
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022
105

PAPER

Firewall Traversal Method by Pseudo-TCP Encapsulation

Keigo TAGA†∗, Nonmember, Junjun ZHENG†, Koichi MOURI†, Shoichi SAITO††,
and Eiji TAKIMOTO†††a), Members

SUMMARY A wide range of communication protocols has recently
been developed to address service diversification. At the same time, fire-
walls (FWs) are installed at the boundaries between internal networks, such
as those owned by companies and homes, and the Internet. In general, FWs
are configured as whitelists and release only the port corresponding to the
service to be used and block communication from other ports. In a previous
study, we proposed a method for traversing a FW and enabling communi-
cation by inserting a pseudo-transmission control protocol (TCP) header
imitating HTTPS into a packet, which normally would be blocked by the
FW. In that study, we confirmed the efficiency of the proposed method via
its implementation and experiments. Even though common encapsulating
techniques work on end-nodes, the previous implementation worked on the
relay node assuming a router. Further, middleboxes, which overwrite L3
and L4 headers on the Internet, need to be taken into consideration. Ac-
cordingly, we re-implemented the proposed method into an end-node and
added a feature countering a typical middlebox, i.e., NAPT, into our im-
plementation. In this paper, we describe the functional confirmation and
performance evaluations of both versions of the proposed method.
key words: QUIC, encapsulation

1. Introduction

A wide range of communication protocols has recently been
developed to address service diversification. Improvements
in quality of service and communication performance can be
expected when using these communication protocols. At the
same time, firewalls (FWs) are installed at network bound-
aries to improve security. FWs filter packets based on their
settings. To ensure security, FWs are set in a whitelist for-
mat that allows only the minimum amount of communica-
tion to be used by the nodes under the FW and blocks all
other communication. Therefore, many FWs allow commu-
nication only to minimum protocols that are widely used in
the Internet, such as Hypertext Transfer Protocol (HTTP),
HTTP Secure (HTTPS), and Domain Name System (DNS).
Security is ensured by the FW; however, there is a problem
in that communication with developed protocols is blocked
by the FW. In other words, even if a service provider at-

Manuscript received March 6, 2021.
Manuscript revised August 2, 2021.
Manuscript publicized September 29, 2021.
†The authors are with the Ritsumeikan University, Kusatsu-shi,

525–8577 Japan.
††The author is with the Nagoya Institute of Technorolgy,

Nagoya-shi, 466–8555 Japan.
†††The author is with the Hiroshima Institute of Technology,

Hiroshima-shi, 731–5193 Japan.
∗Presently, the author is with the NDR Co., Ltd.

a) E-mail: e.takimoto.k5@it-hiroshima.ac.jp
DOI: 10.1587/transinf.2021EDP7050

tempts to deploy a service using a newly developed protocol
and the end-terminal supports the new protocol, a situation
may occur in which the new protocol cannot be used due to
the FW. In other words, an FW may become a barrier pre-
venting the spread of new protocols and improvements in
service quality. In such a case, this problem can be solved
by changing the FW settings. However, not all users have
the authority to change FW settings. In addition, changing
the FW configuration is not preferable from the viewpoint
of network management. In particular, from the viewpoint
of security, it is necessary to carefully determine protocols
that cannot manage the state using a user diagram protocol
(UDP) and protocols that dynamically change the port to be
used.

If the FW settings cannot be changed, tunneling with
protocols that are allowed by the FW such as HTTP and
HTTPS can be effective as a method for passing through
the FW. However, because HTTP and HTTPS work on
transmission control protocol (TCP), the TCP control under
HTTP tunneling or HTTPS tunneling will affect the perfor-
mance of the tunneled communication. For this reason, a
UDP-based tunneling protocol is preferred to take advan-
tage of the characteristics of tunneled communication. DNS
tunneling is a UDP-based tunneling method. However, FWs
may filter DNS communication based on the Internet Pro-
tocol (IP) address. In addition, UDP-based DNS has a data
limit of 512 bytes.

Therefore, there are various limitations to DNS tunnel-
ing. From the above, non-controlling UDP-based tunneling
is preferable when considering the communication perfor-
mance, however, TCP-based tunneling must be used when
considering FWs.

Therefore, we proposed an encapsulation technology
using pseudo-TCP to achieve FW traversal without losing
the characteristics of the transport layer protocol [1], [2].
The proposed method encapsulates packets created at the
transport layer such as UDP packets. Encapsulation is per-
formed with a TCP header that specifies port 443, which is
used in HTTPS as the destination port. Consequently, the
FW recognizes the packet as an HTTPS packet and allows
it to pass through the FW. The proposed method, pseudo-
TCP, is also effective for stateful inspection FW because it
emulates three-way handshake, sequence number, and ac-
knowledgment control. The proposed pseudo-TCP does not
provide various controls such as flow control, retransmission
control, and congestion control; therefore it can communi-

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



106
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

cate without degrading the characteristics of the transport
layer protocol of the encapsulated communication.

In previous studies, we implemented the proposed
method in QUIC [3] and performed experiments to comfirm
the effectiveness of the proposed method. In the these stud-
ies, the implementation was that of a relay node, not an end-
node for communication.

However, many technologies that use encapsulation,
such as tunneling technology, perform encapsulation at the
end nodes. Therefore, the proposed method was also im-
plemented on the end-node. In addition, when applying the
proposed method, there is a concern that the communica-
tion of the proposed method may fail due to a middlebox on
the communication path. Therefore, the proposed method
was modified to support Network Address Port Translation
(NAPT), which is a typical middlebox.

The rest of this paper is organized as follows. An
overview of related studies is provided in Sect. 2. The
proposed FW traversal method that inserts a pseudo-TCP
header is presented in Sect. 3. The application of the pro-
posed method to QUIC and its evaluation are described
Sects. 4 and 5, respectively. Conclusions and future work
are detailed in Sect. 6.

2. Related Works

Tunneling is a technique for connecting two points on net-
works that are physically or logically separated by a virtual
line. In addition, tunneling provides communication pro-
tocols blocked by FWs to communicate over the Internet.
In the general tunneling methods, tunneling protocols en-
capsulate packets of the target protocol by other protocols.
Therefore, the packets are handled as packets of the tunnel-
ing protocol on the Internet.

There has been a lot of studies and developments on
tunneling and encapsulation. These technologies can be cat-
egorized by the layer at which encapsulation works.

In recent, HTTPS, which is an application layer proto-
col, has been widely used for encapsulation because HTTPS
encrypts a payload by TLS. Therefore, HTTPS encapsula-
tion makes insecure protocols, such as DNS, secure with
TLS. HTTPS is also used for FW traversal since FWs allow
HTTPS. However, HTTPS encapsulation increases in pro-
cessing time deriving from that HTTPS is the application
layer protocol. In addition, HTTPS uses TCP as a transport
layer protocol, but the communication control of TCP con-
flicts with the communication control of the encapsulated
target protocol [4], [5]. The confliction has a negative influ-
ence on the expected communication performance.

SoftEther [6] encapsulates Ethernet frames. SoftEther
uses HTTPS as the tunneling protocol; therefore, the encap-
sulated packet is encrypted and passes through an FW that
checks the packet in detail up to the application layer. How-
ever, a TCP connection is used for the transmission. As a
result, when TCP is used as the L4 protocol for the tunneled
communication, TCP double control occurs and the perfor-
mance is degraded when a retransmission occurs. In addi-

tion, when a protocol other than TCP is used as the L4 proto-
col, the control of the tunneled communication is affected by
the TCP control. As a result, communication with the orig-
inal protocol becomes possible. SoftEther attempts to im-
prove throughput by multiplexing TCP connections; how-
ever, it cannot achieve a speed that occupies the line band-
width up to the capacity limit of the physical Internet line.
Further, because TCP operates in the lower layer of the tun-
neling protocol, redundant control occurs. In addition, Soft-
Ether has a UDP acceleration mechanism that uses HTTPS
communication just to stay alive after the connection is es-
tablished, and other data are transmitted by UDP to further
speed up the communication. To achieve UDP communi-
cation, endpoints behind the NAPT/FW performs UDP hole
punching. However, because of the source/destination port
number is dynamically determined, this mechanism cannot
be used from end-nodes under severely restricted FWs.

Generic Routing Encapsulation (GRE) [7] and IPsec [8]
are tunneling protocols that encapsulate a network layer pro-
tocol with IP. Since the protocol type of GRE is different
from TCP/UDP, FWs and middleboxes, especially NAPT,
may block GRE packets. Furthermore, GRE has no encryp-
tion function. IPsec encapsulation is superior in terms of
confidentiality because it encrypts IP packets as the payload.
IPsec is affected by NAPT as well as GRE. For both IPsec
and GRE, NAT/NAPT traversal which encapsulates the pay-
load in UDP has been proposed [9], [10]. However, UDP
encapsulation does not affect FWs that block UDP commu-
nication except DNS.

Point to Point Tunneling Protocol (PPTP) [11], Layer
2 Forwarding (L2F) [12], and Layer 2 Tunneling Proto-
col (L2TP) [13] are tunneling protocols that encapsulate L2
Point to Point Protocol (PPP) frames. PPTP has an encryp-
tion function but uses GRE for encapsulation. That is, PPTP
has the same drawback as GRE. L2F and L2TP encapsulate
the payload in UDP thus they can not traverse FWs. They
do not have an encryption function, therefore they generally
use IPsec in conjunction.

Recently, tunneling protocols for network virtualiza-
tion have been proposed. Network Virtualization using
Generic Routing Protocol (NVGRE) [14] and Virtual Exten-
sible LAN (VXLAN) [15] encapsulate L2 frames with L3;
NVGRE uses GRE for encapsulation, and VXLAN encap-
sulates L2 frames with UDP. Thus, they include the short-
comings of UDP encapsulation and GRE described above.
Furthermore, some studies revealed their performance prob-
lem. Stateless Transport Tunneling Protocol (STT) [16] is
an L2 tunneling protocol that does not affect the control
of the tunneled communication. STT uses pseudo-TCP to
make it possible to use TCP Segmentation Offload (TSO)
and Large Receive Offload (LRO), which are offload mech-
anisms installed in the network interface card (NIC), and to
achieve higher throughput and a lower CPU load than other
tunneling protocols. However, STT uses some fields in the
pseudo-TCP header for its own use. In addition, because
there is no state, the control flag unchanges. Therefore, the
middlebox managing TCP state discards STT packets as in-



TAGA et al.: FIREWALL TRAVERSAL METHOD BY PSEUDO-TCP ENCAPSULATION
107

valid TCP packets. Therefore, STT cannot be used for FW
traversal.

Transparent Transport Tunneling (T3) [17] is a hybrid
tunneling for virtual networks. T3 encapsulates an L2 frame
by TCP if the frame includes a TCP packet. If the frame
includes a UDP packet, T3 encapsulates it by UDP. A tun-
neling server replies proxy acks to the end nodes to separate
TCP connections. Thus, the problem that end nodes and
tunneling servers retransmit the same TCP packet is solved.

Reference [18] proposed TCP for sensor networks in
hilly and mountainous areas. Real-time performance is re-
quired for the data transfer of the sensor data. In addition,
mobile communication in hilly and mountainous areas fre-
quently causes packet loss and communication interruption
compared to communication in urban areas. Therefore, the
receipt of the latest data is greatly delayed after recover-
ing from communication interruptions by TCP head-of-line
blocking. Using the same background as our study, they
proposed a retransmission-controlled TCP that suppresses
the retransmission control of TCP for real-time communica-
tion. Even though the behavior of retransmission-controlled
TCP is similar to that of UDP, control other than retransmis-
sion control works; therefore, unlike our proposed method,
it affects the control of the communication to be passed.

SOCKS [19] is a technology that relays the commu-
nication of the transition layer protocol to pass through an
FW. In SOCKS, a proxy server is installed at the boundary
between the external and internal and networks, and both
external and internal communication is accepted. Upon re-
ceiving a connection, the SOCKS server authenticates the
end-user as necessary, generates a notification, and connects
to the destination node. Application correspondence is nec-
essary to use SOCKS; it cannot be used transparently. In
addition, there is a problem of throughput degradation be-
cause the SOCKS server receives and retransmits; a packet
once.

Thus, the existing tunneling protocols have the fol-
lowing problems: they cause control conflicts due to TCP
over TCP, they use protocols and port numbers that may be
blocked by FWs, and they cannot be used in NAT/NAPT en-
vironments. Therefore, it is insufficient for our purpose of
FW and NAT/NAPT traversal.

3. Proposed Method

In previous studies, we proposed an encapsulation technique
using pseudo-TCP to achieve FW traversal without losing
the characteristics of the transport layer protocol. In this
section, we outline the proposed method and describe the
changes we made for our previous study.

3.1 Overview

The proposed method encapsulates packets created at the
transport layer, such as UDP packets. Encapsulation is per-
formed with a pseudo-TCP header in which port 443, which
is used in HTTPS, is designated as the destination port. As

Fig. 1 System image of the proposed method.

Fig. 2 An Emulated flow of a three-way handshake.

a result, the FW recognizes a packet subjected to the pro-
cessing of the proposed method as an HTTPS packet and
allows it to pass through the FW. The proposed pseudo-TCP
only performs a three-way handshake and connection man-
agement. In the proposed method, a pseudo-TCP header is
inserted into the packet and transmitted. The packet with
the inserted pseudo-TCP header passes through the FW and
discards the pseudo-TCP header to return to its original
form. This process enables communication with the orig-
inal packet. To pass through stateful inspection FW, each
field value of the inserted pseudo-TCP header must be set by
emulating actual TCP communication. Therefore, a three-
way handshake is emulated at the start of communication
with the proposed method and periodic acknowledgments
and sequence number management are performed during the
communication.

Figure 1 shows a system image of the proposed
method. It is necessary to install a mechanism that imple-
ments the proposed method before and after the FW block-
ing communication. There are several options for the loca-
tion of the proposed method.

For example, it can be embedded into end nodes such
as clients and servers, into nodes on communication paths
such as bridges and routers of each network, and into newly
installed bridges and routers that implement the proposed
method in each network. The case in which the proposed
method is implemented outside the end-nodes has already
been implemented and evaluated in our previous study. In
this paper, we apply the proposed method to be end-nodes.

Figure 2 shows an emulated flow of a three-way hand-
shake. When the proposed mechanism on the client-
side receives the communication start packet of the tar-
get protocol, the proposed mechanism waits for the
packet and sends/receives synchronize (SYN) packets,



108
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

SYN/Acknowledge (ACK) packets, and ACK packets be-
tween the proposed mechanisms. These communications
simulate a three-way handshake between the client and
server using the IP address of the client and server. Then,
a pseudo-TCP header is inserted into the waiting packet,
which is then transmitted.

The packet to which the proposed method is applied
is flagged in the reserved area of the pseudo-TCP header to
distinguish it from normal HTTPS communication. Pseudo-
TCP does not perform retransmission control or congestion
control; therefore, double control does not occur, unlike in
other existing technologies. In other words, the proposed
method achieves FW traversal via encapsulation without
losing the superiority of the target protocol.

3.2 Improvements with Respect to Our Previous Study

As described above, this paper implemented the proposed
method module on the end-node. There are many middle-
boxes in actual networks, and there is a concern that mid-
dleboxes modify packets and may affect the communication
of the proposed method. Therefore, we improved the pro-
posed method to allow it to work properly even in an envi-
ronment where NAPT is a typical middlebox. Accordingly,
we changed the proposed method so that communication is
possible even if NAPT, which is a typical middlebox, is in-
cluded in the communication path.

The first improvement is the checksum of the L4 header
of the encapsulated packet. When NAPT is applied, the
checksum value of the L3 and L4 headers is recalculated
with the conversion of the IP address and port number. How-
ever, in the case of a packet with an inserted pseudo-TCP
header, the checksum of the pseudo-TCP header is recalcu-
lated when NAT is applied. Therefore, a checksum error oc-
curs when receiving the encapsulated packet. As a counter-
measure, we added a process to recalculate the L4 checksum
of the encapsulated packet when the pseudo-TCP header is
discarded.

The second improvement is support for port conver-
sions by NAPT. NAPT converts the port number of the
pseudo-TCP header when processing a packet with the
pseudo-TCP header. Therefore, the port number in the L4
header of the packet received by the end node has not been
rewritten and the end-node responds with the port number as
the destination port number. However, the destination port
number is not the value assumed by NAPT, and the proper
port conversion is not performed. Accordingly, the proposed
mechanism maintains a correspondence table between the
port number of the pseudo-TCP header and the port number
of the L4 layer protocol header of the encapsulated packet
and sets an appropriate port number for the reply packet.

4. Implementation of the Proposed Method

To apply the proposed method to Linux, we implemented
it as a loadable kernel module (LKM) using Netfilter. Net-
filter is a framework for packet filtering and NAPT. In this

section, we describe the processing of the proposed method
with end-nodes.

4.1 Processing of LKM at the End-Nodes

Figure 3 shows an overview of the LKM process running
on an end-node. The pseudo-TCP header insertion process
is performed at the hook point POST ROUTING through
which all transmitted packets pass. The procedure for
pseudo-TCP header insertion processing is shown below.

1) Determine whether the hooked packet is a packet of
the protocol to which the proposed method has been
applied. If it is a target packet, go to step 2. If it is not
a target packet, go to step 5.

2) Identify the flow is from the four-tuple (i.e., the source
IP address, destination IP address, source port num-
ber, and destination port number). For a new flow, a
new flow management structure is defined. The flow
management structure is a structure for managing the
pseudo-TCP connection of the proposed method and
includes information such as the four-tuple, sequence
number, acknowledgment number, and state of the
pseudo-TCP connection.

3) Perform pseudo-TCP header insertion processing. The
pseudo-TCP header insertion process is set for each
field by referring to the flow management structure. If
the identification result in step 2 is a new flow, go to
step 4. If the identification result in step 2 is an exist-
ing flow, go to step 5.

4) In the case of a new flow, wait for a packet with an in-
serted pseudo-TCP header inserted and start emulating
a three-way handshake (client-side LKM only).

5) Return the packet to the hook point.

In our previous study, pseudo-TCP header insertion process-
ing secured the storage area for the pseudo-TCP headers by
shifting the IP header forward. However, in the end-node
version, the hook point is different and, when the pseudo-
TCP header is inserted, the free space in the socket buffer
is less than 20 bytes. The end-node version secures the
pseudo-TCP header storage area by shifting the L4 datagram
to be encapsulated backward. Therefore, the end-node ver-
sion of pseudo-TCP header insertion processing is expected
to increase the overhead compared to t hat of our previous
study.

The pseudo-TCP header discarding process is per-
formed at the hook point PRE ROUTING through which
all received packets pass. The procedure for the pseudo-
TCP header discard processing is as follows.

1) Determine whether the hooked packet is a packet with
an inserted pseudo-TCP header. If it is a packet with an
inserted pseudo-TCP header, go to step 2. If it is not a
packet with an inserted pseudo-TCP header, go to step
5.

2) Identify the flow from the four-tuple.
3) Discard the pseudo-TCP header. The flow management



TAGA et al.: FIREWALL TRAVERSAL METHOD BY PSEUDO-TCP ENCAPSULATION
109

Fig. 3 Processing of LKM running on end-nodes.

structure is updated by referring to the field values of
the inserted pseudo-TCP header.

4) Recalculate the checksum of the L4 header of the orig-
inal packet.

5) Return the packet to the hook point.

The pseudo-TCP header discarding process is realized
by shifting the IP header backward, both in the end-node
version and in the version in our previous study. Therefore,
the overhead of the discard processing is considered to be
the same in both systems.

4.2 The Proposed Method Corresponding to NAPT

To use the proposed method in a real environment, it is nec-
essary to consider the many middleboxes that exist in ad-
dition to the FW. There are some middleboxes that modify
packets, and this may affect the proposed method. There-
fore, measures were taken against NAPT, which is a typical
middlebox.

NAPT is a mechanism that allows hosts in a private
network to communicate with hosts on the Internet. When
a host in the private network sends a packet to a host on the
Internet, NAPT overwrites the source IP address and source
port number to the global IP address and port number of the
host on which NAPT is running. Simultaneously, the check-
sums field in the L4 and L3 headers are also updated, and
the IP address and port number before and after the con-
version are registered in the translation table. As a result,
the host on the Internet appears to be communicating with
the host where NAPT is running. When NAPT receives the
response from the host on the Internet, it rewrites the L3
and L4 headers based on the translation table, and forwards
the response to the host on the private network, which is
the original communication source. This provides the hosts
on the private network with reachability to the Internet. In
order to use the proposed method in a NAPT-mediated envi-
ronment, we need to consider the following two points.

The first point is the checksum value of the real L4
header of the target packet. NAPT also recalculates the L3
and L4 checksum values as the IP address and port number
are converted. However, when NAPT is applied to a packet
with an inserted pseudo-TCP header inserted, it is the check-
sum of the pseudo-TCP header that is recalculated and the
checksum of the real L4 header is not recalculated. After

that, the pseudo-TCP header is discarded and received by
the end-node. However, because the checksum value is in-
correct, packet reception at the end-node fails, the packet is
discarded, and communication fails. As a countermeasure,
the pseudo-TCP header is discarded and the checksum of
the L4 header is recalculated after returning to the original
packet.

The second is NAPT port conversion. When NAPT
processes a packet with an inserted pseudo-TCP header, it
converts the port number of the pseudo-TCP header. How-
ever, as with the checksum problem described above, the
header of the encapsulated packet is not affected by NAPT.
Therefore, the port number of the real L4 header cannot be
rewritten and the end-node receives the target packet prior
to NAPT port number conversion. However, because the
destination port number is not the value that NAPT expects
as a return packet, it is assumed that the port conversion
could not be performed properly. To solve this problem, the
port number of the pseudo-TCP header inserted by the pro-
posed LKM method must be set to an appropriate value. In
other words, LKM records the port number of the discarded
pseudo-TCP header and stores the port number of the dis-
carded pseudo-TCP header in the reply packet. This pro-
cessing was implemented in both the end-node version and
the relay-node version.

5. Evaluation

In this section, we describe the functional evaluation and
performance evaluation of the proposed method. The pro-
posed method targets not only protocols to be developed
in the future, but also existing protocols such as QUIC,
SCTP [20], DCCP [21], and RTP [22]. We adopted QUIC
from them for the evaluation experiments. The reasons are
as follows:

• QUIC is a general purpose protocol with the communi-
cation control mechanisms equivalent to TCP.

• There is software for both client and server that is close
to the practical environment.

SCTP is supported by iPerf3, but there is no SCTP-based
web server and client software. On the other hand, there
are the QUIC-based web server, caddy, and the QUIC-based



110
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Fig. 4 Experimental enviroments.

Fig. 5 Configuration of iptables.

web client, proto-quic [23]†. Therefore, we excluded SCTP
from our experiments. QUIC is a transport layer protocol
that operates in UserLand and can handle multiple streams
simultaneously. QUIC does not use TCP but communicates
using UDP/443. However, there are many FWs that block
UDP/443.

In the functional evaluation, we confirmed that QUIC
communication was possible using the proposed method in
an environment in which the FW blocks QUIC communica-
tion. In the performance evaluation, we measured the over-
head caused by applying the proposed method. We con-
firmed the effect of the proposed method on the page down-
load time and on the confliction to the encapsulated proto-
col’s communication control.

5.1 Evaluation Environment

Figure 4 shows the evaluation environments. Figure 4 (A)
shows the environment using the same relay-node version
of the proposed method as in our previous study, Fig. 4 (B)
shows the environment using the end-node version of the
proposed method, and Fig. 4 (C) shows the environment
without the proposed method. This is the general environ-
ment of the application.

The client used proto-quic, a QUIC test client.
Caddy [25] was used on the web server. Caddy is a web
server software package compatible with the Google version
of QUIC. In the FW node, the FW that blocks QUIC com-
munication was constructed using iptables. Figure 5 shows

†proto-quic is already out of development. Currently, it is be-
ing developed by The chromium project [24].

Table 1 Specification of experimental devices.

End-nodes/FW
Client-side
relay-node

Server-side
relay-node

OS Ubuntu16.04 CentOS7.2 CentOS7.4
Kernel 4.4.0 3.10.0 3.10.0

CPU Core i3-4005U Core i5-6600 Core i5-2320
Memory 4GB 8GB 8GB

Fig. 6 Communication log in a normal environment (Fig. 4 (C)).

Fig. 7 Communication log application environment of the end-node ver-
sion of the proposed method (Fig. 4 (B)).

the iptables settings. For the settings in Fig. 5, everything
except TCP/80, 443 and ICMP packets are blocked. In addi-
tion, using state matching via the conntrack module, a state-
ful inspection-type FW was built. In addition, NAPT was
operated using iptables on the FW. The experimental sce-
nario imitates general Web access that receives an HTML
file on a web server (Caddy) using proto-quic. Table 1 shows
the basic performance of the nodes used in the experiment.

5.2 Functional Evaluation

In this evaluation, it was confirmed that the proposed
method can pass through an FW blocking QUIC commu-
nication.

Figure 6 shows the packet capture log obtained by the
NIC on the client-side of the FW in the environment of
Fig. 4 (C). Because the UDP/443 port is not open, the packet
is blocked by the FW and communication fails.

Figure 7 is a packet capture log obtained by the NIC on
the client-side of the FW when the end-node version of the
proposed method is applied. The log is shown in Fig. 7 is for
after the proposed end-node method has been applied, that
is, the sent packet is logged after the pseudo-TCP header in-
sertion process and the received packet is logged before the
pseudo-TCP header discard process. Therefore, the QUIC
packet is disguised as a TCP packet using port number 443.
The first three packets are the three-way handshake emula-
tion packets, and the subsequent packets are QUIC pack-
ets with pseudo-TCP header insertion processing. From the
Fig. 7, it can be confirmed that the bidirectional commu-
nication passed through the FW. We confirmed that QUIC
communication was possible when applying the proposed
method.



TAGA et al.: FIREWALL TRAVERSAL METHOD BY PSEUDO-TCP ENCAPSULATION
111

Table 2 Processing time per packet of the proposed method (unit: ns).

End-node Relay-node
Insertion Discard Insertion Discard

Applying the
proposed method

1405 1124 462 672

Without the
proposed method

914 646 335 310

5.3 Evaluation of the Processing Overhead Per Packet

We measured the overhead of inserting and discarding
pseudo-TCP headers when using the proposed method.
SystemTap was used for the measurement, and the over-
head was calculated by acquiring the time before and
after the callback function of the proposed method was
called. In the overhead measurement of the relay-node in-
sertion/discard processing and the end-node discard pro-
cessing, the time from when the ip rcv function is called to
when the ip rcv finish function is called was measured. The
end-node insertion processing overhead was measured from
the time when the ip output function was called to the time
when the ip finish output function was called. SystemTap
was operated on the client for the end-node version and on
the client-side relay node for the relay-node version.

Table 2 shows the average processing time per packet
obtained by repeating the QUIC communication to down-
load a 1 MB file three times. Because only the processing
overhead of the proposed LKM method was measured, the
overhead of the relay-node version did not include the over-
head of the packet relay processing. The end-node version
insert packet was a QUIC acknowledgment packet, and the
packet size was small. As described in Sect. 4.1, end-node
version insert processing reserves the area of the pseudo-
TCP header by copying the L4 datagram backward. There-
fore, the overhead depends on the packet size. The over-
head is small but can not negligible. Modification of the
buffer allocation scheme is effective in decrease the over-
head. Since the buffer allocated for the packet does not have
enough space to insert pseudo-TCP header in front of the
packet, a packet copy is required for the insertion. The ef-
fect of the copy increases the overhead with the packet size.
Therefore, the buffer allocation taking the insertion account
will mitigate the overhead related to the packet copy.

5.4 Measuring the Impact on the Page Download Time

We measured the effect of the overhead of the proposed
method on the QUIC page download time.

5.4.1 Measurement Method

In the experiment, the client downloaded an HTML file from
the server and measured the time required for the download.
The experiment was performed with three different HTML
file sizes (1 MB, 5 MB, and 10 MB). We used the tc com-
mand in the FW to simulate the actual Internet and made
the measurement in five different delay environments (0 ms,

Table 3 Page download time measurement result (unit: ms).

File size Delay
0ms 20ms 50ms 70ms 100ms

Normal
environment

107 205 415 552 767

1MB
Proposed method

(relay node)
115 224 470 630 869

Proposed method
(end node)

106 227 467 627 864

Normal
environment

362 549 846 902 1204

5MB
Proposed method

(relay node)
366 565 849 968 1305

Proposed method
(end node)

363 589 905 1011 1314

Normal
environment

672 867 1149 1258 1669

10MB
Proposed method

(relay node)
680 883 1204 1328 1792

Proposed method
(end node)

677 908 1255 1385 1809

20 ms, 50 ms, 70 ms, 100 ms). The experimental pattern
was 45 patterns with combinations of file sizes and delays,
and we tried each pattern 100 times. The page download
time was calculated using the timestamp value of the packet
capture log acquired on the client. The page download time
indicates the time from the first captured QUIC packet to the
last QUIC packet received by the client in a series of com-
munications. In this measurement, QUIC was used in three
environments: Fig. 4 (A) with the relay-node version of the
proposed method, Fig. 4 (B) with the end-node version of
the proposed method, and Fig. 4 (C) without the proposed
method. We initiated the communication and compared the
web page download times.

5.4.2 Measurement Results and Discussion

Table 3 shows the measurement results. The normal en-
vironment is the page download time in the environment
of Fig. 4 (C), and the proposed method (relay) is the page
download time in the environment of Fig. 4 (A), and the pro-
posed method (end) is the page download time in the envi-
ronment of Fig. 4 (B). Table 4 shows the differences between
the proposed method application environments and the nor-
mal environment. Table 4 proves that the effect of the pro-
posed method increases as the network delay increases. This
is caused by the three-way handshake emulation of the pro-
posed method. Using the three-way handshake emulation,
communication is started after the SYN/ACK packet is re-
ceived after sending the SYN packet. Therefore, the start
of communication is delayed by the round-trip time (RTT)
between the nodes when using the proposed method. There-
fore, in an environment in which the proposed method is
applied, the page download time for 1 RTT increases com-
pared to the normal environment. Accordingly, the three-
way handshake emulation of the proposed method was ex-
cluded, that is, the value obtained by subtracting 1 RTT from
the measurement results when both proposed methods were
applied (Table 4).

In an environment with a file size of 1 MB, the mea-
surement results of both proposed methods and the normal
environment are almost identical. Therefore, in the envi-



112
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Table 4 Differences between applications of the proposed
method and the normal environment (unit: ms).

File size Delay
0ms 20ms 50ms 70ms 100ms

1MB
Proposed

method(relay)
8 19 55 78 102

Proposed
method(end)

-1 22 52 75 97

5MB
Proposed

method(relay)
4 16 3 66 101

Proposed
method(end)

1 40 59 109 110

10MB
Proposed

method(relay)
8 16 55 70 123

Proposed
method(end)

5 41 106 127 140

ronment with a file size of 1MB, the effect of the proposed
method is due to the three-way handshake emulation, and
the effect of the pseudo-TCP header insertion and discard-
ing process is hardly seen at all.

In environments with file sizes of 5 MB and 10 MB,
the page download time increases only when the end-node
version of the proposed method is applied. The effect is
particularly noticeable when the delay is 20 ms, 50 ms, or
70 ms. This is thought to be because the number of pack-
ets per unit time increased compared to when the file size
was 1 MB, and the effect of the pseudo-TCP header inser-
tion/discard processing appeared. In addition, as described
in Sect. 4.1, the overhead of pseudo-TCP header insertion
processing differs between the relay-node version and the
end-node version. In the relay-node version, a memory
copy of 20 bytes occurs for each packet. Conversely the
other hand, in the end-node version, a memory copy of up
to 1350 bytes occurs for each packet. Therefore, the end-
node version of the proposed method is more likely to affect
the page download time.

From this evaluation, it is clear that the overhead of
the proposed method is primarily caused by the emulation
of a three-way handshake. As a minimum overhead, there
is a delay of 1 RTT between the nodes when the proposed
method is operated, and additional overhead is caused by the
insertion/discarding of the pseudo-TCP header. Therefore,
it is thought that the impact of the proposed method will
be noticeable on networks with large RTT. However, three-
way handshake emulation is performed only once when tar-
get communication with the proposed method is started.
Therefore, it is expected to have a limited effect because
the increase in the communication time caused by a three-
way handshake is inversely proportional to the total QUIC
communication time. Actually, in this evaluation applied
to QUIC, it is approximately 60 ms at its maximum and it
is approximately 4% of the entire communication and is,
therefore, considered to be a small influence.

5.5 Performance Comparison of TCP, QUIC, and the Pro-
posed Method Applied to QUIC

In this section, we compare the proposed method applied to
QUIC, QUIC, and TCP (HTTPS) and confirm the effective-
ness of the proposed method.

5.5.1 Measuring Method

The evaluation environments are shown in Fig. 4, as in the
previous evaluation. Curl was used for the TCP (HTTPS)
communication clients. Similar to Sect. 5.4, we used three
different sizes of HTML files and simulated the actual In-
ternet using the tc command. There were three delay pa-
rameters: 0 ms, 20 ms, and 50 ms. There were eight packet
loss rates: 0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1.1%, 1.3%, and
1.5%. The experimental patterns consisted of 288 patterns
combining the protocols (TCP, QUIC, end-node version of
the proposed method applied to QUIC, relay-node version
of the proposed method applied to QUIC), file size, delay,
and packet loss, and each pattern was tried 100 times. The
measurement interval was the same as in Sect. 5.4.

5.5.2 Measurement Results and Discussion

Figure 8 shows the measurement results. From the measure-
ment results, it was confirmed that QUIC using the proposed
method showed communication performances close to those
of the normal QUIC even in an environment with packet loss
and delay. Basically, QUIC using the proposed method had
a better communication performance than TCP. As an ex-
ception, QUIC using both proposed method in the results of
that RTT is 0ms, bandwidth is 5MB or 10MB had a lower
performance than TCP. However, the performance of QUIC
without the proposed method was lower than that of TCP.
In the literature [26], it is mentioned that using QUIC in
networks with a wide bandwidth (over 100 Mbps), low la-
tency (several ms), and low packet loss rates may result in a
lower performance than TCP. This environment is not con-
sidered to be a general Internet state, and it is assumed in
the paper that such a state is caused by a client-side sched-
uler. The conditions of wide bandwidth and low delay match
the cases of that QUIC and the proposed methods defeated
TCP. Except in these two environments, QUIC outperforms
TCP and the proposed method applied to QUIC outper-
forms TCP even though the communication performance is
slightly lower than that of QUIC alone. This result indicates
that the application of the proposed method to QUIC is ef-
fective in the network of this evaluation environment. The
proposed method applied to QUIC has slightly lower com-
munication performance compared to normal QUIC, how-
ever, it keeps the advantage of QUIC against TCP. This re-
sult indicates that the application of the proposed method to
QUIC is effective in the network of this evaluation environ-
ment.

In this evaluation, the 0-RTT handshake of QUIC was
disabled. Therefore, in QUIC in a real environment, there
should be a further difference with TCP when communicat-
ing with a server that has communicated once. However,
when applying the proposed method, even if QUIC can start
communication with the 0-RTT handshake, the three-way
handshake emulation of the proposed method causes a delay
of 1 RTT. In addition, because the proposed method iden-



TAGA et al.: FIREWALL TRAVERSAL METHOD BY PSEUDO-TCP ENCAPSULATION
113

Fig. 8 Performance Evaluation of Proposed Method QUIC/Normal QUIC/TCP (HTTPS)

Fig. 9 Practical environment.

tifies flows in four-tuple, there remains the problem that a
delay of 1 RTT occurs due to the three-way handshake emu-
lation of the proposed method even during QUIC connection
migration.

5.6 Evaluation in Practical Environment

To verify the practicability of the proposed method, we eval-
uated the proposed method in the practical environment in-
cluding the Internet. We used the end-node type proposed
method for the verification.

5.6.1 Environment

The environment is illustrated in Fig. 9. The client is in-
side of our laboratory’s LAN. The web server belongs to

Table 5 Machine spec of the practical experiment.

Client Server
OS Ubuntu16.04 Ubuntu16.04
Kernel 4.4.0 4.4.0
CPU Core i3-4005U Xeon x3460
Memory 4GB 8GB

the outside network. Therefore, their communication passes
through the Internet. The spec of the client and the server is
as Table 5. Same as the experiments mentioned above, the
client used proto-quic and curl, the server used Caddy.

5.6.2 Experimetal Results

We verified the practicability of the proposed method by the
comparison of page download time. We measured the page
download time of QUIC with the proposed method, nor-
mal TCP, and normal QUIC, respectively. The time used
for comparison is mean time of the 100 times experimen-
tal results. In addition, we experimented with different size
HTML file 1MB, 5MB, 10MB. To measure the page down-
load time, we ran the WireShark on the cliant, and calicu-
lated the time based on time stamp of captured packets.

Figure 10 illustrates the experimental results. The dif-



114
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

Fig. 10 Experimental results in the practical environment.

ference among them is a very little. However, in the cases
of 5MB and 10MB, the page download time of QUIC with
the proposed method is the largest in the three. The network
performance between the client and the server was that RTT
was about 15ms, and the packet loss rate was 0%. Namely,
the high network performance lead to almost the same ten-
dency as in Fig. 8. Therefore, when network condition is
good, the proposed method increase communication time a
little, although, the proposed method will give less affect in
bad network conditions.

6. Conclusions

In this paper, the proposed method was implemented in
the end-node and was modified to work in an environment
where NAPT exists. As in our previous study, we evalu-
ated QUIC and confirmed that it was able to pass through
a stateful inspection FW that confirmed the TCP header in
detail. The performance evaluation indicated that the pro-
posed method affected the page download time. There is, at
minimum, a three-way handshake emulation delay, in addi-
tion, to be pseudo-TCP header insertion and discard process
delay. However, this delay is small from the viewpoint of
the entire communication, and it was confirmed that its in-
fluence was small. In addition, QUIC using the proposed
method basically has a higher communication performance
than TCP (HTTPS) and it is considered that the proposed
method is effective for QUIC.

In the current implementation, the application of the
proposed method obstructs characteristics of QUIC such as
0-RTT handshake and connection migration. To solve this
problem, TCP Fast Open emulation and a flow identifica-
tion method using parameters other than a four-tuple are the
future work.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 18K18045.

References

[1] K. Taga, J. Zheng, K. Mouri, S. Saito, and E. Takimoto, “Firewall
traversal method by inserting pseudo tcp header into quic,” IEICE

Technical Report, vol.305, pp.87–92, 2018.
[2] K. Taga, J. Zheng, K. Mouri, S. Saito, and E. Takimoto, “Firewall

traversal method by inserting pseudo tcp header into quic,” Lecture
Notes in Engineering and Computer Science, vol.2239, pp.216–221,
2019.

[3] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[4] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama,
“Understanding tcp over tcp: Effects of tcp tunneling on end-
to-endthroughput and latency,” IEICE Technical Report, vol.104,
no.438, pp.79–84, 2004.

[5] O. Titz, “Why tcp over tcp is a bad idea.” http://sites.inka.de/sites/
big-red/devel/tcp-tcp.html, accessed July 23, 2021.

[6] D. Nobori, “Virtual ethernet system and tunneling communication
with softether,” Proc. of Programming Symposium, pp.147–158,
IPSJ, 2004.

[7] T. Li, D. Farinacci, S.P. Hanks, D. Meyer, and P.S. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, March 2000.

[8] K. Seo and S. Kent, “Security Architecture for the Internet Protocol,”
RFC 4301, Dec. 2005.

[9] L. Yong, E. Crabbe, X. Xu, and T. Herbert, “GRE-in-UDP Encapsu-
lation,” RFC 8086, March 2017.

[10] V. Volpe, M. Stenberg, B. Swander, L. DiBurro, and A. Huttunen,
“UDP Encapsulation of IPsec ESP Packets,” RFC 3948, Jan. 2005.

[11] G. Zorn, G.S. Pall, and K. Hamzeh, “Point-to-Point Tunneling Pro-
tocol (PPTP),” RFC 2637, July 1999.

[12] M. Littlewood, A. Valencia, T. Kolar, T. Kolar, and T. Kolar, “Cisco
Layer Two Forwarding (Protocol) “L2F”,” RFC 2341, May 1998.

[13] M. Townsley, I. Goyret, and J. Lau, “Layer Two Tunneling Protocol
- Version 3 (L2TPv3),” RFC 3931, March 2005.

[14] P. Garg and Y.S. Wang, “NVGRE: Network Virtualization Using
Generic Routing Encapsulation,” RFC 7637, Sept. 2015.

[15] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, and C. Wright, “Virtual eXtensible Local Area Net-
work (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks,” RFC 7348, Aug. 2014.

[16] B. Davie and J. Gross, “A Stateless Transport Tunneling Protocol
for Network Virtualization (STT),” Internet-Draft draft-davie-stt-08,
Internet Engineering Task Force, April 2016. Work in Progress.

[17] S. Ogawa, K. Yamazaki, R. Kawashima, and H. Matsuo, “T3:
Tcp-based high-performance and congestion-aware tunneling proto-
col for cloud networking,” Proc. on ICCCRI, pp.64–70, IEEE, 2016.

[18] S. Yokoyama, H. Yamamoto, and K. Yamazaki, “The evaluation of
communication characteristic of cellular network and implementa-
tion and evaluation of retransmission-controlled tcp,” IEICE Trans.
Inf. & Syst. (Japanese edition), vol.95, no.5, pp.1133–1141, May
2012.

[19] M.D. Leech, “SOCKS Protocol Version 5,” RFC 1928, March 1996.
[20] R.R. Stewart, “Stream Control Transmission Protocol,” RFC 4960,

Sept. 2007.
[21] S. Floyd, M.J. Handley, and E. Kohler, “Datagram Congestion Con-

trol Protocol (DCCP),” RFC 4340, March 2006.
[22] H. Schulzrinne, S.L. Casner, R. Frederick, and V. Jacobson, “RTP:

A Transport Protocol for Real-Time Applications,” RFC 3550, July
2003.

[23] “proto-quic.” https://github.com/google/proto-quic (Obsoleted).
[24] “The chromium project.” https://www.chromium.org/, accessed July

23, 2019.
[25] “caddy.” https://caddyserver.com accessed Feb. 15, 2021.
[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,

F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.T. Chang, and Z. Shi, “The quic transport protocol:
Design and internet-scale deployment,” Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, New York, NY, USA, pp.183–196, ACM, 2017.

http://dx.doi.org/10.1109/icccri.2016.18
http://dx.doi.org/10.1145/3098822.3098842


TAGA et al.: FIREWALL TRAVERSAL METHOD BY PSEUDO-TCP ENCAPSULATION
115

Keigo Taga received the B.E., the M.E.
degree in computer science from Ritsumeikan
University in 2018 and 2020, respectively. He
is with NDR, Co., Ltd.. His research interests
include computer network and IoT technology.

Junjun Zheng received the B.S.E. de-
gree in engineering from Fujian Normal Univer-
sity, Fuzhou, China, in 2010, and the M.S. and
D.Eng. degrees in engineering from Hiroshima
University, Higashihiroshima, Japan, in 2013
and 2016, respectively. In 2016 and 2017, he
was a Visiting Researcher with the Department
of Information Engineering, Graduate School of
Engineering, Hiroshima University. Since 2018,
he has been an Assistant Professor with the De-
partment of Information Science and Engineer-

ing, Ritsumeikan University, Japan. His research interests include perfor-
mance evaluation and dependable computing. Dr. Zheng is a member of the
Operations Research Society of Japan, the Reliability Engineering Associ-
ation of Japan, the Institute of Electrical, Information and Communication
Engineers, and the Institute of Electrical and Electronics Engineers.

Koichi Mouri received the B.E., the
M.E. and the Ph.D degree in computer science
from Ritsumeikan University in 1994, 1996 and
2000, respectively. He is a professor in Col-
lege of Information Science and Engineering,
Ritsumeikan University. His research interests
include operating systems, computer security
and computer network. He is a member of the
ACM, IEEE Computer Society, and Information
Processing Society of Japan.

Shoichi Saito received the B.E., the
M.E.received his B.S. and M.E. degrees in en-
gineering from Ritsumeikan University in 1993
and 1995, and became a research associate in the
Department of Computer and Communication
Sciences, Wakayama University in 1998. He re-
ceived his Dr. Eng. degree in 2000. He was an
assistant professor from 2003 and an associate
professor from 2005. He was an associate pro-
fessor in Nagoya Institute of Technology from
2006 and has been a professor from 2016. His

research interests are operating systems, security, and the Internet. He is a
member of ACM, IEEE CS, and IPSJ.

Eiji Takimoto received the B.E., the
M.E. and the Ph.D degree in computer science
from Ritsumeikan University in 1998, 2000, and
2015, respectively.He was an assistant profes-
sor in Ritsumeikan University from 2016. He is
a lecturer in Hiroshima Institute of Technology
from 2020. His research interests include com-
puter security, computer network. He is a mem-
ber of Information Processing Society of Japan.


