attracting sharply increasing attentions,
where the query and gallery images are captured by differ-
ent modality cameras, as shown in Fig. 1 (a). At present,
the advance of VI-ReID lags far behind the VV-ReID in
terms of re-identification accuracy [3]. This backwardness
is attributed to the modality discrepancy caused by differ-
ent imaging principles between visible and infrared cameras
and the appearance discrepancy originating from visual an-
gles and postures [4], as shown in Fig. 1 (b). All these fac-
tors bring huge challenges for VI-ReID.

Up to now, some works have been proposed for the
VI-ReID task [2]–[12]. They mainly deal with the above
challenges from three aspects, including network designing,
metric learning, and image transformation. The network de-
signing based methods [2]–[7] aim to explore superior neu-
ral network architectures for better feature learning. The
metric learning based methods [8]–[10] promote feature rep-
resentations by designing the more superior loss function.
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Fig. 1 (a) Illustration of the visible-infrared person re-identification.
(b) Examples of modality discrepancy and appearance discrepancy.

The image transformation based methods narrow the differ-
ences between the query and gallery images through domain
conversion or image generation methods for better feature
matching [4], [11], [12]. Although these VI-ReID methods
have made gradual progress in recent years, there is still a
great gap between the performance and satisfactory results.

Modality discrepancy is a key difficulty in visible-
infrared person re-identification. The domain adversarial
learning [13] is often used to reduce domain discrepancies
by encouraging domain-invariant features through the idea
of confrontation. It needs to add a domain classifier and
a special non-standard gradient reversal layer, which in-
creases the complexity of training. From the perspective
of mining modality sharing information like human body
structures and reducing modality-specific information such
as colors, we propose an effective lightweight gray augmen-
tation exploration (GAE) method to help learn a more fo-
cused model. At the same time, to strengthen feature con-
straints at the feature level, we propose a metric loss called
all-modality center-triplet (AMCT) loss, which can effec-
tively reduce the impact of modality discrepancy and ap-
pearance discrepancy by feature metric. The contributions
of the proposed approach are threefold as follows:

� We put forward an effective GAE method to increase
the training data diversity and promote the network to
pay more attention to decisive modality sharing infor-
mation.

� The proposed AMCT loss possesses a strong feature
constraint ability. The experiments have demonstrated
the superiority compared with the other metric loss
forms.

� Extensive experiments show that our approach has
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Fig. 2 Overview of our proposed model.

more superior performance and can be a new baseline
due to its simplicity and effectiveness.

2. Proposed Method

Our proposed model is shown in Fig. 2. The model consists
of three parts, including gray augmentation exploration,
two-stream framework, and loss function constraints.

2.1 Gray Augmentation Exploration

VI-ReID can be deemed as a matching or retrieval prob-
lem. Naturally, the key of VI-ReID is to measure the sim-
ilarity of images as accurately as possible. For a pair of
visible and infrared images of one pedestrian, they both
contain some sharing information like body structures and
modality-specific information like colorfulness in visible
images, which together affect the human’s perception of
similarity. An ideal cross-modality ReID model can realize
accurate matching by exploring the information shared by
different modality images regardless of the modal-specific
information. In other words, it is robust to the modality-
specific information.

Inspired by the above facts, we propose a GAE method,
which urges the network to mine the modality-shared in-
formation better and improves its robustness to modality-
specific information. Graying is a good choice to remove
the color information for more attention to modality sharing
information. Graying weights the three color channels R, G,
and B of the visible image to generate a gray image, and the
weighted values are 0.299, 0.587, and 0.114 respectively.
The gray image is a single-channel image, while a visi-
ble image contains three channels. We employ the channel
expansion strategy to expand the single channel into three
channels via a simple replication operation. Same as other
visible images, gray images are input into the feature ex-
traction network in the visible domain to extract pedestrian
image features. However, we find that graying all images
in a mini-batch during training is not the best way, which
can be seen from the results in Fig. 3. This phenomenon
is predictable, because graying all will result in some vital
discriminative information lost. Therefore, an appropriate

Fig. 3 Rank-1 and mAP values when different augmentation ratios are
adopted on the SYSU-MM01 dataset.

ratio of grayscale should be studied. To this end, for the in-
put images in a mini-batch, t% visible images are randomly
selected for graying, and the remaining images are still the
original RGB ones. For each iteration, t% images are ran-
domly chosen again. This method increases the diversity
and variability of data, which is helpful to learn a more ro-
bust model.

2.2 Two-Stream Framework

This letter uses the two-stream framework as the backbone
of the network. The first two stages of Resnet 50 [14] are
used for feature extraction, where the parameters are not
shared to extract modality respective information. The last
three stages share parameters to map features extracted from
the previous network to the same feature subspace and ex-
plore clues of similarity between modalities. After the last
convolutional layer, the generalized-mean pooling (GeM
pooling) [3] is appended to transform 3D feature maps into
1D vectors. The vectors are adopted to calculate the AMCT
loss and the ID loss after passing through a batch normal-
ization layer and a full connection layer.

2.3 AMCT Loss

There are two modules in the loss function constraints part,
i.e., ID classification mudule (ID-CM) and distance metric
module (DMM). The ID-CM module is used to distinguish
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the features of each identity of pedestrians. The DMM mod-
ule is used to restrict the distance between features.

In the training, we employ the online batch sampling
strategy [3], which can help the model learn images from
different modalities of the same pedestrian evenly and effec-
tively avoid the disturbance caused by sample imbalance. P
person identities are randomly sampled. For each identity, K
visible images and K infrared images are randomly selected
as the input of two branches. Through this sampling strat-
egy, the network can learn modality-sharing information and
develop the all-modality metric learning.

In the DMM, to improve the constraints of image fea-
ture distances, we propose a novel AMCT loss. Differ-
ent from the common single-modality hard mining sample-
triplet metric forms [6], [7] in the VI-ReID task based on
sample-anchors to select the hardest parings in only one
same modality, the proposed loss aims to learn the centers
of the classes of samples and use them instead of individ-
ual samples as the anchors to form the hardest triplets, and
mines the most difficult positive and negative pairings in all
modalities instead of only one modality, as shown in Fig. 2.
Specifically, we regard the centers of all identities in each
modality of the mini-batch as the anchors, which are calcu-
lated as follows:

ci
V =

1
K

∑K

a=1
xi

Va, (1)

ci
I =

1
K

∑K

a=1
xi

Ia, (2)

where xi
Va denotes the ath visible image feature of the ith

person in the mini-batch, ci
V denotes the feature center of

the ith person in the visible modality, while xi
Ia and ci

I cor-
respond to the infrared image feature and center. Based on
the sampling strategy, the definition of the AMCT loss is as
follows.

The first is to calculate the feature distances between
the center and the all-modality samples and find the positive
center-sample pair with the maximum distance of the same
identity and the negative center-sample pair with the mini-
mum distance of different identities. For visible modality:
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where xi
Ma represents the all-modality image samples with

the same identity as ci
V and x j

Ma represents the all-modality
image samples with a different identity from ci

V . d (·) de-
notes the Euclidean distance. Di

Pos V and Di
Neg V are the

most difficult positive and negative center-sample pairs of
ci

V , respectively. Similarly, for the infrared modality center
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Then, the most difficult positive and negative pairs form a
triple form,

LAMCT V =
1
P

∑P

i=1
[Di

Pos V − Di
Neg V + m]+, (7)

LAMCT I =
1
P

∑P

i=1
[Di

Pos I − Di
Neg I + m]+, (8)

where m is a margin parameter. [X]+ means to take the larger
value between X and 0. Finally,

LAMCT = LAMCT V + LAMCT I . (9)

Compared to the existing metric forms, the proposed AMCT
loss has three key contributions. The all-modality min-
ing can not only dig correlations between two modalities
but also improve the training efficiency benefiting from
more representative training data. Moreover, the center-
anchor triplets can make the compactness of the same iden-
tity samples and the separation of different identity samples
have a clearer goal. Compared to traditional sample-anchor
triplets, the computational cost in our method reduces from
2PK to 2P.

ID loss used in the ID-CM and the proposed AMCT
loss are employed to supervise the network training jointly
to learn a model with strong discrimination ability. For a
given image, its ID prediction logic of all identities gener-
ated by the network and softmax operation is pi, while the
distribution of its real ID label is qi. The calculation of ID
loss is in the following:

LID = LID V + LID I =
∑2PK

i=1
−qi log(pi) (10)

The total loss of the whole network:

LALL = LID + LAMCT (11)

3. Experiments

3.1 Experimental Settings

3.1.1 Datasets and Metrics

Our experiments are based on the standard benchmark for
the VI-ReID task, named SYSU-MM01 [2]. It provides 491
valid pedestrian identities captured from six cameras (four
visible ones and two infrared ones), including 287,628 vis-
ible images and 15,792 infrared images. Person images are
captured in both indoor and outdoor environments.

On the SYSU-MM01 dataset, there are two search
modes, i.e., all-search mode and indoor-search mode. Fol-
lowing the most popular protocol [2], [9], [12], the cumula-
tive matching characteristics (CMC) and mean average pre-
cision (mAP) are adopted as the evaluation metrics, where
higher values indicate the better retrieval performance.
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Table 1 Comparison to the state-of-the-arts on the SYSU-MM01
dataset. Re-identification rates at rank-r (%) and mAP (%)

All-search
Method Venue rank-1 rank-10 rank-20 mAP

Zero-Pad [2] ICCV17 14.80 54.12 71.33 15.95
HCML [5] AAAI18 14.32 53.16 69.17 16.16
D2RL [4] CVPR19 28.90 70.60 82.40 29.20
MAC [6] MM19 33.26 79.04 90.09 36.22
EDFL [7] Neuro20 36.94 85.42 93.22 40.77
XIV [12] AAAI20 49.92 89.79 95.96 50.73
HC [8] Neuro20 56.96 91.50 96.82 54.95

DDAG [9] ECCV20 54.75 90.39 95.81 53.02
AGW [3] TPAMI21 47.50 84.39 92.14 47.65
Proposed - 61.95 93.37 97.65 58.12

Indoor-search
Zero-Pad [2] ICCV17 20.58 68.38 85.79 26.92
HCML [5] AAAI18 24.52 73.25 86.73 30.08
MAC [6] MM19 36.43 62.36 71.63 37.03
HC [8] Neuro20 59.74 92.07 96.22 64.91

DDAG [9] ECCV20 61.02 94.06 98.41 67.98
AGW [3] TPAMI21 54.17 91.14 95.98 62.97
Proposed - 63.68 94.98 98.11 69.91

3.1.2 Implementation Details

Our method is implemented with the Pytorch framework.
Like most existing VI-ReID works, we adopt Resnet50 as
the backbone network for fair comparison. The pre-trained
ImageNet parameters are adopted for the network initializa-
tion. In the training phase, all input images are resized to
288 × 144 and padded with 10. Then, they are randomly
cut into 288×144 and flipped horizontally for data augmen-
tation. We use the stochastic gradient descent (SGD) opti-
mizer for optimization. The momentum parameter is set to
0.9. For the online sampling strategy, P = 4, K = 8 are set.
In addition, the margin m is set to 0.3. 60 epochs are trained.
All the training and testing procedures are completed on a
server with Tesla v100a-sxm2.

3.2 Comparison to the State-of-the-Arts

In this part, we present the performance of our proposed
method with the state-of-the-arts. Table 1 shows the re-
sults on the SYSU-MM01 dataset, where the best results are
marked in boldface. Our method obtains the highest perfor-
mance in terms of the most significant indicators, i.e. rank-1
and mAP. In conclusion, our method is highly competitive
to existing methods and reaches the current leading level.

3.3 Ablation Experiments

3.3.1 The Effect of AMCT Loss

To testify the effect of the proposed AMCT loss, we
test the performance of the proposed method by remov-
ing it or replacing it with the SMST (single-modality
sample-triplet) [7], SMCT (single-modality center-triplet)

Table 2 Comparisons of different losses performance on SYSU-MM01.
Rank-1 accuracy (%) and mAP (%) are reported.

Method All-search Indoor-search
rank-1 mAP rank-1 mAP

Only ID 31.89 27.27 37.26 43.47
ID+SMST 45.96 46.73 48.58 57.99
ID+SMCT 49.87 48.34 49.99 59.07
ID+AMST 57.27 55.39 59.68 67.54

ID+AMCT (Proposed) 58.38 55.65 61.96 69.01

Table 3 Performance of the proposed method with different number of
shared stages on SYSU-MM01. Rank-1 accuracy (%) and mAP (%) are
reported.

Shared All-search Indoor-search
stage rank-1 mAP rank-1 mAP

Stage0-Stage4 60.40 56.67 63.80 69.72
Stage1-Stage4 59.02 55.80 59.89 67.11
Stage2-Stage4 61.95 58.12 63.68 69.91
Stage3-Stage4 59.69 56.42 60.91 68.37

Stage4 54.40 52.95 57.12 65.29
No Stage 46.41 46.56 50.15 59.73

and AMST (all-modality sample-triplet) loss, respectively
in the DMM. From Table 2, it can be observed that the per-
formance drops sharply if the AMCT loss is not employed.
Besides, the network supervised by the AMCT loss achieves
the best results whether in the all-search mode or the indoor-
search mode. To sum up, the AMCT loss proposed by us
achieves the best results and can effectively enhance the con-
straints on feature distances in the VI-ReID task. This ben-
efits from its stronger abilities of feature aggregation within
class and feature separation among different classes.

3.3.2 The Effect of GAE

We further testify the optimal gray augmentation ratio by
changing it from 0% to 100% with the step of 10%. The re-
sults on the more challenging all-search mode of the SYSU-
MM01 dataset are shown in Fig. 3. As can be seen, when the
ratio of gray augmentation is 10%, the best performance is
obtained. Moreover, compared with no gray augmentation,
our method achieves an improvement of 3.57% and 2.47%
in terms of rank-1 and mAP respectively. The experimen-
tal results indicate the effectiveness of our GAE method.
Moderate gray transformation is helpful to reduce the dis-
crepancy between modalities and the influence of modality-
specific information.

3.3.3 The Ablation of the Network Structure

In this subpart, we further conduct experiments to investi-
gate the effect of different number of shared stages on the
performance of the proposed method. The results can be
seen in Table 3, from which we can see that when differ-
ent stages are shared, the performance is different. When
Stage2-Stage4 are shared, our method achieves the highest
recognition accuracy on most indicators. When all stages
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are not shared, the proposed method has the worst per-
formance, which indicates that two modality images share
some clues to a certain extent.

4. Conclusion

In this letter, we have presented a novel VI-ReID method
based on gray augmentation exploration and the all-
modality center-triplet loss. GAE reduces the discrepan-
cies between the two modalities at the image level. At the
feature level, the constraints within and among classes are
strengthened by our AMCT loss, and better performances
of VI-ReID are achieved. Experimental results on the public
database demonstrate the advantages of the proposed metric
over the relevant state-of-the-arts.
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