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PAPER

Classifying Near-Miss Traffic Incidents through
Video, Sensor, and Object Features∗

Shuhei YAMAMOTO†a), Nonmember, Takeshi KURASHIMA†, and Hiroyuki TODA†, Members

SUMMARY Front video and sensor data captured by vehicle-mounted
event recorders are used for not only traffic accident evidence but also safe-
driving education as near-miss traffic incident data. However, most event
recorder (ER) data shows only regular driving events. To utilize near-miss
data for safe-driving education, we need to be able to easily and rapidly
locate the appropriate data from large amounts of ER data through labels
attached to the scenes/events of interest. This paper proposes a method
that can automatically identify near-misses with objects such as pedestri-
ans and bicycles by processing the ER data. The proposed method extracts
two deep feature representations that consider car status and the environ-
ment surrounding the car. The first feature representation is generated by
considering the temporal transitions of car status. The second one can ex-
tract the positional relationship between the car and surrounding objects by
processing object detection results. Experiments on actual ER data demon-
strate that the proposed method can accurately identify and tag near-miss
events.
key words: deep neural network, event recorder, near-miss traffic incident,
multi-modal data, time-series data

1. Introduction

Recently, the event recorder has become an almost oblig-
atory car accessory. Modern recorders can capture a front
video, several sensor streams, and driving operation. The
event recorder permanently stores all data dozens of seconds
on either side of the trigger of longitudinal/lateral accelera-
tion/deceleration exceeding a certain level. In this paper, we
call such data event recorder (ER) data. ER data is being
effectively used as traffic accident/violation evidence. In ad-
dition, ER data that demonstrates near-miss traffic incidents
(“near-miss”), such as near collisions between the car and
other obstacles, is being considered for use in reducing traf-
fic accidents. Actual examples of near-miss scenes captured
by ERs are shown in Fig. 1. The ER data of near-misses
is best utilized pro-active education that targets safer driv-
ing. An example of safe-driving education is to have drivers
watch actual ER footage of near-miss traffic incidents [2].
In addition, near-miss incidents in ER data are attracting the
attention of fleet management companies that need to con-
trol scores of commercial motor vehicles such as vans and
trucks. For example, car leasing and commercial trucking
companies can evaluate each driver’s skills by processing
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Fig. 1 Actual examples of near-miss scenes captured by ERs. The or-
ange circle in each image indicates a near-miss traffic incident. The left
example shows a near-miss between the car and another car coming from
the right side. The right example shows a near-miss between the car and a
bicycle on a crosswalk.

the front video captured by Internet-connected cameras [3].
A car insurance company is detecting dangerous areas in
town and creating hazard maps based on traffic accidents or
near-miss as found in ER data [4]. As just described, various
services/applications are using the near-miss events present
in ER data; they represent new opportunities for eliminating
or minimizing the risks associated with vehicle operation.

However, most ER data doesn’t include near-miss in-
cidents (“no near-miss”). One report [5] claimed that about
70% of ER data contains no near-miss incident. This is be-
cause the acceleration limits used to trigger the ER can be
exceeded by rough roads and abrupt driving inputs. More-
over, actual safe-driving education organizers expect the ER
data to be tagged and sorted according the type of incident
(e.g. pedestrian and bicycle) because they want to extract the
best possible videos as safe-driving education material for
each incident type. Unfortunately, manually identifying and
labelling all near-miss incidents from the large amount of
ER data available is too time consuming, expensive, and er-
ror prone. Therefore, the automating the process is essential
to reducing the cost of safe-driving education and strength-
ening the effective use of ER data. The objective of this
paper is to automatically detect the presence of near-miss
incidents and then accurately identify near-miss type.

To achieve this objective, the straightforward approach
is to build a multi-class classification model. ER data is
multi-modal data consisting of video and sensor readings,
and it is considered necessary to use all the data in combina-
tion for identifying near-miss incidents. The state of own ve-
hicle and its surroundings is mainly determined from sensor
readings and video. Both are key information for determin-
ing whether an ER data segment contains a near-miss or not.
Thanks to advances in deep neural networks (DNNs), we
can now handle such data by convolutional neural networks
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(CNNs) [6] as well as recurrent neural networks (RNNs) [7].
Passing the image frame data through a CNN will yield fea-
ture vectors, and the feature vectors of image frames and
sensor streams can be integrated using a full connect neural
network; the resulting time-series data can be modelled by
an RNN. Although this approach can detect near-miss inci-
dents (i.e., determine the presence or absence of a near-miss
event), it is not accurate in terms of classifying incidents the
according to its type. There are two reasons for this failure.

Issue 1: The near-miss detection task doesn’t require de-
tailed information of the obstacle captured by the front
video because it is sufficient that just some kind of ob-
stacle is detected. This involves using a CNN to extract
basic visual features. However, the task of classify-
ing the near-miss incidents requires an understanding
of the kind of object and its position relation to the car.
Simple CNNs can’t extract visual features with suffi-
cient detail.

Issue 2: The task of identifying near-miss incidents can
be treated as a two-level hierarchy classification task.
First, each ER segment is classified into near-miss or
no near-miss. Second, the near-miss object in each
ER segment is identified. However, general multi-class
classification frameworks don’t provide such a hierar-
chical architecture, and instead attempt to solve the two
classification tasks simultaneously (i.e. treat the task as
a one-level classification task). This makes the task
more complex which degrades classification accuracy.

To resolve these two issues, this paper proposes a clas-
sification method that combines a supervised DNN to pro-
cess object detection results with multi-task learning. The
proposed method has three main components. The first
component, the Temporal Encoding Layer, generates a fea-
ture vector by encoding frame images, sensor streams, and
object detection results as time-series data. The second
component, the Grid Embedding Layer, creates a feature
vector by embedding object detection results into a grid
space by determining the positions of each object relative
to the car. The third component, the Multi-task Layer, splits
the main task into two sub-tasks to classify near-miss type.
We conduct experiments on an actual ER dataset to evaluate
the effectiveness of the proposal. Our result shows that the
proposed method can well handle ER data with improved
performance.

This paper is an extended version of our previous
paper [1]. The enhancements are as follows. First, we
conducted new experiments to clarify classification perfor-
mance versus the number of information sources in Tem-
poral Encoding Layer and at different hyper-parameters of
Grid Embedding Layer and Multi-task Layer (Sect. 5.2).
Second, we added a case study with actual ER data using
several frame images and sensor streams (Sect. 5.3). Finally,
we showed its effectiveness in the aspect of understand-
ing the estimation results output by the proposed method
(Sect. 5.4).

2. Related Works

Several studies have focused on near-miss traffic incident
detection (i.e., determine the presence or absence of a near-
miss event) from dashboard camera (dashcam) data. Suzuki
et al. [8] estimate the risk level for each frame image in front
video by using CNN, which is a highly effective DNN ar-
chitectures. Their model demonstrated improved accuracy
in near-miss detection by introducing pedestrian detection
task as sub-function. Ke et al. [9] detect near-miss scenes
using pedestrian detection from the front video captured by
a vehicle-mounted camera; the distance between the car and
the pedestrian is used to calculate the risk level of each
frame. Kim et al. [10] analyze front video of car crashes
captured during car simulator trials on variety of roads for
clarifying traffic characteristics of dangerous scene. While
their model detect near-miss scenes using front video, they
do not consider the classification of the near-miss incidents.

Dashcam data has been used for various tasks other
than near-miss detection. By extracting driver operations
from dashcam data, Yokoyama et al. [11] use feature engi-
neering to detect the drivers with dangerous driving styles.
Front video is a significant part of autonomous vehicle driv-
ing technology. To permit autonomous control of vehicle
movement, Jain et al. [12] predict driving movements such
as straight, left/right turn, lane change, and stop based on
front video information using in-vehicle cameras; their pre-
diction model analyzes the features of the driver’s face. To
avoid traffic accidents, Chan et al. [13] proposed a method
that anticipates accidents among vehicles. Our work differs
from theirs as regards the goals and model proposed.

Our approach is motivated by the success achieved by
using DNNs to analyze video data. The DNN components
of CNN and RNN are widely used for human activity recog-
nition. Baccouche et al. [14] proposed a standard approach
to human activity recognition based on DNN. Their method
uses CNN to extract a set of human movement features from
each frame image and RNN to model their temporal transi-
tions. Sharma et al. [15] introduced a visual attention mech-
anism based on DNN for extracting characteristic regions
in each frame image; they used it to encode feature vectors
extracted by CNN. Simonyan et al. [16] proposed a spatio-
temporal approach that uses both optical flow and normal
images with the intention of capturing the movements of ob-
jects present in videos. Our experiments, shown in Sect. 5,
evaluates the effectiveness of human activity recognition
schemes for identifying near-miss incidents.

3. Preliminary

3.1 Data Format

Each ER segment consists of a sequence of frame images
combined with the data streams output by several sensors.
Sequence length is taken to be the number of frames in the
ER sequence, T . The sensor data at each time-step is a
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Fig. 2 Overview of our proposed DNN model.

vector consisting of several dimensions such as longitudi-
nal/lateral acceleration and speed. We normalized the sensor
data in each dimension to z-score because the dimensions
have different value scales.

3.2 Object Detection

To correctly identify near-miss type, our approach uses the
object detection results of image {It}Tt=1. For this we em-
ploy YOLO [17], which is one of the most effective DNN-
based object detection algorithms. The object detection
result of image It consists of Nt objects. Each detected
object, n, consists of the triple {ot,n, lt,n,pt,n}. The one-
hot vector ot,n = {ot,n,v}Vv=1 is the object type where V is
the number of object types, and the bounding box vector,
lt,n = {xlef

t,n , y
top
t,n , x

rig
t,n , y

bot
t,n }, specifies the object’s coordinates

(left, top, right and bottom) in the image; the detection prob-
ability vector pt,n = {pt,n,v}Vv=1.

3.3 Annotation Label and Its Re-Organization

The application of supervised machine learning is assumed
to yield the correct label for near-miss target ym ∈ RC , which
is one-hot vector consisting of the number of label types
C. We extract two additional kinds of correct labels by re-
organizing the near-miss target label ym. The first additional
label, ys1, identifies near-miss (ys1 = 1) or no near-miss
(ys1 = 0). The second one, one-hot vector ys2 ∈ RC−1, iden-
tifies the near-miss incidents for each ER sequence other
than those identified as no near-miss.

4. Proposed Method

In this section, we describe the proposed method; it uses
DNN to classify the occurrence targets of “near-miss”. The
proposed method is composed of three main components
(Fig. 2). The first component, the Temporal Encoding Layer,
creates a feature vector by encoding frame image, sensor
streams, and object detection results and uses RNN to han-
dle their temporal transitions. The second component, the
Grid Embedding Layer, uses DNN to create a feature vec-
tor by encoding feature scores; the object detection results,

bounding box information of each object, are embedded into
a grid space. The third component, the Multi-task Layer,
uses these feature vectors to perform sub-tasks and then uses
their results to complete the main task. We describe these
components in Sects. 4.1, 4.2, and 4.3, respectively.

4.1 Temporal Encoding Layer (TEL)

The objective of this layer is to generate a feature vector
by considering the temporal transitions present in the time-
series data.

Image encoder: To obtain holistic features such as
the surrounding environment from front video, we encode
each video image into a feature vector by using CNN. Here,
to extract visual features from each image, we prepare two
types of GoogLeNets [18] pretraind by ImageNet [19] and
Places365 [20]. The GoogLeNets of this paper encode each
image It into two feature vectors. Next, these feature vec-
tors are encoded by a full connect neural network (FC) into
a feature vector with dimension of U. The feature vector
extracted by this process from frame number t is denoted as
himg

t .
Sensor encoder: To obtain features that describe the

car status, we use FC to encode the sensor data into a feature
vector with U dimensions. The feature vector extracted by
this process from frame number t is denoted as hsen

t .
Object encoder: To extract in detail features such as

obstacles and traffic signs present in the front video, we use
the object detection results after translating them into a sim-
ple vector representation. Here, we focus on the appearance
degree of each object and generate vector et, which refers to
the number of object types, V . The score is calculated by
et =

∑Nt

n=1 ot,n · pt,n. If several identical objects are detected
in an image, in order to enhance the appearance degree of
the object, the score is calculated by summing object detec-
tion probability pt,n. Next, the generated feature vector et is
encoded into a feature vector with U dimensions by FC; this
yields, for frame number t, hobj

t .
Time-series modeling: This unit concatenates the

three feature vectors (hiso
t = [himg

t ; hsen
t ; hobj

t ]) and encodes
the results into a feature vector with U dimensions using
by FC. Next, we use the LSTM unit to model the fea-
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ture vectors in each time-step [21] and derive here a new
feature vector that is more direct as it assesses the feature
vectors in all time-steps by fusing with the soft attention
mechanism [22]. Denoting the sequence of feature vectors
obtained by the LSTM unit as {hτt }Tt=1, the soft attention
mechanism calculates a new feature vector, hte, as follows:
hte =

∑T
t=1 α

τ
t hτt , ατt = softmax(uT

t uτ), ut = tanh(Wτhτt +bτ),
where Wτ ∈ RU×U ,bτ ∈ RU ,uτ ∈ RU are the model param-
eters of DNN.

4.2 Grid Embedding Layer (GEL)

Grid embedding: The objective of this layer is to derive a
feature vector that can be used to identify near-miss targets;
it does so by considering the bounding box information of
each object in each frame image. In this paper, we propose
a grid embedding method for utilizing bounding box infor-
mation; we focus on the position of each object in the image
and consider the position relationship between the car and
each object. This method prepares grid space G ∈ RGh×Gw×V

by setting appropriate vertical and horizontal grid dimen-
sions (Gh and Gw); it then embeds the objects into grid space
G. The embedded grid feature matrix G is generated by Al-
gorithm 1. An example of the grid embedding flow is shown
in Fig. 3.

As the embedding score for each cell, we employ the
2D area ratio r because we prioritize the distance between
the car and each object. We think that the area ratio can
represent the distance between the car and each object in
the image because the area ratio of an object is inversely
proportional to its distance from the car, i.e., objects close
to the car have larger area ratios than far objects.

Encoding grid features: We can obtain grid features
gi, j by the above processes. Not all cells are important in
the task of identifying near-miss incidents because the im-
age captured strongly depends on the setting position of the
ER. For example, as shown in Fig. 1, the car’s bonnet oc-
cupies significantly different parts of the image if the ER’s
direction and position are changed. Moreover, such cells
don’t contribute to achieving our goal because objects will
not appear there. Therefore, it is not appropriate to directly
use grid importance.

In this paper, we employ the soft attention mech-
anism to calculate a new feature vector hgr as follows:
hgr =

∑Gh

i=1

∑Gw
j=1 α

g
i, jgi, j, α

g
i, j = softmax(uT

i, ju
g), ui, j =

tanh(Wggi, j + bg), where Wg ∈ RV×U ,bg ∈ RU ,ug ∈ RU

are the DNN model parameters. These formulas mean that
attention weight αg

i, j is dynamically estimated from grid fea-
ture gi, j as grid importance, and the feature vector hg is cal-
culated based on attention weights and grid features.

4.3 Multi-Task Layer (MTL)

The objective of this layer is to identify the near-miss target
using the two feature vectors obtained in Sects. 4.1 and 4.2,
respectively. First, we concatenate the feature vectors htg =

[hte; hgr]. Here, we utilize a multi-task learning framework

ALGORITHM 1: Grid Embedding

Input: {{ot,n}Nt
n=1}Tt=1, {{lt,n}Nt

n=1}Tt=1, H, W, Gh, Gw
Output: G
Initialize: G ∈ RGh×Gw×V ← 0;
(S w, S h)← (W/Gw, H/Gh);
for t = 1 to T do

for n = 1 to Nt do
(x1, y1)← (�xlef

t,n/S w�, �ytop
t,n /S h�);

(x2, y2)← (�xrig
t,n/S w�, �ybot

t,n /S h�);
r ← {(xrig

t,n − xlef
t,n) × (ybot

t,n − ytop
t,n )}/(W × H);

for i = y1 to y2 do
for j = x1 to x2 do

gi, j ← gi, j + ot,n · r

Fig. 3 A worked example of grid embedding flow.

by setting two simple sub-tasks as part of the main task.
The first sub-task determines the presence or absence

of a near-miss event for each ER sequence. We encode htg

to scalar value ŷs1, which is the output of this sub-task, by
using FC and sigmoid function and calculating cross en-
tropy error Ls1 between the correct label ys1 and result ŷs1

as follows: Ls1 = − 1
D

∑D
d {ys1 log ŷs1+ (1−ys1) log (1 − ŷs1)},

where D and d are the number of training data and the index
used in scanning the training data, respectively; d is used to
link ys1 and ŷs1, but is omitted in this paper.

The second sub-task identifies the near-miss incidents
for each ER sequence other than those identified as no near-
miss. We encode htg into vector ŷs2, the result of this sub-
task, by FC and softmax function, and then calculate cross
entropy error Ls2 between the correct label ys2 and result ŷs2

as follows: Ls2 = − 1
D

∑D
d

∑C−1
k ys2

k log ŷs2
k .

We concatenate the results using the form h′ =
[htg; ŷs1; ŷs2]. We can now consider the results of these sim-
ple sub-tasks. We encode h′ into vector ŷm which represents
the result of the main task, by FC and softmax function and
calculate cross entropy error Lm between the correct label
ym and result ŷm as follows: Lm = − 1

D

∑D
d

∑C
k y

m
k log ŷm

k .
We optimize the objective function L = Lm + β · (Ls1 +

Ls2) which includes the errors of these three tasks. β de-
notes the hyper-parameter used for controlling sub-task er-
rors. The label yielded by the main task is given by extract-
ing the index with maximum score from the result ŷm.

The general aim of multi-task learning is to leverage
useful information contained in multiple related tasks to im-
prove the generalization performance. Learning multiple
tasks jointly can lead to significant performance improve-
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ments compared with learning them individually as has been
several related works [23], [24]. For example, [23] jointly
learns representations of words, entities, and meaning rep-
resentations via multi-task learning. [24] shows the ef-
fectiveness of this approach with regard to various natural
language processing tasks including part-of-speech tagging,
chunking, named entity recognition, and semantic role la-
beling. Following the success of these multi-task learning
approaches, the innovation of our multi-task learning is to
learn a classifier specific to each sub-task; we extract effec-
tive features and obtain new feature vectors for performing
each sub-task. All features including frame image, sensor
streams, and object detection results can be useful for deter-
mining whether each video contains a near-miss incident or
not. However, once we know that a video contains a near-
miss, object detection results constitute the most helpful
information for determining the near-miss targets because
they allow us to understand the kind of objects around the
car. While single task learning must learn such features im-
plicitly, our multi-task learning can learn them explicitly as
isolated features.

5. Experimental Evaluations

5.1 Dataset and Parameter Setting

The experimental evaluation uses the Near-Miss Incident
Database provided by the Smart Mobility Research Cen-
ter of Tokyo University of Agriculture and Technology in
Japan. The dataset is a collection of data captured by ERs
mounted in Japanese taxis. Each ER data sequence is 15
seconds long; 10 seconds before the trigger and 5 seconds
after the trigger. Each sequence was manually assigned
one of five risk levels {high, middle, low, bit, no near-miss}
and six near-miss incident types {car, bicycle, motorcycle,
pedestrian, self, other} by experts. The experiment focused
on five near-miss incidents {car, bicycle, motorcycle, pedes-
trian, self†}. 700 sequences were randomly extracted for
each near-miss incident type. 700 sequences tagged no
near-miss were also randomly extracted. Therefore, the ex-
periment examined 4,200 sequences with 6 labels (C = 6).
We randomly split the dataset into 2,940 (70%) sequences
as training data and 1,260 (30%) as test data.

Each sequence was recorded at 30 frames per second
and so consisted of 450 frames. In this paper, we sampled
T = 30 frames at intervals of 15 frames. Each image had
resolution of W = 640 and H = 400 in RGB format. The
original images were processed by YOLO for object detec-
tion. This yielded V = 69 object types. For visual feature
extraction, linearly transformed images (224× 224 byte res-
olution) were processed by two GoogLeNets. For the sensor
data, we extracted three sensor streams: speed and longitu-
dinal/lateral acceleration.

For the DNN in the proposed method, we set the num-

†self refers to a dangerous or illegal movement involving only
the car

Table 1 Classification performance versus number of information
sources in Temporal Encoding Layer and SVM. “V”, “S”, and “O” mean
“Video”, “Sensor”, and “Objects”, respectively.

Sources Ours SVM
V S O Pre. Rec. F1. Pre. Rec. F1.
� 43.47 42.14 42.22 40.19 42.06 40.73

� 41.60 42.62 41.60 40.66 40.71 40.39
� 57.75 55.95 55.53 51.29 48.41 48.25

� � 49.09 49.52 49.02 43.94 43.41 43.54
� � 63.38 63.17 63.11 56.59 55.16 54.12

� � 62.25 61.90 61.94 54.91 54.76 54.27
� � � 64.10 64.29 64.10 57.64 58.25 57.64

ber of hidden units in each FC to U = 256, and the out-
put vector after each FC is non-linearly transformed by the
ReLu function [25] with Dropout p = 0.7 [26]. We opti-
mized the DNN according to Adam [27] based on the objec-
tive function of L gradient as calculated by the back propa-
gation method. Here, we set the mini-batch size to 50 and
the back propagation iteration number to 100. With regard
to GoogLeNet, we used the Caffe [28] model pretrained by
ImageNet and Places365, and updated the parameters in the
output layer by fine-tuning.

5.2 Results

We conducted four experiments. Experiment 1 and 2 ad-
dress issue 1, while experiment 3 addresses issue 2. In ad-
dition, experiment 4 is intended to verify the effectiveness
of combining the three proposed components. To examine
the effectiveness of the proposed method in identifying near-
miss incidents, we use four evaluation metrics: accuracy,
precision, recall, and F1-score [29].

Experiment 1: Table 1 shows the classification per-
formance versus the number of information sources (front
video, sensor streams, and objects) as processed by TEL.
To focus on the improvement in classification performance
by the addition of information sources, we did not apply
GEL or MTL. To classify the near-miss target without us-
ing MTL, we employ a full connect neural network (FC)
as the output layer. FC decodes feature (hte) to a vector
with the number of labels (C = 6). After that, we extract
the label having maximum value in the vector as predic-
tion label. Also, to confirm the effectiveness of feature en-
coding and the temporal transitions modeling by CNN and
RNN, we make comparisons using Support Vector Machine
(SVM) with different information sources (features) SVM
is implemented by LIBSVM. The best hyper-parameters
of SVM such as kernel type, cost parameter, and RBF ker-
nel’s γ were selected by grid-search. In order to use the
ER sequence as SVM input, we transformed each informa-
tion source into a vector space and concatenated them over
all frames. In the case of a single information source, the
highest evaluation values for all metrics was achieved with
the use of detected objects. For the case of two information
sources, the best performance was achieved by using sen-
sor streams and detected objects. This confirms the effec-
tiveness of using detected objects as an information source.
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On the other hand, although the method of using front video
and sensor streams is the straightforward approach when us-
ing DNN as explained in Sect. 1, its evaluation values are
lower than those of the proposed method using detected ob-
jects only. Excepting this case, we can confirm that perfor-
mance generally improves with the addition of information
sources. For each combination of features (for each line in
Table 1), the proposal always yields better evaluation scores
than SVM. This indicates the effectiveness of TEL using
CNN and RNN, which is one of the components of the pro-
posed method.

Experiment 2: Table 2 (a) shows the classification per-
formance for three GEL grid sizes (Gh,Gw). To focus on the
impact of grid size on classification performance, we used
three information sources in TEL and did not use MTL. To
classify the near-miss target without using MTL, we em-
ploy a full connect neural network (FC) as output layer. The
FC decodes feature (htg) to a vector with the number of la-
bels (C = 6). After that, we extract the label having max-
imum value in the vector as prediction label. We selected
the grid sizes that maintained the aspect ratio of the original
image (400 : 640) = (5 : 8). Also, row (−,−) in the ta-
ble shows the evaluation values without GEL. Regardless of
grid size, using GEL yielded higher evaluation values, so it
does improve the classification performance. Moreover, we
can confirm that the performance increases with the grid res-
olution. This result suggests that GEL can extract detailed
features from the object detection results. The following
sections use the grid size of (Gh,Gw) = (8, 10). However,
we confirmed that the classification performance did not in-
crease even if the grid resolution was increased from (8, 10)
to (16, 20). We consider that there are two reasons for this.
The first is that high resolution makes training difficult by
increasing the number of attention parameters. To be spe-
cific, the number of attention parameters αg

i, j is quadrupled
if grid resolution (8, 10) is increased to (16, 20). This sug-
gests that high resolution grids need more complex training
than low resolution ones. The second is that high resolution
grids make it harder to utilize the co-occurrence relation of
objects in each cell feature gi, j. In the example of the near-
miss shown in Fig. 9, GEL can identify the near-miss target
of motorcycle if person and motorcycle occur in the same
cell feature gi, j. However, high resolution grids weaken such
co-occurrence relations. Therefore, our consideration is that
grid resolution triggers a trade-off problem: high resolution
grids (e.g. (16,20)) can capture the detail position of each
object, but make it difficult to handle the position relation
among objects. For these reasons, GEL could not enhance
F1-score even with a high resolution grid (16,20). In or-
der to resolve this problem, we will consider to handle the
spatial relationship among objects by capturing the distance
between cells in future work.

Experiment 3: Table 2 (b) shows the classification per-
formance for three β values {0.1, 1.0, 10.0} in MTL. To fo-
cus on the ability of MTL to improve the classification per-
formance and assess the effect of varying β, we used three
information sources in TEL and did not use GEL. Note

Table 2 F1-score at different hyper-parameters of the proposed.

(a) Different grid sizes
Gh Gw F1-score
- - 64.10
5 8 64.66
8 10 65.19

16 20 65.19

(b) Different β values
β F1-score
- 64.10

0.1 65.56
1.0 64.97

10.0 64.55

Table 3 Classification performance of each method. “V”, “S”, and “O”
mean “Video”, “Sensor”, and “Objects”, respectively.

Method V S O Pre. Rec. F1.
DNN � � 49.09 49.52 49.02
SVM � � � 57.64 58.25 57.64

IDT [30] � 43.20 45.37 44.09
ST-CNN [16] � 49.25 51.03 48.99

DSA [13] � � 60.39 58.36 59.63
Proposed(V) � 44.55 43.13 43.39

Proposed(V,O) � � 63.52 64.98 64.01
Proposed � � � 65.75 65.79 65.68

that the entries on the row marked “-” indicate the evalu-
ation values attained without MTL. The results show that,
regardless of the β value, using MTL yields higher perfor-
mance. Therefore, MTL does improve the classification per-
formance. Also, we can confirm that the β value of 10.0
yields lower F1-score than the other values. This suggests
that the estimation accuracy of the main task is degraded if
sub-task error is excessively weighted. The following sec-
tions use β = 0.1 because it achieved the highest F1-score.

Experiment 4: We show the classification perfor-
mance with the proposed and five baseline methods in Ta-
ble 3. The baselines are as follows.

DNN: Straightforward approach using DNN (i.e., TEL
without objects).

SVM: SVM using three different information sources,
which performs best in Experiment 1.

IDT [30]: It was proposed for recognizing human activ-
ity in video and is one of the SOTA methods for extract-
ing video features; IDT identifies several visual key
points and uses the trajectories of key points to char-
acterize each video. We set the trajectory length to 15
and and the sampling stride to 5. Each video is then
converted into a K-dimensional feature vector by K-
means clustering all videos (we set K to 200). We use
the IDT-based features to train the SVM classifier. The
best hyper-parameters of SVM are selected by same
manner to Experiment 1.

ST-CNN [16]: It was proposed for human activity recog-
nition in video and is another SOTA method. The
method combines two types of DNNs; one is the spa-
tial convolution network for capturing scenes and ob-
jects depicted in the video, and the other is a tempo-
ral convolution network for capturing motions between
frames. ST-CNN calculates average scores for these
two feature vectors. Their label is given by extracting
the index with maximum score from the result. We set
the number of stacked images to 10.

DSA [13]: It was proposed for anticipating traffic acci-
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dents among vehicles from front video. The method
extracts two visual features; one is the object fea-
ture for capturing object movement between continu-
ous frames, and the other is a horistic feature for each
frame image (i.e., himg

t ). We extract DSA-based fea-
tures from front video and train a DNN composed from
temporal encoder (LSTM) and classifier layer. We set
the number of candidate objects to 10.

In addition to these methods, we prepared three vari-
ants of the proposed method. The first and second methods
are Proposed(V) and Proposed(V,O), each of which inputs
video only and video and objects to allow comparison, in
fair conditions, to ST-CNN/IDT and DSA, respectively. The
final one is Proposed, which is the full model using video,
sensor, and objects.

For all evaluation metrics, the proposed method
achieved the highest values among the compared methods.
The results indicate the effectiveness of our approach in
terms of the near-miss traffic identification task for ER data.

Note that we conducted the χ2 test based on cross tab-
ulation (joint frequency distribution of cases/tests) with two
categorical variables (i.e., proposed and each baseline); each
variable can be correct or incorrect. The results confirmed
that the proposed method is significantly better than the
baselines (p-value < 0.01).

Figure 4 shows the precision, recall, and F1-score in
each class for proposed, SVM, and ST-CNN. Of particular
interest, for the four labels of car, bicycle, motorcycle, and
pedestrian, the precision and recall scores were higher than
the two other methods. Also, we can confirm that the pro-
posed method achieved the highest score in all labels of F1-
score. Figure 5 uses a confusion matrix to show the detailed
classification results of Proposed, SVM, and ST-CNN. In
this figure, the true labels and predicted labels are plotted on
the horizontal and vertical axes, respectively. The number
in each cell shows the number of tests with each label. The
proposed method accurately identified more objects than the
other two methods, except for no near-miss and self labels,
which confirms the superior performance of the proposed
method.

When we focus on the results in fair condition be-
tween the proposed and baselines, we confirmed that Pro-
posed(V,O) yielded higher evaluation scores than DSA. The
main difference between the proposed method and DSA is
that the proposed method can consider the position relation-
ship between the car and each object by using GEL. This re-
sult suggests that the task of identifying near-miss targets is
important to capture each object’s position. Regarding to the
results attained when inputting video only, Proposed(V) had
lower evaluation score than ST-CNN. Although ST-CNN
can process pixel-level movements among sequential im-
ages as a feature through optical flow, the proposed method
processes holistic features of each image by CNN indepen-
dently. Due to this difference, the proposed method can-
not obtain features effective for identifying near-miss tar-
gets from video only. However, when we use the proposed

Fig. 4 Precision, recall, and F1-score values in each class for Proposed,
SVM, and ST-CNN methods. X-axis plots the labels “N”, “C”, “B”,
“M”, “P”, and “S” mean “No near-miss”, “Car”, “Bicycle”, “Motorcycle”,
“Pedestrian”, and “Self”, respectively.

Fig. 5 Confusion matrix for classification results of Proposed, SVM, and
ST-CNN methods. “N”, “C”, “B”, “M”, “P”, and “S” mean “No near-miss”,
“Car”, “Bicycle”, “Motorcycle”, “Pedestrian”, and “Self”, respectively.

Fig. 6 Averaged attention score for each label in TEL. The vertical and
horizontal axes are averaged ατt over test data and frame number, respec-
tively.

method in practical situations, we can use object detection
for video images and handle detected objects by TEL and
GEL. In this case, the proposed method attained higher
scores than ST-CNN (i.e., Proposed(V,O) vs. ST-CNN in Ta-
ble 3). Therefore, we consider that the proposed method is
more effective than ST-CNN in the task examined.

5.3 Qualitative Analysis

The proposed method uses soft attention for temporal and
grid space processing in TEL and GEL, respectively. By cal-
culating mean values of each soft attention of ατt and αg

i, j for
the correct labels in the test data, we can compare the time
and space attributes emphasized by the proposed method.

The mean attention scores ατt calculated for each cor-
rect label are shown in Fig. 6. The vertical and horizon-
tal axes are averaged attention scores ατt over test data and
frame number t. The trigger frame number is t = 20. The
scores of the near-miss targets of car, bicycle, motorcycle,
and pedestrian peaked at around frame number t = 25. On
the other hand, the self label attained highest attention score
toward the last frame, t = 30, while no near-miss attained
its peak score at frame number t = 21. As demonstrated by
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Fig. 7 Averaged attention score for each label in GEL. The color inten-
sity represents the mean attention score αg

i, j value in each cell.

these results, the labels of self and no near-miss have dif-
ferent characteristics from the other labels; the four other
labels demonstrate a similar tendency in terms of ατt .

The mean attention scores αg
i, j calculated for each cor-

rect label are shown in Fig. 7. In this figure, the color inten-
sity represents the mean attention score value in each cell.
Cells on the left side of all figures are higher than those on
the right. We think this is because vehicles and bicycles
drive on the left side in Japan. Cells in the low center region
have lower values as this region is often occupied by the
car’s bonnet. The pedestrian label has high attention scores
in the vertical column of center cells. This result suggests
that pedestrians frequently appeared in this region. We con-
sider that GEL contributes the improvement of estimation
performance by considering grid importance when process-
ing ER data.

Our proposed method well supports safe-driving edu-
cation. One its greatest advantages lies in is risk prediction
training [2]. This involves drivers watching ER data con-
taining near-miss traffic incidents and predicting the causes
of the near-miss incidents. Figure 8 shows an example of
a visualization tool that supports risk prediction training.
This tool encourages drivers to focus on the precursors of
near-miss events. In the frame image of Fig. 8, objects de-
tected by the tool are shown by bounding boxes, and atten-
tion scores αg

i, j are visualized by the red tint in each cell. In
this example, a near-miss event occurred because the car on
the left turned right too sharply. The proposed method can
estimate and highlight dangerous areas/objects for drivers
as shown in this example. We believe that such information
will greatly enhance the effectiveness of safe-driving educa-
tion by more intuitively indicating what traffic targets should
be focused on while driving.

We confirm the proposal’s performance on actual ER
data using several frame images and sensor streams. The ex-
ample given in Fig. 9 shows a near-miss incident involving
a motorcycle. The proposed method correctly determined
the label, while the baseline method output the wrong label
of pedestrian. In this example, the car stopped temporarily
(t ≤ 15), and restarted after the motorcycle crossed the in-
tersection (16 ≤ t ≤ 19); the car braked suddenly because

Fig. 8 This example shows a car (on the left) cutting in front of the driver.
Detected objects are shown by bounding box, and the grid attention scores
α

g
i, j yielded by the proposed method are visualized by pale red tint in each

cell. The proposed method uses the attention scores to emphasizes the
dangers.

Fig. 9 Example. The near-miss target of this example is motorcycle,
which is indicated by the orange circle at t = 25 image. The proposed
method correctly assigned motorcycle as the label of this event. The base-
line method incorrectly assigned pedestrian to the same example. GS X
and GS Y are lateral and longitudinal accelerations, respectively.

of the motorcycle (t = 20). In this example, a motorcycle,
which is the near-miss target, appeared in the front video at
frame number t = 25, a few frames after the trigger time
t = 20. Identifying motorcycle as a near-miss target is dif-
ficult for two reasons. The first is that object-based meth-
ods such as DSA classify pedestrians with high probability
because YOLO detects person and motorcycle simultane-
ously. The second is that video processing methods such
as ST-CNN classify car or bike because their movement is
similar to motorcycle. However, the proposed method can
handle multi-modal information of image features, sensor
data, and detected objects, and so can correctly classify the
example to motorcycle. Also, we think that the task of iden-
tifying near-miss incidents requires an analysis of not only
the trigger time frame but also all frames. This is also sug-
gested from an analysis of the soft attention scores shown in
Fig. 6. The proposed method can correctly determine labels
because it considers the object detection results output by
TEL and GEL.

6. Conclusion

This paper proposed a classification method that can well
utilize in a coherent manner the data provided by front
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video, sensor streams, and object detection results, to ac-
curately label near-miss events in the data captured by
ERs (dashcams). The proposed method has three com-
ponents. Temporal Encoding Layer; feature encoding for
multi-modal and time-series data. Grid Embedding Layer;
feature embedding to place detected objects into the grid
space set relative to the vehicle. Multi-task Layer; multi-
task learning utilizing sub-tasks developed from the main
task. An experiment using actual ER data confirmed the
performance improvements attained by the proposed com-
ponents.

We intend to develop a semi-supervised model to han-
dle small amounts of training data and extend the model to
support the multi-labeling of events. Also, to achieve higher
performance, we will study new approach for encoding de-
tected objects by utilizing Graph Neural Network [31].
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“Recurrent neural network based language model,” Interspeech
2010, pp.1045–1048, 2010.

[8] T. Suzuki, Y. Aoki, and H. Kataoka, “Pedestrian near-miss analysis
on vehicle-mounted driving recorders,” MVA, pp.416–419, 2017.

[9] R. Ke, J. Lutin, J. Spears, and Y. Wang, “A cost-effective frame-
work for automated vehicle-pedestrian near-miss detection through
onboard monocular vision,” CVPRW, pp.898–905, 2017.

[10] H. Kim, K. Lee, G. Hwang, and C. Suh, “Crash to Not Crash: Learn
to identify dangerous vehicles using a simulator,” Proc. AAAI Con-
ference on Artificial Intelligence, vol.33, pp.978–985, 2019.

[11] D. Yokoyama, M. Toyoda, and M. Kitsuregawa, “Understanding
drivers’ safety by fusing large scale vehicle recorder dataset and het-
erogeneous circumstantial data,” PAKDD, vol.10235, pp.734–746,
2017.

[12] A. Jain, H.S. Koppula, B. Raghavan, S. Soh, and A. Saxena, “Re-
current neural networks for driver activity anticipation via sensory-
fusion architecture,” ICRA, pp.3118–3125, 2016.

[13] F.-H. Chan, Y.-T. Chen, Y. Xiang, and M. Sun, “Anticipating acci-
dents in dashcam videos,” ACCV, vol.10114, pp.136–153, 2017.

[14] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt,
“Sequential deep learning for human action recognition,” Human
Behavior Understanding, vol.7065, pp.29–39, 2011.

[15] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition us-
ing visual attention,” ICLR workshop, 2016.

[16] K. Simonyan and A. Zisserman, “Two-stream convolutional net-
works for action recognition in videos,” NIPS, pp.568–576, 2014.

[17] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”
CVPR, pp.6517–6525, 2017.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” CVPR, pp.1–9, 2015.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L.
Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” Int.
J. Comput. Vision., vol.115, no.3, pp.211–252, 2015.

[20] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba,
“Places: A 10 million image database for scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., pp.1452–1464, 2017.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral Comput., vol.9, no.8, pp.1735–1780, 1997.

[22] Z. Yang, D. Yang, C. Dyer, X. He, A.J. Smola, and E. Hovy,
“Hierarchical attention networks for document classification,” HLT-
NAACL, pp.1480–1489, 2016.

[23] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from scratch,”
JMLR, vol.12, pp.2493–2537, 2011.

[24] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “Joint learning of
words and meaning representations for open-text semantic parsing,”
AISTATS, pp.127–135, 2012.

[25] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” ICML, pp.807–814, 2010.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” JMLR, vol.15, pp.1929–1958, 2014.

[27] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ICLR, 2015.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” Proc. 22nd ACM international confer-
ence on Multimedia, pp.675–678, 2014.

[29] C.D. Manning, P. Raghavan, and H. Schutze, Introduction to Infor-
mation Retrieval, Cambridge University Press, 2008.

[30] H. Wang and C. Schmid, “Action recognition with improved trajec-
tories,” ICCV, pp.3551–3558, 2013.

[31] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” International Conference on Learning Represen-
tations, 2019.

Shuhei Yamamoto researcher, NTT Human
Informatics Laboratories, NTT Corporation. He
receivedthe M.S. and Ph.D in informatics from
University of Tsukuba, Japan, in 2014 and 2016,
respectively. His current research interests data
mining and machine learning. He is a member
of the Information Processing Society of Japan
(IPSJ).

http://dx.doi.org/10.1007/978-3-030-47436-2_54
http://dx.doi.org/10.1049/iet-its.2013.0027
http://dx.doi.org/10.1007/bf00344251
http://dx.doi.org/10.21437/interspeech.2010-343
http://dx.doi.org/10.23919/mva.2017.7986889
http://dx.doi.org/10.1109/cvprw.2017.124
http://dx.doi.org/10.1609/aaai.v33i01.3301978
http://dx.doi.org/10.1007/978-3-319-57529-2_57
http://dx.doi.org/10.1109/icra.2016.7487478
http://dx.doi.org/10.1007/978-3-319-54190-7_9
http://dx.doi.org/10.1007/978-3-642-25446-8_4
http://dx.doi.org/10.1109/cvpr.2017.690
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.18653/v1/n16-1174
http://dx.doi.org/10.1145/2647868.2654889
http://dx.doi.org/10.1109/iccv.2013.441


386
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

Takeshi Kurashima distinguished Re-
searcher, NTT Human Informatics Laboratories,
NTT Corporation. He received the B.S. de-
gree from Doshisha University, Japan, in 2004,
and the M.S. and Ph.D. degrees in Informat-
ics from Kyoto University, Japan, in 2006 and
2014, respectively. He is currently a Research
Engineer at NTT Corporation, Japan. He was
a visiting scholar at Stanford University from
2016 to 2017. His current research interests in-
clude data mining, machine learning, and rec-

ommender systems. He is a member of IEICE.

Hiroyuki Toda senior Research Engineer,
Supervisor, NTT Human Informatics Laborato-
ries, NTT corporation. He received a B.E, and
M.E. in materials science from Nagoya Univer-
sity in 1997 and 1999, and a Ph.D. in computer
science from University of Tsukuba in 2007. He
joined NTT in 1999. His current research inter-
ests include information retrieval, and data min-
ing. He is a member of the Information Pro-
cessing Society of Japan (IPSJ), the Japanese
Society for Artificial Intelligence (JSAI), the

Database Society of Japan (DBSJ), and the Association for Computing Ma-
chinery (ACM).


