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PAPER

Learning from Noisy Complementary Labels with Robust Loss
Functions

Hiroki ISHIGURO†a), Takashi ISHIDA†,††b), Nonmembers, and Masashi SUGIYAMA†,††c), Fellow

SUMMARY It has been demonstrated that large-scale labeled datasets
facilitate the success of machine learning. However, collecting labeled data
is often very costly and error-prone in practice. To cope with this prob-
lem, previous studies have considered the use of a complementary label,
which specifies a class that an instance does not belong to and can be col-
lected more easily than ordinary labels. However, complementary labels
could also be error-prone and thus mitigating the influence of label noise is
an important challenge to make complementary-label learning more useful
in practice. In this paper, we derive conditions for the loss function such
that the learning algorithm is not affected by noise in complementary la-
bels. Experiments on benchmark datasets with noisy complementary labels
demonstrate that the loss functions that satisfy our conditions significantly
improve the classification performance.
key words: complementary label, label noise, robust loss function, loss
correction

1. Introduction

Training of deep neural networks (DNNs) often requires
large-scale datasets such as the ImageNet dataset [1], which
contains 1.2 million images. However, when the dataset
is very large, labeling training instances through a data
collecting system (e.g., crowdsourcing [2]) becomes more
laborious and consequently error-prone. Previous studies
have focused on the use of a complementary label [3]–[6]
as one of the solutions, which specifies a class that an in-
stance does not belong to. Some examples of complemen-
tary labels are given in Fig. 1 (a). Although complemen-
tary labels are less informative than ordinary labels, they
can significantly reduce the burden on labelers. This is be-
cause it is much easier to distinguish if an instance does
not belong to a particular class than to choose the correct
class from all the candidates. Complementary-label learn-
ing was originally conceived in Ishida et al. [3] and they
derived an unbiased estimator of the classification risk for
one-versus-all (OVA) and pairwise comparison (PC) loss
functions [7]. Along this line, Yu et al. [4] proposed another
solution to complementary-label learning by modifying the
softmax output of the model. Although their method does
not provide an unbiased risk estimator, it is theoretically
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Fig. 1 Examples of (a) complementary labels and (b) noisy complemen-
tary labels. True and actually labeled classes are shown above and below
the images. These images are taken from the CIFAR-10 dataset [11].

guaranteed that the obtained solution is statistically consis-
tent with the optimal risk minimizer. Later Ishida et al. [5]
generalized the unbiased risk estimator for arbitrary losses
and models, allowing one to choose losses that are widely
used in DNN training, including the categorical cross en-
tropy (CCE) loss. Chou et al. [6] proposed a more com-
prehensive framework of complementary-label learning by
introducing the complementary 0-1 loss and its surrogates.
Within this framework, various extensions have been pro-
posed such as biased complementary labels [4] and multi-
ple complementary labels [8]. More recently, complemen-
tary labels have been attracting attention for a variety of
purposes, such as generative-discriminative learning [9] and
noisy data filtering [10].

Even though complementary labels are much easier to
obtain than ordinary labels, they still suffer from annotation
errors during their collection process. For example, a labeler
can mistakenly tie the true class to an instance as a comple-
mentary label, as shown in Fig. 1 (b). In such a case, one
needs to train a classifier from data that contains noisy (in-
correct) complementary labels. In fact, it has been pointed
out that DNNs can easily fit noisy samples, which cases
significant degradation in generalization performance [12],
[13]. This motivates us to develop a complementary-label
learning method that is robust against noise. In this paper,
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within the complementary-label learning framework of
Ishida et al. [5], we derive an unbiased risk estimator for
noisy complementary labels. In our risk estimator, we re-
gard complementary labels as noisy complementary labels
from ordinary labels. We model this noise process with the
noise transition matrix [14]–[20], which describes the prob-
ability of label flipping. Then we model label flipping in
complementary labels as the misspecification of the noise
transition matrix. Our discovery is that it is possible to ob-
tain a statistically consistent classifier even for a misspeci-
fied noise transition matrix if we choose losses that satisfy
certain conditions. Moreover, we relax the derived condi-
tions to allow the use of a wider choice of losses while cer-
tain robustness is still guaranteed. Experiments on bench-
mark datasets demonstrate that losses that satisfy our condi-
tions perform better than those that do not.

2. Background

In this section, we first briefly review ordinary-label
learning, noisy-label learning, and complementary-label
learning. We also give a detailed explanation of noisy
complementary-label learning.

2.1 Ordinary-Label Learning

Let X be the instance space and Y � {1, 2, . . . ,K} be the
label space, the integer K ≥ 2 is the number of classes. We
assume that a pair of random variables (X,Y) ∈ X × Y fol-
lows an unknown probability distribution D. Given a loss
function � : Y × RK → R+, the goal of this problem is to
learn a classifier f : X → RK that minimizes the following
risk:

R( f ; �) � E(X,Y)∼D
[
�(Y, f (X))

]
, (1)

where E(X,Y)∼D denotes the expectation over D. Suppose
that training samples {(xi, yi)}ni=1 drawn independently and
identically from D are available. Then the expectation over
unknownD in Eq. (1) can be approximated by the empirical
average over these samples.

2.2 Noisy-Label Learning with Loss Correction

Next, we formulate the problem of learning from noisy la-
bels. Suppose we observe noisy training samples {(xi, ỹi)}ni=1
drawn independently and identically from a noisy distribu-
tion D̃. We denote (X, Ỹ) ∈ X×Y as a pair of noisy random
variables that follows D̃. In our work, we commonly as-
sume that Ỹ is independent of instance X and depends only
on true label Y , i.e.,

P(Ỹ = j|Y = i, X = x) = P(Ỹ = j|Y = i),

∀x ∈ X,∀i, j ∈ Y, (2)

where P denotes the probability. The above probabilities are
summarized into a transition matrix T, where (T)i j = P(Ỹ =

j|Y = i), ∀i, j ∈ Y. In general, we cannot know the ground-
truth transition matrix, and thus it needs to be estimated. The
estimated transition matrix T̂ can be obtained by learning
the noisy class posterior from noisy samples using DNNs
and exploiting it to calculate T̂ [14]–[20] or by making some
assumptions on D̃ and designing T̂ to be consistent with the
assumptions [3], [5], [6].

The transition matrix plays a key role in building sta-
tistically consistent algorithms. Patrini et al. [15] provided
two procedures with loss correction: backward correction
and forward correction. Suppose T̂ is invertible. Given a
loss function �, the backward corrected loss is defined as

�←(y, f (x)) �
K∑

j=1

(T̂−1)y j�( j, f (x)). (3)

If T̂ = T, it holds that (Patrini et al. [15], Theorem 1)

R̃( f ; �←) = E(X,Ỹ)∼D̃
[
�←(Ỹ , f (X))

]
= E(X,Y)∼D

[
�(Y, f (X))

]
= R( f ; �), ∀ f , (4)

where R̃ denotes the noisy risk. Therefore, we can learn a
minimizer of the original risk by minimizing the noisy risk:

arg min
f

R̃( f ; �←) = arg min
f

R( f ; �). (5)

Although backward correction does not impose any con-
straints on losses and models, it leads to severe overfitting
due to the negative risk issues [5], [6], [21] when the models
are complex like DNNs.

While backward correction directly modifies the val-
ues of a loss function itself, forward correction makes a
change to the model predictions. Let ΔK−1 be the proba-
bility simplex in RK , F : RK → ΔK−1 be an invertible link,
and ϕ : Y × ΔK−1 → R+ be a proper loss that is particularly
suitable for probability estimation [22], [23]. Given a proper
composite loss �(y, f (x)) � ϕ(y, F( f (x))), the forward cor-
rected loss is defined as

�→(y, f (x)) � ϕ(y, T̂	F( f (x))). (6)

If T̂ = T, it holds that (Patrini et al. [15], Theorem 2)

arg min
f

R̃( f ; �→) = arg min
f

R( f ; �). (7)

CCE may be practically employed in forward correction,
since it is a widely used loss that is proper composite.

2.3 Complementary-Label Learning

Lastly, we consider learning from complementary labels.
Suppose that complementary labels are uniformly chosen
from classes other than the true class. This setting, called the
uniform assumption [3], [5], [6], can be justified by properly
designing the distribution, e.g., by forcing the data collect-
ing system to ask labelers if an instance belongs to a ran-
domly obtained class. If the answer is yes, an ordinary label
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is given; otherwise, a uniformly chosen complementary la-
bel is given. LetD be the distribution under this uniform as-
sumption and (X,Y) ∈ X × Y be a pair of random variables
that follows D. Then, the process of generating comple-
mentary labels can be expressed by designing the transition
matrix as follows:

(T)i j = P(Y = j|Y = i) =

{
0 if j = i,
1

K−1 if j � i.
(8)

We call this the complementary matrix. Ishida et al. [5] ob-
tained an unbiased risk estimator by using backward cor-
rection with the complementary matrix, while Yu et al. [4]
used forward correction. Both are among the most promis-
ing methods for learning a statistically consistent classifier
from complementary labeled data.

2.4 Noisy Complementary-Label Learning

As we saw in Sect. 2.2, as long as the transition matrix T̂ is
correctly estimated, a minimizer of the original risk can be
obtained with corrected losses. In contrast, this is not the
case when T̂ � T. In this paper, we mainly study the case of
complementary-label learning with label noise. In Sect. 2.3,
we implicitly assumed that the complementary distribution
D is equal to the actual data distribution D̃, i.e., the uniform
assumption is correct and therefore T = T holds. However,
if complementary labels are affected by class-dependent la-
bel noise, i.e., each complementary label y is flipped to ỹ
with probability P(Ỹ = ỹ|Y = y), T = T no longer holds in
general and thus statistical consistency is lost.

3. Loss Correction with Robust Loss Functions

In this section, we provide two novel conditions on loss
functions so that the discrepancy between true and estimated
transition matrices can be tolerated. We also present the-
oretical analysis on their robustness under noise. In addi-
tion, as a case study, we show that they can be applied to
noisy complementary-label learning by replacing the esti-
mated transition matrix with the complementary matrix.

3.1 Weighted Symmetric Condition

When T̂ is an identity matrix and T is different from T̂, i.e.,
in the situation of ordinary-label learning from corrupted
samples, several studies have focused on the loss function
that is robust to label noise [24]–[28]. One of the criteria
for measuring the robustness of loss functions is noise tol-
erance. Let f ∗ be the global minimizer of R( f ; �). A loss
function � is said to be noise tolerant [24]–[26] if f ∗ is also
the global minimizer of R̃( f ; �). In the following, let us con-
sider loss functions that satisfy this property. A loss function
� is said to be symmetric [25], [26] if it satisfies the following
condition for some constant C > 0:

K∑
i=1

�(i, f (x)) = C, ∀x ∈ X, ∀ f . (9)

It has been proved that the symmetric loss � is noise tolerant
if ∀ j � i, (T)ii > (T)i j =

η
K−1 for η ∈

[
0, K−1

K

)
(Ghosh

et al. [26], Theorem 1). Furthermore, if R( f ∗; �) = 0 and
0 ≤ �(i, f (x)) ≤ C

K−1 , ∀i ∈ Y, � is noise tolerant when (T)ii >
(T)i j, ∀ j � i (Ghosh et al. [26], Theorem 3).

Recall that our goal is to achieve robust learning us-
ing a corrected loss, i.e., to learn f ∗ by minimizing R̃( f ; �←)
or R̃( f ; �→). In our work, we only consider backward cor-
rection. This is because backward correction allows us to
choose arbitrary losses, and thus there is a large potential to
apply existing losses. Taking a cue from Ghosh et al. [26],
let us consider the following condition of � for the back-
ward corrected loss to be symmetric: given a weight vector
w ∈ RK that satisfies wi > 0, ∀i = 1, . . . ,K, and

∑K
i=1 wi = K,

it holds that for some constant C > 0,

K∑
i=1

wi�(i, f (x)) = C, ∀x ∈ X, ∀ f . (10)

Since the weighted sum is a constant, the loss function � is
said to be weighted symmetric. The following lemma shows
the relationship between the weighted sum of the loss and
the sum of the backward corrected loss (see Appx. A.1 for
its proof):

Lemma 1. Let w =
(∑K

i=1(T̂−1)i1, . . . ,
∑K

i=1(T̂−1)iK

)	
be the

weight vector. Suppose w j > 0, ∀ j = 1, . . . ,K, is satisfied
and the loss function � is weighted symmetric given w. Then,
the backward corrected loss �← is symmetric.

Next, we derive conditions for robust learning in the
presence of an estimation error of the transition matrix. Let
f ∗ be the global minimizer of R( f ; �) and f̃ ∗ be the global
minimizer of R̃( f ; �←). In the following theorems, we prove
that the weighted symmetric loss can be used to obtain an
optimal classifier when certain conditions hold for the es-
timation error of the transition matrix (see Appxs. A.2 and
A.3 for their proofs):

Theorem 1. Let w =
(∑K

i=1(T̂−1)i1, . . . ,
∑K

i=1(T̂−1)iK

)	
be the

weight vector. Suppose w j > 0, ∀ j = 1, . . . ,K, is satisfied
and the loss function � is weighted symmetric given w. Also,
suppose ∀ j � i, (T̂−1T)i j =

η
K−1 for η < K−1

K . Then, f ∗ is

also the minimizer of R̃( f ; �←).

Theorem 2. Let w =
(∑K

i=1(T̂−1)i1, . . . ,
∑K

i=1(T̂−1)iK

)	
be the

weight vector. Suppose w j > 0, ∀ j = 1, . . . ,K, is satisfied
and the loss function � is weighted symmetric given w. Also,
suppose w j(TT̂−1)ii > wi(TT̂−1)i j, ∀ j � i. If R( f ∗; �) = 0 and
�(i,u) = 0 implies �( j,u) = supu∈RK �( j, u) (< ∞), ∀ j � i,
∀u ∈ RK, then f ∗ is also the minimizer of R̃( f ; �←).

The main difference between Theorems 1 and 2 is the
relationship between the estimated transition matrix T̂ and
the ground-truth transition matrix T. Theorem 1 imposes
the constraint (T̂−1T)i j =

η
K−1 , ∀ j � i. Note that it is possi-

ble to rewrite this constraint as T = T̂U, where U ∈ RK×K
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is a matrix that takes 1 − η on the diagonals and η
K−1 on

the non-diagonals. From this, we can intuitively see that
this theorem refers to the case where T is “symmetrically”
shifted when viewed from T̂. Theorem 2, on the other hand,
imposes the constraint w j(TT̂−1)ii > wi(TT̂−1)i j, ∀ j � i. If
we further assume T̂ = T on top of this constraint, we can
obtain w j > 0, ∀ j � i, which always holds. With T̂ = T as
the starting point, this theorem shows that it does not mat-
ter if T is shifted “asymmetrically” when viewed from T̂, as
long as the degree of shift is within a certain range. Com-
pared to Theorem 1, Theorem 2 allows more flexibility in
dealing with the discrepancy between matrices. However,
the conditions on the global minimum of the risk and the
loss function might be restrictive in practical cases.

3.2 Relaxation of Weighted Symmetric Condition

Theorems 1 and 2 showed that weighted symmetric losses
can be robust against the estimation error of the transition
matrix. However, it is unclear whether the network param-
eters can be learned stably when using these losses to per-
form empirical risk minimization by a stochastic optimiza-
tion algorithm. Indeed, Zhang et al. [27] demonstrated that
the mean absolute error (MAE), an example of the symmet-
ric loss (although not weighted symmetric in general), suf-
fers from instability in training DNNs because of gradient
saturation. This issue can occur in the weighted symmet-
ric condition as well, and thus more relaxed conditions are
needed so that a wider range of losses can be selected.

Here let us consider the condition that the weighted
sum of losses is bounded, i.e., given a weight vector w ∈ RK

that satisfies wi > 0, ∀i = 1, . . . ,K, and
∑K

i=1 wi = K, it holds
that for some constants C1 > 0, C2 > 0,

C1 ≤
K∑

i=1

wi�(i, f (x)) ≤ C2, ∀x ∈ X, ∀ f . (11)

Under this condition, we can derive the following theorems
(see Appxs. A.4 and A.5 for their proofs):

Theorem 3. Let w =
(∑K

i=1(T̂−1)i1, . . . ,
∑K

i=1(T̂−1)iK

)	
be

the weight vector. Suppose w j > 0, ∀ j = 1, . . . ,K, is
satisfied and the weighted sum of � is bounded as C1 ≤∑K

i=1 wi�(i, f (x)) ≤ C2. Also, suppose ∀ j � i, (T̂−1T)i j =
η

K−1 for η < K−1
K . Then, the following inequality holds:

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←) ≤ |η|
K − 1

(C2 −C1). (12)

Theorem 4. Let w =
(∑K

i=1(T̂−1)i1, . . . ,
∑K

i=1(T̂−1)iK

)	
be

the weight vector. Suppose w j > 0, ∀ j = 1, . . . ,K,
is satisfied and the weighted sum of � is bounded as
C1 ≤ ∑K

i=1 wi�(i, f (x)) ≤ C2. Also, suppose w j(TT̂−1)ii >

wi(TT̂−1)i j, ∀ j � i. If R( f ∗; �) = 0 and �(i,u) = 0 implies
�( j,u) = supu∈RK �( j, u) (< ∞), ∀ j � i, ∀u ∈ RK, then the
following inequality holds:

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←)

≤ ED
[∣∣∣∣∣(TT̂−1)YY

1
wY

∣∣∣∣∣
]

(C2 −C1). (13)

Theorems 3 and 4 show that the difference R̃( f ∗; �←) −
R̃( f̃ ∗; �←) is bounded. As we can see from Ineqs. (12) and
(13), the closer C2 − C1 is to zero, the tighter the bound
becomes.

3.3 Robustness Conditions for Learning from Noisy Com-
plementary Labels

By substituting the complementary matrix for T̂ in the the-
orems introduced earlier, the following corollary can be de-
rived.

Corollary 1 (Noisy complementary-label learning).
Suppose T̂ is the K × K complementary matrix, i.e., T̂ = T.
Then, the following four properties hold:

( i ) Let � be a symmetric loss. Suppose ∀ j � i,
(T)ii < (T)i j =

K−1−η
(K−1)2 for η ∈

[
0, K−1

K

)
. Then, f ∗ is also

the minimizer of R̃( f ; �←).
(ii) Let � be a symmetric loss. Suppose (T)ii < (T)i j,

∀ j � i. If R( f ∗; �) = 0 and �(i,u) = 0 implies �( j,u) =
supu∈RK �( j, u) (< ∞), ∀ j � i, ∀u ∈ RK, then f ∗ is also the
minimizer of R̃( f ; �←).

(iii) Suppose the sum of � is bounded as C1 ≤∑K
i=1 �(i, f (x)) ≤ C2. Also, suppose ∀ j � i, (T)ii < (T)i j =

K−1−η
(K−1)2 for η ∈

[
0, K−1

K

)
. Then, the following inequality holds:

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←) ≤ η

K − 1
(C2 −C1). (14)

(iv) Suppose the sum of � is bounded as C1 ≤∑K
i=1 �(i, f (x)) ≤ C2. Also, suppose (T)ii < (T)i j, ∀ j � i. If

R( f ∗; �) = 0 and �(i,u) = 0 implies �( j,u) = supu∈RK �( j, u)
(<∞), ∀ j � i, ∀u ∈ RK, then the following inequality holds:

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←)

≤ ED [1 − (K − 1)(T)YY ] (C2 −C1). (15)

Given that T̂ is the complementary matrix, i.e., T̂ = T,
we can rewrite the constraints on T as above. In addition,
since it holds that

∑K
i=1(T

−1
)i j = 1, ∀ j = 1, . . . ,K, we can

use symmetric losses instead of weighted symmetric losses.
Ineqs. (14) and (15) are the rewritten forms from Ineqs. (12)
and (13), respectively. The absolute values disappeared in
Ineqs. (14) and (15) because both η and 1− (K −1)(T)YY are
non-negative. Overall, Corollary 1 points out that symmet-
ric losses (or losses with more relaxed conditions) make the
corrected loss less sensitive to label noise in complemen-
tary labels as long as the diagonals of T is smaller than the
non-diagonals, i.e., the proportion of noisy complementary
labels is relatively small.

4. Experiments

In this section, we show some experimental results that
evaluate the performance on noisy complementary-label
learning.
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4.1 Experimental Setup

Datasets and Network Architectures. We used four
well-known benchmark datasets: MNIST [29], Fashion-
MNIST [30], Kuzushiji-MNIST [31], and CIFAR-10 [11].
For training, we used only noisy training samples that were
artificially corrupted by T. The test data were not affected
by label noise and were all assumed to have true labels. For
MNIST, Fashion-MNIST, and Kuzushiji-MNIST, a multi-
layer perceptron (MLP) model (d − 500 − K) was used. For
CIFAR-10, we used the network architecture that contains 4
convolutional layers with 32 filters whose filter size is 3× 3.
All the convolutional layers were followed by 2 × 2 max
pooling layers, except for the last convolutional layer, which
was followed by a global average pooling layer [32]. Batch
normalization [33] was adopted right after each convolution,
followed by the rectified linear unit (ReLU) activation.

Robust Loss Functions. We used five different loss func-
tions in the backward correction procedure. All loss func-
tions receive the softmax outputs of the model. Let Fi(u) =
exp(vi)/

∑K
j=1 exp(v j) be the softmax function. The defini-

tions and parameter settings of each loss function are listed
as follows.

• Categorical Cross Entropy (CCE):

�cce(y, f (x)) = − log(Fy( f (x))). (16)

• Mean Absolute Error (MAE) [26]:

�mae(y, f (x)) = 2 − 2Fy( f (x)). (17)

• Weighted Mean Absolute Error (WMAE): Let w be the
weight vector. Suppose wi > 0, ∀i = 1, . . . ,K, and∑K

i=1 wi = K. WMAE is defined as follows:

�wmae(y, f (x)) =
1
wy

(2 − 2Fy( f (x))). (18)

In all experiments, we set wy =
∑K

i=1(T̂−1)iy, ∀y =
1, . . . ,K.

• Generalized Cross Entropy (GCE) [27]:

�gce(y, f (x)) =
(1 − Fy( f (x))q)

q
, (19)

where q ∈ (0, 1] is a hyper-parameter. In all experi-
ments, we set q = 0.7.

• Symmetric Cross Entropy (SL) [28]: SL is composed
by adding an extra term called reverse cross entropy
(RCE) to CCE. RCE is defined as

�rce(y, f (x)) = −
∑
i�y

AFi( f (x)), (20)

where A < 0. Using this, the SL loss is defined as

�sl(y, f (x)) = α�cce(y, f (x)) + β�rce(y, f (x)), (21)

where α and β are hyper-parameters. In all experi-
ments, we set A = −4. For MNIST, Fashion-MNIST,

Table 1 Summary of loss functions and their properties. Robustness to
noise is determined by whether each loss can have the property of absorbing
the estimation error of the transition matrix compared to CCE. ∗ indicates
that it satisfies the condition only if the weights are all 1.

Losses (10) (11) Upper-bounded Robust to noise?
CCE × × × ×
MAE ∗ � � �
WMAE � � � �
GCE × � � �
SL × × × �

and Kuzushiji-MNIST, we set α = 0.01, β = 1.0. For
CIFAR-10, we set α = 0.1, β = 1.0.

Since CCE and SL are not upper-bounded, they do not sat-
isfy both the weighted symmetric condition (10) and the
more relaxed condition (11). Nevertheless, the RCE term
satisfies (11), and thus SL can be more robust than the orig-
inal CCE. MAE and GCE satisfy (11). WMAE, which can
be regarded as an extension of MAE, satisfies both (10) and
(11). Table 1 summarizes the properties of each loss func-
tion. The bounds for their weighted sums are provided in
Appx. B.

Noise Settings. Suppose T = T̂U, where U is the matrix that
compensates for the discrepancy between T̂ and T. Then,
we can adjust the noise setting by determining the matrix U
appropriately. Let η be a noise rate. In the experiments, the
following matrices were used.

• Symmetric noise setting:

U(η) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − η η

K−1
1 − η

. . .
η

K−1 1 − η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (22)

• Asymmetric noise setting:

U(η) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 − η 0 0 0 0 η 0 0
0 0 0 1 − η 0 0 0 0 η 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 − η η 0 0 0
0 0 0 0 0 η 1 − η 0 0 0
0 η 0 0 0 0 0 1 − η 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Implementation with Gradient Ascent.
Compared with forward correction, backward correc-

tion has the benefit of having less constraints on losses and
models. However, when calculated with limited data and
flexible models such as DNNs, the backward corrected risk
can go negative [5], [6], [21] (which does not occur with
forward correction), and thus may cause an overfitting is-
sue. This phenomenon occurs because the matrix T̂−1 can
contain nagative elements, i.e., in training, nagative terms
in (3) are well below zero and non-negative terms approach
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Fig. 2 Experimental results for symmetric noise setting with different noise rates (η = 0.0, 0.2, 0.4,
0.6). Dark and light colors show the mean accuracy and the standard deviation of 4 trials, respectively.

zero. Similar issues have occurred in other problem settings
such as positive-unlabeled learning (e.g., Kiryo et al. [35])
and unlabeled-unlabeled learning (e.g., Lu et al. [36]), all
of which rewrite the original risk in different ways. Fur-
thermore, it has been pointed out that the degree of over-
fitting differs depending on whether the losses are bounded
or not [5], [8], [35], making a fair comparison across losses
difficult. To avoid these issues, we perform an optimiza-
tion using the gradient ascent technique, an extention of the
method proposed by Ishida et al. [5]. Let π̃ j � P(Ỹ = j) and
P̃ j � P(X|Ỹ = j). By using them, we can rewrite R̃( f ; �←) as

R̃( f ; �←) =
K∑

k=1

K∑
j=1

π̃ j(T̂−1) jkEP̃ j

[
�(k, f (X))

]
︸�������������������������������︷︷�������������������������������︸

(A)

. (24)

Note that if T̂ = T, it is also possible to rewrite (A) as
ED

[
1[Y=k]�(k, f (X))

]
(≥ 0), where 1[·] is the indicator func-

tion. Since (A) is non-negative when T̂ is correctly esti-
mated, the empirical version of (A) should not be much less
than zero during training. As an idea to make the empiri-
cal risk non-negative, when an estimate of (A) is below a
threshold, we perform a gradient ascent instead of the usual
gradient descent. The procedure of the stochastic optimiza-
tion with mini-batches is shown in detail in Algorithm 1. In
all experiments, we fixed β = 0 and γ = 1 for simplicity.
Adam [34] was used for optimization and the classifier was
trained for 300 epochs with mini-batch size of 256.

4.2 Results

Test Accuracy for Each Epoch. We set T̂ to the comple-

Algorithm 1 Learning with backward corrected loss and
gradient ascent (an extension of Algorithm 1 in Ishida
et al. [5])
Input: noisy labeled training data {Xk}Kk=1, where Xk denotes the samples

noisy labeled as class k;
Output: model parameter θ for f (x; θ)
1: LetA be an external SGD-like stochastic optimization algorithm such

as [34];
2: while no stopping criterion has been met do
3: Shuffle {X j}Kj=1 into B mini-batches;
4: for b = 1 to B do
5: Denote {Xb

j } as the b-th mini-batch for noisy class j;

6: Denote rb
k (θ) =

∑K
j=1 π̃ j(T̂−1) jkÊP̃ j

[
�(k, f );Xb

j

]
;

7: if mink[rb
1(θ), . . . , rb

k (θ), . . . , rb
K (θ)] > −β then

8: Denote Lb(θ) =
∑K

k=1 rb
k (θ);

9: Set gradient ∇θLb(θ);
10: Update θ byA with its current step size ε;
11: else
12: Denote L

b
(θ) =

∑K
k=1 min{−β, rb

k (θ)};
13: Set gradient −∇θLb

(θ);
14: Update θ byA with a discounted step size γε;
15: end if
16: end for
17: end while

mentary matrix T and demonstrated noisy complementary-
label learning with symmetric noise. The models were
trained with CCE and MAE on benchmark datasets follow-
ing Algorithm 1 and the learning rate was set to 10−4. Note
that the roles of MAE and WMAE are exactly the same be-

cause all weights w j =
∑K

i=1(T
−1

)i j are 1 in this problem
setting. Figure 2 shows the mean and standard deviation of
the test accuracy for 4 trials on test data. We can see from
Fig. 2 that MAE works significantly better than CCE under
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Table 2 Mean test accuracy (4 trials) of different methods on benchmark datasets under symmetric
and asymmetric noise settings. All methods use the backward correction by complementary matrix
together with gradient ascent technique, and differ only in the loss function. Bold face denotes the best
and comparable methods according to the paired t-test at the significance level 5%.

Symmetric Noise Asymmetric Noise
Datasets Losses Noise Rate η Noise Rate η

0.0 0.2 0.6 0.2 0.4

CCE 89.10 ± 0.36 85.65 ± 1.15 72.31 ± 3.37 84.06 ± 3.17 75.11 ± 0.79

MNIST
MAE 93.05 ± 0.39 90.36 ± 0.82 80.24 ± 0.93 92.02 ± 0.50 86.41 ± 1.74
GCE 92.83 ± 1.03 90.83 ± 0.81 78.01 ± 1.86 91.80 ± 1.05 86.02 ± 1.31
SL 91.56 ± 0.50 89.34 ± 0.53 81.08 ± 0.75 89.81 ± 1.51 86.82 ± 1.26

CCE 79.77 ± 0.68 77.95 ± 1.13 68.69 ± 1.10 78.06 ± 0.51 72.75 ± 1.91
Fashion MAE 81.66 ± 1.13 81.12 ± 0.34 73.05 ± 1.90 81.58 ± 0.38 77.56 ± 0.74
MNIST GCE 81.50 ± 0.87 80.53 ± 0.35 70.45 ± 1.35 81.45 ± 0.52 75.42 ± 1.72

SL 81.75 ± 0.49 80.31 ± 0.74 67.06 ± 2.54 80.96 ± 0.85 78.73 ± 1.65

CCE 61.59 ± 2.48 57.88 ± 0.94 40.95 ± 4.55 59.48 ± 4.00 52.25 ± 2.89
Kuzushiji MAE 70.53 ± 1.37 64.46 ± 1.70 48.62 ± 2.36 61.02 ± 3.28 59.74 ± 2.44
MNIST GCE 63.91 ± 2.70 64.60 ± 1.52 41.31 ± 5.01 63.50 ± 3.08 58.46 ± 2.68

SL 70.74 ± 2.97 65.89 ± 2.49 46.54 ± 6.67 68.41 ± 1.25 59.95 ± 2.00

CCE 44.78 ± 1.62 39.11 ± 1.62 17.29 ± 1.18 40.58 ± 2.96 33.28 ± 2.68

CIFAR-10
MAE 52.06 ± 0.94 45.01 ± 1.06 23.02 ± 4.97 48.53 ± 0.83 40.12 ± 2.02
GCE 50.52 ± 1.49 43.62 ± 0.81 25.91 ± 3.11 46.35 ± 1.17 39.81 ± 2.34
SL 52.04 ± 0.27 44.23 ± 1.63 18.26 ± 0.93 48.41 ± 1.11 41.78 ± 2.35

Table 3 Mean test accuracy (4 trials) of different methods on benchmark datasets under symmetric
and asymmetric noise settings. All methods use the backward correction by the matrix given in (25)
together with gradient ascent technique, and differ only in the loss function. Bold face denotes the best
and comparable methods according to the paired t-test at the significance level 5%.

Symmetric Noise Asymmetric Noise
Datasets Losses Noise Rate η Noise Rate η

0.0 0.2 0.6 0.2 0.4

CCE 84.27 ± 0.48 80.31 ± 2.18 60.26 ± 4.67 77.86 ± 2.70 64.06 ± 4.33
MNIST MAE 91.21 ± 0.07 86.80 ± 1.28 70.73 ± 5.67 89.40 ± 1.05 82.01 ± 2.40

WMAE 91.66 ± 0.68 88.81 ± 0.84 76.42 ± 1.69 89.54 ± 0.89 85.83 ± 1.36

Fashion
CCE 72.11 ± 3.11 72.75 ± 1.49 62.68 ± 1.34 74.38 ± 2.37 64.95 ± 3.20

MNIST
MAE 80.62 ± 1.06 78.74 ± 0.83 70.35 ± 1.20 80.10 ± 0.50 75.71 ± 2.33

WMAE 81.59 ± 0.24 80.06 ± 0.59 71.24 ± 2.31 80.34 ± 0.49 76.47 ± 1.08

Kuzushiji
CCE 54.51 ± 3.13 46.39 ± 2.66 38.11 ± 2.84 47.00 ± 2.20 41.97 ± 1.77

MNIST
MAE 58.15 ± 0.54 55.43 ± 2.33 44.90 ± 0.72 58.40 ± 1.54 57.77 ± 1.57

WMAE 57.69 ± 2.01 56.23 ± 3.71 45.13 ± 2.52 59.23 ± 1.25 57.64 ± 1.46

CCE 39.75 ± 0.81 32.46 ± 1.49 16.14 ± 2.50 34.45 ± 4.57 27.07 ± 3.31
CIFAR-10 MAE 46.64 ± 1.60 42.22 ± 1.47 20.59 ± 1.45 44.74 ± 1.51 37.37 ± 2.02

WMAE 50.19 ± 1.35 41.01 ± 1.39 21.43 ± 4.44 45.27 ± 1.37 39.56 ± 1.30

symmetric noise. In the case of MNIST, Fashion-MNIST,
and Kuzushiji-MNIST, test accuracies of CCE and MAE
under noise-free conditions are almost the same. Despite
this, as the noise rate increases, CCE becomes more sensi-
tive to noise than MAE. These results support the properties
derived in the previous section (especially Corollary 1). In
the case of CIFAR-10, CCE suffers from overfitting even
in noise-free situations due to the lack of an upper bound.
As a result, MAE provides better performance, even though
it is known to give worse results for DNNs on challenging
datasets [27].

Performance Comparison. We first set T̂ to the comple-
mentary matrix T and compared the loss functions intro-
duced in Sect. 4.1. During the training, 10% of the origi-
nal training data was reserved for validation. The models
were trained following Algorithm 1 and the learning rate

was selected from {10−2, 10−3, . . . , 10−6} so that the vali-
dation loss is minimized. Table 2 shows the experimental
results for different loss functions on MNIST, Fashion-
MNIST, Kuzushiji-MNIST, and CIFAR-10. MAE, GCE and
SL performed better than CCE under both symmetric noise
and asymmetric noise, which is consistent with our theoreti-
cal analysis. Overall, MAE in particular seems to work bet-
ter than other losses. Note that our experiments exploy op-
timization using the gradient ascent technique for the back-
ward corrected losses, i.e., the theoretical guarantees derived
in the previous section might be missing. As an ablation
study, we trained them without gradient ascent. Although
GCE and SL still outperformed CCE, performance degra-
dation was observed especially in CCE and MAE. Detailed
results are shown in Appx. C.1. We also tried to apply for-
ward correction for these losses. Detailed results are shown
in Appx. C.2. In the case of forward correction, the bene-
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fits of learning with the losses other than CCE seems to be
small, especially under asymmetric noise.

Additionally, in order to achieve a comparison between
WMAE and MAE, we conducted experiments using a ma-
trix other than the complementary matrix. We set T̂ as
follows:

T̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.01 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
0.11 0.00 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11
0.11 0.11 0.02 0.11 0.11 0.11 0.10 0.11 0.11 0.11
0.11 0.11 0.12 0.00 0.11 0.11 0.11 0.11 0.11 0.11
0.11 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11 0.11
0.11 0.11 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11
0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.11 0.12 0.11
0.11 0.11 0.11 0.11 0.09 0.11 0.11 0.03 0.11 0.11
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.01 0.11
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

T̂ can be seen as a complementary matrix with some noise.
The weight vector can be calculated as

w =

⎛⎜⎜⎜⎜⎜⎝ K∑
i=1

(T̂−1)i1, . . . ,

K∑
i=1

(T̂−1)iK

⎞⎟⎟⎟⎟⎟⎠
	

= (1.000, 0.909, 1.221, 0.992, 0.750,

1.000, 0.798, 1.250, 1.080, 1.000)	, (26)

and therefore we can construct WMAE separately from
MAE. The experimental results are shown in Table 3. From
the results, we can see that WMAE and MAE are both su-
perior for many datasets, and that WMAE performs slightly
better than MAE.

5. Conclusion

In this paper, we discussed the problem setting where com-
plementary labels may be affected by label noise. We chose
backward correction as the learning algorithm for comple-
mentary labels and showed that noise in complementary la-
bels can be interpreted as an estimation error of the tran-
sition matrix. To mitigate the adverse effects of it, we ob-
tained noise robustness by selecting losses which satisfy the
weighted symmetric condition or a more relaxed condition.
It was experimentally shown that losses that satisfy our con-
ditions work better than those that do not.
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Appendix A: Proofs

A.1 Proof of Lemma 1

Proof. Using
∑K

k=1(T̂) jk = 1, ∀ j = 1, . . . ,K, we obtain

K∑
j=1

w j =

K∑
j=1

K∑
i=1

(T̂−1)i j =

K∑
j=1

K∑
i=1

(T̂−1)i j

K∑
k=1

(T̂) jk

=

K∑
i=1

K∑
k=1

(IK)ik = K,

where IK is a K × K identity matrix. In addition,

K∑
i=1

wi�(i, f (x)) =
K∑

i=1

K∑
j=1

(T̂−1) ji�(i, f (x))

=

K∑
j=1

�←( j, f (x)).

Thus, if � satisfies the definition of weighted symmetric, i.e.,
the weighted sum is a constant, then �← becomes symmetric.

�

A.2 Proof of Theorem 1

Proof. Let C be the weighted sum of �. Then, we have

R̃( f ; �←)=ED̃
[
�←(Ỹ , f (X))

]
=EDEỸ |Y

[
�←(Ỹ , f (X))

]
= ED

⎡⎢⎢⎢⎢⎢⎣ K∑
i=1

(T)Yi�
←(i, f (X))

⎤⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j

K∑
i=1

(T̂−1T) ji�
←(i, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j

{
(1 − η)�←( j, f (X))

+
η

K − 1

∑
i� j

�←(i, f (X))
}⎤⎥⎥⎥⎥⎥⎥⎦

= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j

{
(1 − η)�←( j, f (X))

+
η

K − 1
(
C − �←( j, f (X))

)}]

= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j

{(
1 − Kη

K − 1

)
�←( j, f (X)) +

ηC
K − 1

}⎤⎥⎥⎥⎥⎥⎥⎦
=

(
1 − Kη

K − 1

)
ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j�
←( j, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦ + ηC
K − 1

=

(
1 − Kη

K − 1

)
ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(T̂)Y j

K∑
i=1

(T̂−1) ji�(i, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
+
ηC

K − 1

=

(
1 − Kη

K − 1

)
ED

⎡⎢⎢⎢⎢⎢⎣ K∑
i=1

(IK)Yi�(i, f (X))

⎤⎥⎥⎥⎥⎥⎦ + ηC
K − 1

=

(
1 − Kη

K − 1

)
R( f ; �) +

ηC
K − 1

,

where the fifth equality holds because (T̂−1T) ji =
η

K−1 , ∀i �
j and

∑K
i=1(T̂−1T) ji = 1, ∀ j = 1, . . . ,K; the sixth equality

holds because of Lemma 1. Thus, for any f ,

R̃( f ∗; �←) − R̃( f ; �←)

=

(
1 − Kη

K − 1

)
(R( f ∗; �) − R( f ; �)) ≤ 0,

because η < K−1
K and f ∗ is the minimizer of R( f ; �). This

proves f ∗ is also the minimizer of R̃( f ; �←). �

A.3 Proof of Theorem 2

Proof. Let C be the weighted sum of �. Then, we have

http://dx.doi.org/10.1109/tsmcb.2012.2223460
http://dx.doi.org/10.1016/j.neucom.2014.09.081
http://dx.doi.org/10.1109/iccv.2019.00041
http://dx.doi.org/10.1109/5.726791
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R̃( f ; �←)=ED̃
[
�←(Ỹ , f (X))

]
=EDEỸ |Y

[
�←(Ỹ , f (X))

]
= ED

⎡⎢⎢⎢⎢⎢⎣ K∑
i=1

(T)Yi�
←(i, f (X))

⎤⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

i=1

(T)Yi

K∑
j=1

(T̂−1)i j�( j, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣
K∑

j=1

(TT̂−1)Y j�( j, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣(TT̂−1)YY�(Y, f (X)) +
∑
j�Y

(TT̂−1)Y j�( j, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
= ED

⎡⎢⎢⎢⎢⎢⎢⎣(TT̂−1)YY
1
wY

⎛⎜⎜⎜⎜⎜⎜⎝C −∑
j�Y

w j�( j, f (X))

⎞⎟⎟⎟⎟⎟⎟⎠
+
∑
j�Y

(TT̂−1)Y j�( j, f (X))

⎤⎥⎥⎥⎥⎥⎥⎦
= ED

[
C
wY

(TT̂−1)YY

−
∑
j�Y

{
(TT̂−1)YY

w j

wY
− (TT̂−1)Y j

}
�( j, f (X))

]
.

As f̃ ∗ is the minimizer of R̃( f ; �←), R̃( f̃ ∗; �←) −
R̃( f ∗; �←) ≤ 0. Therefore from the above equality, we have

ED
[
−
∑
j�Y

{
(TT̂−1)YY

w j

wY
− (TT̂−1)Y j

}
(
�( j, f̃ ∗(X)) − �( j, f ∗(X))

)]
≤ 0.

Since we are given R( f ∗; �) = 0, we have �(Y, f ∗(X)) = 0.
From this and the constraint on � in the theorem, we have
�( j, f ∗(X)) = supu∈RK �( j, u) (< ∞), ∀ j � Y . Moreover, since
we are given w j(TT̂−1)ii > wi(TT̂−1)i j, ∀ j � i, the above
inequality holds iff �( j, f̃ ∗(X)) = supu∈RK �( j, u) (< ∞), ∀ j �
Y , which means R̃( f̃ ∗; �←) = R̃( f ∗; �←). This proves f ∗ is
also the minimizer of R̃( f ; �←). �

A.4 Proof of Theorem 3

Proof. First, we consider the case where 0 ≤ η < K−1
K . In a

similar way to the proof of Theorem 1, it can be shown that

R̃( f ; �←) =
(
1 − Kη

K − 1

)
R( f ; �)

+
η

K − 1
ED

⎡⎢⎢⎢⎢⎢⎣ K∑
i=1

�←(i, f (X))

⎤⎥⎥⎥⎥⎥⎦ .
Using C1 ≤ ∑K

i=1 �
←(i, f (X)) ≤ C2, we obtain(

1 − Kη
K − 1

)
R( f ; �) +

η

K − 1
C1 ≤ R̃( f ; �←)

≤
(
1 − Kη

K − 1

)
R( f ; �) +

η

K − 1
C2.

Therefore from the above inequality, we have

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←)

≤ η

K −1
(C2−C1)+

(
1− Kη

K − 1

) (
R( f ∗; �)−R( f̃ ∗; �)

)
≤ η

K −1
(C2−C1),

because η < K−1
K and f ∗ is the minimizer of R( f ; �). Simi-

larly, when η < 0, we can prove that

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←) ≤ − η

K − 1
(C2 −C1).

Thus, for η < K−1
K , (0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←) ≤ |η|

K−1 (C2 −
C1). �

A.5 Proof of Theorem 4

Proof. In a similar way to the proof of Theorem 2, it can be
shown that

R̃( f ; �←) = ED

⎡⎢⎢⎢⎢⎢⎣(TT̂−1)YY
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wY
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Using C1 ≤ ∑K

i=1 wi�(i, f (X)) ≤ C2, we obtain
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and
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+C2ED
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Therefore from the above inequalities, we have

(0 ≤) R̃( f ∗; �←) − R̃( f̃ ∗; �←)
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Table A· 1 Mean test accuracy (4 trials) of different methods on benchmark datasets under symmetric
and asymmetric noise settings. All methods use the backward correction by complementary matrix
without gradient ascent techniques, and differ only in the loss function. Bold face denotes the best and
comparable methods according to the paired t-test at the significance level 5%.

Symmetric Noise Asymmetric Noise
Datasets Losses Noise Rate η Noise Rate η

0.0 0.2 0.6 0.2 0.4

CCE 29.95 ± 10.28 77.61 ± 2.22 64.26 ± 8.74 71.39 ± 2.56 55.25 ± 1.20

MNIST
MAE 94.22 ± 0.46 89.99 ± 0.68 70.86 ± 4.38 71.00 ± 10.96 30.50 ± 3.44
GCE 92.34 ± 0.17 89.89 ± 0.37 74.13 ± 1.79 84.75 ± 3.38 67.57 ± 0.92
SL 93.20 ± 0.23 90.52 ± 0.74 69.91 ± 4.31 88.68 ± 1.50 68.38 ± 0.98

CCE 59.79 ± 12.85 68.55 ± 1.26 64.81 ± 7.64 51.63 ± 8.14 48.05 ± 3.47
Fashion MAE 83.24 ± 0.53 75.91 ± 3.63 61.56 ± 4.45 53.77 ± 1.45 19.29 ± 9.21
MNIST GCE 82.21 ± 0.45 80.92 ± 0.53 72.18 ± 3.12 71.00 ± 6.34 52.10 ± 2.39

SL 82.48 ± 0.58 80.75 ± 1.32 65.94 ± 3.02 77.70 ± 3.80 58.71 ± 1.74

CCE 57.25 ± 1.40 55.02 ± 1.53 41.39 ± 3.16 48.52 ± 3.14 32.77 ± 1.23
Kuzushiji MAE 64.88 ± 2.95 60.23 ± 0.80 37.59 ± 5.25 40.08 ± 3.44 27.10 ± 2.65
MNIST GCE 69.52 ± 1.01 61.84 ± 2.03 46.99 ± 3.44 58.98 ± 1.66 44.12 ± 1.17

SL 71.34 ± 0.95 65.57 ± 0.51 43.89 ± 2.56 61.52 ± 3.91 47.13 ± 2.66

CCE 36.90 ± 1.44 28.15 ± 2.44 21.14 ± 2.91 33.19 ± 0.93 15.56 ± 2.66

CIFAR-10
MAE 41.19 ± 2.34 30.93 ± 4.82 17.02 ± 1.92 18.67 ± 4.05 13.72 ± 1.49
GCE 49.03 ± 1.31 42.77 ± 1.63 19.09 ± 3.55 32.59 ± 1.10 19.74 ± 0.84
SL 48.57 ± 0.33 41.60 ± 0.51 22.26 ± 0.25 27.82 ± 2.64 20.22 ± 1.75

≤ ED
[
max

{
0, (TT̂−1)YY

1
wY

}]
(C2 −C1)

+ ED
[
min

{
0, (TT̂−1)YY

1
wY
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+ ED

⎡⎢⎢⎢⎢⎢⎢⎣∑
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(
�( j, f̃ ∗(X)) − �( j, f ∗(X))
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= ED
[∣∣∣∣∣(TT̂−1)YY

1
wY

∣∣∣∣∣
]

(C2 −C1)

+ ED

⎡⎢⎢⎢⎢⎢⎢⎣∑
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w j

wY
− (TT̂−1)Y j

}
(
�( j, f̃ ∗(X)) − �( j, f ∗(X))
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.

Since we are given R( f ∗; �) = 0, we have �(Y, f ∗(X)) = 0.
From this and the constraint on � in the theorem, we have
�( j, f ∗(X)) = supu∈RK �( j, u) (< ∞), ∀ j � Y . Moreover, since
we are given w j(TT̂−1)ii > wi(TT̂−1)i j, ∀ j � i, we have (0 ≤)

R̃( f ∗; �←) − R̃( f̃ ∗; �←) ≤ ED
[∣∣∣∣(TT̂−1)YY

1
wY

∣∣∣∣] (C2 −C1). �

Appendix B: Bounds for Weighted Sums of Losses

We derive the bounds for the weighted sums of WMAE,
MAE, and GCE.

• WMAE: Let w be the weight vector. Suppose wi > 0,
∀i = 1, . . . , K, and

∑K
i=1 wi = K. Then, because∑K

i=1 Fi( f (x)) = 1, we have

K∑
i=1

wi�wmae(i, f (x)) =
K∑

i=1

wi · 1
wi

(2 − 2Fi( f (x)))

=

K∑
i=1

(2 − 2Fi( f (x)) = 2K − 2.

• MAE: We have

K∑
i=1

wi�mae(i, f (x)) =
K∑

i=1

wi(2 − 2Fi( f (x)))

= 2

⎛⎜⎜⎜⎜⎜⎝K −
K∑

i=1

wiFi( f (x))

⎞⎟⎟⎟⎟⎟⎠ ,
and thus the weighted sum is bounded as

2(K −max
i∈Y
wi) ≤

K∑
i=1

wi�mae(i, f (x)) ≤ 2(K −min
i∈Y
wi).

• GCE: For the upper bound, we have

K∑
i=1

wi�gce(i, f (x)) ≤
K∑

i=1

wi
(1 − Fi( f (x)))

q

=
K −∑K

i=1 wiFi( f (x))

q

≤ K −mini∈Y wi

q
,

where the first inequality holds because (1 −
Fi( f (x))q) ≤ (1 − Fi( f (x))) for q ∈ (0, 1]. Moreover,
bacause of Jensen’s inequality, the lower bound is
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Table A· 2 Mean test accuracy (4 trials) of different methods on benchmark datasets under symmetric
and asymmetric noise settings. All methods use the forward correction by complementary matrix, and
differ only in the loss function. Bold face denotes the best and comparable methods according to the
paired t-test at the significance level 5%.

Symmetric Noise Asymmetric Noise
Datasets Losses Noise Rate η Noise Rate η

0.0 0.2 0.6 0.2 0.4

CCE 93.74 ± 0.08 88.81 ± 0.37 73.55 ± 2.20 88.49 ± 2.11 69.03 ± 1.76

MNIST
MAE 94.18 ± 0.23 89.89 ± 1.42 68.94 ± 9.70 65.92 ± 7.06 29.68 ± 4.32
GCE 94.36 ± 0.16 90.72 ± 0.96 75.50 ± 3.18 82.57 ± 0.05 51.15 ± 5.03
SL 94.26 ± 0.35 90.87 ± 0.75 77.95 ± 4.27 90.07 ± 0.59 57.68 ± 3.95

CCE 83.27 ± 0.34 79.40 ± 0.51 66.59 ± 0.34 79.17 ± 1.29 49.38 ± 4.76
Fashion MAE 80.27 ± 6.21 80.32 ± 0.50 63.74 ± 5.55 54.60 ± 2.41 26.86 ± 8.24
MNIST GCE 83.56 ± 0.21 81.30 ± 0.68 67.93 ± 2.25 73.79 ± 4.63 30.43 ± 6.22

SL 83.50 ± 0.09 80.79 ± 1.15 64.79 ± 4.68 51.12 ± 3.44 23.06 ± 4.50

CCE 71.17 ± 1.79 60.79 ± 1.32 45.40 ± 2.04 64.83 ± 2.09 39.07 ± 1.71
Kuzushiji MAE 66.49 ± 1.41 57.69 ± 2.90 40.50 ± 1.81 30.97 ± 4.20 20.81 ± 5.66
MNIST GCE 67.68 ± 1.78 60.14 ± 0.45 47.64 ± 0.97 59.31 ± 0.82 28.30 ± 0.86

SL 63.98 ± 3.53 60.07 ± 3.06 45.82 ± 2.59 63.71 ± 6.76 34.44 ± 4.66

CCE 52.04 ± 0.41 42.12 ± 1.57 21.79 ± 3.19 36.38 ± 1.96 18.83 ± 2.08

CIFAR-10
MAE 40.44 ± 2.58 32.38 ± 3.02 18.72 ± 2.43 18.77 ± 2.66 12.78 ± 0.83
GCE 50.88 ± 1.73 44.87 ± 0.82 20.83 ± 7.50 27.81 ± 3.59 14.00 ± 1.13
SL 51.31 ± 1.36 44.20 ± 2.16 22.18 ± 2.56 24.56 ± 2.06 13, 70 ± 1.98

K∑
i=1

wi�gce(i, f (x)) =
K
q

K∑
i=1

wi

K
(1 − Fi( f (x))q)

≥ K
q

⎧⎪⎪⎨⎪⎪⎩1 −
⎛⎜⎜⎜⎜⎜⎝ K∑

i=1

wi

K
Fi( f (x))

⎞⎟⎟⎟⎟⎟⎠
q⎫⎪⎪⎬⎪⎪⎭

≥ K − K(1−q)(maxi∈Y wi)q

q
.

Appendix C: Additional Information of Experiments

Here we report the results of additional experiments.

C.1 Backward Correction without Gradient Ascent Tech-
niques

We applied backward correction to each loss and trained the
models without using gradient ascent techniques. The de-
tailed experimental results are shown in Table A· 1. From
the results, we can see that GCE and SL outperformed CCE
under noise. However, when compared to the results in Ta-
ble 2, the overall classification performance is low. In par-
ticular, CCE and MAE seem to be greatly affected. Since
CCE is not upper-bounded, the empirical risk is not lower-
bounded and was consequently most plagued by the nega-
tive risk issues [5], [6], [21]. On the other hand, MAE did
not work well despite having an upper bound. This might
be because MAE can perform poorly with DNNs and chal-
lenging datasets due to gradient saturation [27]. This means
that this problem did not occur when the parameters were
optimized with the gradient ascent technique.

C.2 Forward Correction

The detailed experimental results for forward correction are

shown in Table A· 2. From the results, we can see that the
losses other than CCE did not work well, especially under
asymmetric noise.
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