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PAPER

Coarse-to-Fine Evolutionary Method for Fast Horizon Detection in
Maritime Images

Uuganbayar GANBOLD†a), Junya SATO††b), Nonmembers, and Takuya AKASHI†c), Member

SUMMARY Horizon detection is useful in maritime image processing
for various purposes, such as estimation of camera orientation, registration
of consecutive frames, and restriction of the object search region. Existing
horizon detection methods are based on edge extraction. For accuracy, they
use multiple images, which are filtered with different filter sizes. However,
this increases the processing time. In addition, these methods are not ro-
bust to blurting. Therefore, we developed a horizon detection method with-
out extracting the candidates from the edge information by formulating the
horizon detection problem as a global optimization problem. A horizon
line in an image plane was represented by two parameters, which were op-
timized by an evolutionary algorithm (genetic algorithm). Thus, the local
and global features of a horizon were concurrently utilized in the optimiza-
tion process, which was accelerated by applying a coarse-to-fine strategy.
As a result, we could detect the horizon line on high-resolution maritime
images in about 50ms. The performance of the proposed method was tested
on 49 videos of the Singapore marine dataset and the Buoy dataset, which
contain over 16000 frames under different scenarios. Experimental results
show that the proposed method can achieve higher accuracy than state-of-
the-art methods.
key words: horizon detection, genetic algorithm, coarse-to-fine approach,
global and local features

1. Introduction

Autonomous surface vehicles have been developed for ap-
plications such as environmental protection and coastal
guard [1]. These vehicles usually utilize radar, light detec-
tion and ranging, inertial systems, and GPS for navigation
and obstacle detection [2]. With the rapid development of
computer vision and the increase in camera resolution, in-
formation from cameras is used to solve various problems,
such as object detection, recognition, and tracking. Videos
captured by optical systems are valuable for autonomous
surface vehicles to perceive surrounding information for ob-
stacle detection, remote control, and estimation of the spa-
tial orientation. Video processing in maritime scenarios is
quite challenging because of random camera shaking caused
by waves and the processing time of high-resolution images.

To address the above challenges, a horizon on maritime
images is used for the following purposes: estimation of the

Manuscript received March 23, 2021.
Manuscript revised July 14, 2021.
Manuscript publicized September 8, 2021.
†The authors are with Graduate School of Engineering, Iwate

University, Morioka-shi, 020–8551 Japan.
††The author is with Faculty of Engineering, Gifu University,

Gifu-shi, 501–1193 Japan.
a) E-mail: uuganbayar@scv.cis.iwate-u.ac.jp
b) E-mail: jsato@gifu-u.ac.jp
c) E-mail: akashi@iwate-u.ac.jp (Corresponding author)

DOI: 10.1587/transinf.2021EDP7064

spatial orientation of a camera/ship and image registration,
which aligns consecutive frames into a one-coordinate sys-
tem for object detection and object tracking [3]–[5]. In ad-
dition, the horizon is used to determine the region of interest
to reduce the processing time and false detection [5], [6].

Therefore, the accurate detection of the horizon line is
critically important for maritime image processing as an ini-
tial step. However, the detection of the horizon line faces
several issues caused by complex maritime environments,
such as waves, ocean color, light changing, and partial oc-
clusions by maritime objects. Another challenge is that the
pixels of the horizon line features are fewer than those of the
entire image [7]. Thus, an accurate extraction of the horizon
line features is required.

In the last two decades, several approaches have been
proposed for detecting the horizon line in maritime environ-
ments. In the maritime scenario, the horizon line is gen-
erally represented as a straight line because the sea sur-
face can be assumed to be flat and vanishes into a line on
the image plane. Related works can be divided into local
feature-based methods [8], [9], global feature-based meth-
ods [10], [11] and hybrid methods [5], [12]–[14]. The local
feature-based methods extract a line segment of the hori-
zon from local features such as edge information using line
detection techniques such as Hough, and Radon. Global
feature-based methods optimize the horizon line parameters
using the horizon features on the entire image. Although hy-
brid methods, which utilize both global and local features,
can achieve higher accuracy, the estimation of these features
for all horizon candidates requires considerable computation
time.

In this work, we formulate the horizon line detection as
an optimization problem and propose a new method called
coarse-to-fine evolutionary method, abbreviated as CFEM.
As suggested by the name, we adopted the genetic algorithm
(GA) to optimize the parameters of the horizon line. The GA
is an evolutionary algorithm that can optimize the param-
eters using a criterion, which concurrently assumes global
and local features. In addition, a coarse-to-fine approach
was adopted to accelerate the processing. First, the GA op-
timizes the parameters of the horizon line on down-sampled
image of input image by using an optimization criterion that
utilizes both global and local features. Then, the coarsely
estimated parameters from the previous step are fine-tuned
on a higher resolution image within a narrow range of line
parameters with the GA using local feature estimation.

Our main contributions are:
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• A heuristic approach, which is independent from edge-
extraction unlike existing methods;
• A combination of the GA and coarse-to-fine approach

for fast processing;
• Integration of local and global features in the optimiza-

tion criteria for high performance;
• A quick estimation of the local and global features for

fast processing.

In Sect. 2, we discuss related works on horizon detection and
the GA. Section 3 outlines the proposed method for horizon
detection. The experimental results and details of the pa-
rameters are discussed in Sect. 4. Finally, we conclude with
an overview of this study in Sect. 5.

2. Related Work

For most horizon detection methods in the maritime scene,
the horizon is considered a straight line. Related works can
be classified as local and global feature-based methods. The
local feature-based methods [8], [9] identify a prominent
line as a horizon line using line segment extraction meth-
ods from an edge information of the input image. Hough
transform [8], Radon transform [12], and line segmentation
algorithms are mostly used to extract line features from an
edge information. Although the horizon line can be detected
in real-time [8], [9], it cannot be established by a prominent
line owing to oceanic color differences and noise caused by
waves and blurring of an input image. Another limitation of
this approach is that it is difficult to distinguish the horizon
line from the extracted lines [7].

Several methods that improve the local feature-based
method have been introduced. Fefilatyev et al. [5] intro-
duced a candidate-first approach. First, a few candidate lines
are selected by the Hough transform based on an edge map.
Then, a global feature of the horizon line is used to find an
optimal solution from candidates, and calculates the differ-
ence of the color distributions in two regions divided by the
candidate line. A similar method was proposed by Lipschutz
et al. [15], in which a color histogram was used to model the
color-space distribution of two regions to reduce the pro-
cessing time. Prasad et al. [12], [16] used multi-scale edge
extraction approaches to extract edges from multiple images
filtered with different filter sizes and accurately extract the
edge information of the horizon line. In MSCM-LiFe [16],
Canny edge detection and Hough transform are used to se-
lect the first modal candidates on multiple images filtered
with different filter sizes and the maximum intensity vari-
ation is calculated to select the second modal candidates.
Then, to select the final solution from the candidates, the
goodness of the two modals and the geometric proximity
of the pair of modals are measured. In MusCoWERT [12], a
weighted edge map is computed for each image filtered with
a multi-scale filter and candidates are selected by the Radon
transform from the weighted edge map. Then a voting sys-
tem is used for the final solution from all the candidates.
Jeong at el. [17] combined multi-scale edge detection and

convolutional neural network for reliable edge extraction.
Then, they used linear curve fitting along with median filter-
ing to find an optimal horizon line. In experimental results
of [17], the above multi-scale approaches achieved the high-
est accuracy. But, they required expensive computation for
real-time processing in high-resolution images for detecting
the optimal horizon line.

In addition, global feature-based methods [8], [10],
[11], [15] have also been proposed. The global feature is
used as an optimization criterion to optimize the horizon line
parameters. The horizon line can be represented by two pa-
rameters, orientation and position. Ettinger et al. [10], [11]
considered that the horizon line divides an image into two
different regions, namely sky and sea, thus the difference of
the two regions was used as an optimization criteria. To find
the optimal parameters of the horizon line, they calculated
the statistical distance metrics of distributions in the two re-
gions for all combinations of the horizon line parameters.
These methods are not dependent on edge information and
they can detect the horizon line on blurred and noisy images.
They achieved real-time processing on a low-resolution im-
age using a coarse-to-fine approach. However, the result of
[12] shows that this method requires tens of seconds to de-
tect the horizon line on the high-resolution image because it
requires calculation of the statistical distribution of the two
regions for all candidates and uses exhaustive search to op-
timize the parameters.

Recently, sky-sea region extraction methods have been
proposed to reduce the processing time by restricting the
search region [13], [14]. Liang et al. [14] extracted the sky-
sea region using probabilities that were distributed on verti-
cally divided regions by weighted textures. Then, candidate
lines were extracted from the sky-sea region using an edge
detector and Hough transform. Finally, a voting method was
applied to obtain the final solution. The extraction of the
sea-sky regions reduced the processing time and false de-
tection. However, only part of the horizon line is obtained
when there are occlusions near the horizon and a large angle
gradient along the horizontal axis. Jeong et al. [13] also ver-
tically divided an image into several regions and extracted
the sky-sea region using the difference between the color
distributions of the consecutive regions. The difference be-
tween the two regions was calculated by the Bhattacharyya
distance, and a region with the largest distance was selected
as the sky-sea region. Then, multi-scale edge detection was
applied to the sky-sea region and merged into one edge map.
Finally, the Hough and least-squares methods were sequen-
tially used to find the horizon line.

Except for Ettinger’s methods [10], [11], the above
methods extract the candidates of horizon using local fea-
tures as edge information and use consecutive filtering on
several stages, which are based on features of the horizon.
One limitation of this approach is that filtered candidates
in the previous stage cannot be considered in the next stage,
even though these candidates have survival candidates in the
filtering of the next stages. Thus, multi-scale approaches
have been proposed to extract sufficient candidates in an
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early stage. However, these methods require along process-
ing time. In addition, Jeong et al. [13] stated that the meth-
ods that depend on edge information cannot detect the hori-
zon line when the input image is blurred or the boundary
between the sky and sea region is gradually changed.

Therefore, in our previous study [18], we proposed a
novel method that optimizes the parameters of the horizon
line. For the fast and accurate detection of the horizon, we
considered several improvements. First, we used global op-
timization algorithms to solve the horizon detection prob-
lem, and applied GA for efficient optimization to reduce the
processing time. Second, instead of considering all pixels
of an image for each combination of the horizon line param-
eters, such as in [10], we defined the local features of the
horizon line using a vanishing line characteristic. The result
of [18] shows that utilization of the local features of the hori-
zon for optimization criteria can reduce the processing time
and can increase an accuracy. However, this method has
limitation in certain scenarios such as for mostly occluded
horizon and drastic changes in the color of the sea.

Our study extends the previous method [18] for im-
proving accuracy by adding the factor of global feature to
the optimization criterion. Consequently, the accuracy of
the proposed method was improved in frames, whose sea
color drastically changes. One advantage of optimization-
based approaches is that several optimization criterion can
be used as fitness functions. In our case, local and global
features were utilized concurrently in the fitness functions.

3. Proposed Method

3.1 Overview

In this section, we introduce a horizon detection method
called coarse-to-fine evolutionary method. A diagram of
the proposed method is presented in Fig. 1. The pro-
posed method consists of three steps. First, an input im-
age is down-sampled and a probability map of the horizon
is created during the pre-processing stage. Before down-
sampling, the input image is filtered by a Gaussian filter.
The probability map of the horizon is used for optimiza-
tion criterion as a factor of the global feature of the hori-
zon in the next step. Subsequently, coarse-to-fine optimiza-
tion is performed for detect the horizon line. Coarse-to-fine
approaches are widely used in computer vision to improve

Fig. 1 Diagram of the proposed method.

the efficiency [19], [20]. In the coarse-optimization stage,
the parameters of the horizon are roughly optimized on the
gray-scale image of the down-sampled image. The global
and local features are concurrently utilized in the optimiza-
tion criterion. Finally, the fine-optimization of the parame-
ters is performed at high-resolution to improve the accuracy.
The fine-optimization stage is performed in a narrow region
close to the parameters that are roughly optimized by coarse
optimization.

For quick optimization of the horizon line parameters,
GA is used, which provides optimization utilizing fewer
combinations of parameters compared to exhaustive search.
The GA is broadly applied to efficiently solve combinatorial
optimization problems in computer vision such as template
matching and object detection [21]–[23].

For all optimization methods, an optimization criterion
significantly affects the processing time and accuracy. We
introduced the fast estimation of local and global features
for the optimization criteria. In the next subsection, for hori-
zon detection, a GA and utilization of local and global fea-
tures are presented.

3.2 Optimization by Genetic Algorithm

The horizon is projected onto a single line in an image plane.
Therefore, the problem of the horizon detection can be re-
garded as a global optimization problem. GA is a popular
evolutionary algorithm for global optimization and has been
applied to various combinatorial optimization problems in
computer vision [21], [23]. Thus, we used the GA to opti-
mize the parameters of horizon line in both coarse and fine
optimization. A simple GA requires the generation of an ini-
tial population of individuals for every frame of a sequence.
Each individual within the population represents a possible
solution, a so-called candidate. For every iteration, the indi-
viduals of the population are evaluated by a fitness function,
and then updated by genetic operations such as selection,
crossover, and mutation.

The generation of an initial population for each frame
of a sequence is time-consuming. Therefore, we used evo-
lutionary video processing (EVP) [24]. It generates the ini-
tial population once at the initial frame of a sequence and
inherits a population of the last generation into an initial
generation of the next frame. Akashi et al. [24] stated that
evolutionary video processing can improve optimization ac-
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curacy and reduce processing time. In addition, we used an
elite saving strategy to improve the efficiency of GA, which
is the process of preserving previous high-performance so-
lutions from the current generation to the next. To solve the
combinatorial problem with GA, a representation of a solu-
tion to the problem as chromosomes and a formulation of
the fitness function must be determined, which are essential
for optimization accuracy and speed, and will be explained
in the following sections.

3.2.1 Representation of Parameters in Chromosomes

The chromosome of an individual is often represented by bit
strings because of it is faster than the real coded GA in the
processing of crossover and mutation operations [21]. The
chromosome contains a set of parameters, that are neces-
sary to solve a problem. In our case, the horizon can be a
straight line, and the ground truth of the horizon line is given
by a straight line on the datasets [4], [25]. Hence, a horizon
can be represented by two parameters of the straight line:
vertical position Y and orientation angle θ. An adjustment
values for the two parameters decoded as a chromosome of
individuals. These were the orientation ρ and the height ad-
justments of the horizon line λ. Y and θ were calculated as
follows,

Y = (Y0 + λ), (1)

θ = (θ0 + ρ), (2)

where Y0 is the initial vertical position, and θ0 is the initial
orientation angle. In the coarse-step optimization, the initial
value of the vertical position Y0 = H/2 was located in the
center of an image, and the initial value of orientation θ0 = 0
was set parallel to the horizontal edge of the image. In the
fine-step optimization, the initial parameters of the horizon
line were the elite-candidate-line parameters of the coarse-
optimization stage as follows,

Y0 = Ye × S , (3)

θ0 = θe, (4)

where Ye and θe are the elite-candidate-line parameters of
the coarse-optimization stage, and S is a scale used to down-
sample an input image into a low-resolution image.

3.2.2 Designing of the Fitness Function

In a GA, a fitness function is used to guide the simulation
toward an optimal solution, and it evaluates the goodness of
each individual. Therefore, designing the fitness function
is very important for quick convergence on an appropriate
solution, and it has a significant impact on computational
time. The fitness function should precisely evaluate how to
fit a given solution and should be fast to compute. Existing
optimization-based [11], [15] methods for horizon detection
use an optimization criterion, which calculates the color dis-
tribution across all pixels of an image. Thus, these methods
require a significant amount of time to achieve an accurate

detection of the horizon line. In our previous work [18],
we determined the local feature of the horizon line, which
was used in the fitness function. As a result, the process-
ing speed and accuracy of horizon detection was improved.
However, the method in [18] failed in certain scenarios, such
as changes in the color of the sea and the mostly occluded
horizon line. To improve the accuracy in the above scenar-
ios, we assumed a global feature factor in the fitness func-
tion. As mentioned before, the global feature estimation for
each candidate is time-consuming because it covers a wide
area of the input image. Thus, we created a probability map
of the horizon line in the pre-processing stage and used it as
a global feature factor in the fitness function. In the coarse
step, the fitness function F was designed with the global
feature factor G and local feature factor L as follows,

Fc(Y, θ) = G(Y) × L(Y, θ). (5)

In the fine-tuning step, the global feature factor effects
were weaker than those of the local feature factor for the
optimization because the position of the horizon line was
roughly determined in the coarse-optimization. Therefore,
we assumed only the local feature factor in the fine-tuning
step into the fitness function as follows,

F f (Y, θ) = L(Y, θ). (6)

3.3 Global Feature

In the pre-processing stage, an input image is filtered by the
Gaussian filter and downsampled. The downsampled im-
age was used for global feature estimation and coarse stage
optimization. Global feature estimation covers all pixels of
image, but it is computationally expensive. Thus, we cre-
ate a probability map of the horizon, which indicates the
probability of the horizon at each row of an image. The
map was used as a global feature factor in the fitness func-
tion. A textural feature and a color feature were used to
extract the region that contains the horizon [13], [14]. Al-
though both features are significant in extraction process for
input images without blur, the textural feature is not appli-
cable, where the color feature performs better. We used a
color feature to determine the probability of existence of the
horizon, similar to [13]. The creation steps of the probabil-
ity map of the horizon are shown in Fig. 2. First, the image
were divided into nine regions (I = 9). The height of these
regions h was a fifth of the image height H, and 50 percent of
the regions overlapped with neighboring regions as shown in
Fig. 2 (b). The region with larger change in color distribu-
tion compared with neighboring regions has a higher prob-
ability of containing the horizon. A color histogram was
calculated for each region to evaluate the color distribution
due to processing speed considerations, and N = 64 bins
were used for each color. To compare the histograms of two
regions, the Hellinger distance was calculated as follows,
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Fig. 2 Creation steps of the probability map of horizon. (a) Downsampled image, (b) divided regions,
(c) existence probability of horizon for each region, (d) probability map of horizon.

Fig. 3 (a) Description of the horizon line in image plane, where bold line h indicates horizon line, the
line X is line which intersects with h on the image plane I passes through the camera center C and is
parallel to the sea surface plane O, the p j and pi pixels of image, the s j and si are regions of sea surface
those are projected into p j and pi respectively. (b) Local features of the horizon line in the sample frame
and can be estimated in a narrow range close to the horizon.

D(Rn,Rm) =

√√√√√
1 −

∑N−1
j=0

√
Hn( j) × Hm( j)√∑N−1

j=0 Hn( j) ×∑N−1
j=0 Hm( j)

, (7)

where Hn and Hm are the histograms of neighboring regions
Rn and Rm, respectively. H( j) indicates the j-th bin of the
histogram. Then, as shown in Fig. 2 (c), the existence prob-
ability of horizon was calculated for each region as follows,

P(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D(Ri,Ri+1) if i = 0

D(Ri,Ri−1) if i = I − 1
D(Ri,Ri−1)+D(Ri,Ri+1)

2 otherwise

, (8)

where I is the number of the divided regions and nine in this
research. Subsequently, a probability map of horizon was
created for each row of the image as shown in Fig. 2 (d). The
probability of horizon at Y-th row of the image is calculated
as follows,

G(Y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P(0) if Y < h/2

P(I − 1) if Y > (H − h/2)
P(� Y

(h/2) �−1)+P(� Y
(h/2) �)

2 otherwise

. (9)

3.4 Local Features

For the fast evaluation of a candidate line, we defined the lo-
cal features of the horizon line using a vanishing line char-
acteristic. As shown in Fig. 3 (a), we propose three essen-
tial characteristics. First, the horizon line is a straight line.
Second, an appearance of the above horizon line is different
from that of the side below the horizon line. Third, regions
close to the horizon line tend to be texture-less. The reason
is that the wide area of the sea surface is projected to a few
pixels near the horizontal. Thus, the regions, which are close
to the horizon line, have texture-less. As shown in Fig. 3 (b),
these characteristics can be estimated in the narrow regions
close to the horizon line as local features. Reducing the area
of the region, which evaluates the candidate, can reduce the
processing time of the optimization process. The same local
feature estimation is used in both the coarse and fine-step
optimizations. In addition, the local features are estimated
on a gray-scale image using the following equation:

L(Y, θ) =
1

Nc ×Wmax
×

Z∑
j=1

K∑
i=0

C(Y, θ, j, xi), (10)

where Z is a parameter to control the evaluation range of
the local feature, K is the number of samples according to
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the image width (W) and it is K = W/d. d is the sampling
step and xi follows xi = i × d. C is a function to estimate
the local feature of the horizon line and it consists of the
following three functions:

C(Y, θ, j, xi) = AB(Y, θ, j, xi) + A(Y, θ, j, xi)

+ B(Y, θ, j, xi),
(11)

where AB is a function that estimates the difference in ap-
pearance above and below the horizon area. A and B are
functions that estimate the texturelessness of the above and
below-side regions of the horizon line, respectively. To es-
timate the local features at given Y , θ, j, and xi, four pixels
(S 1, S 2,M1, and M2) were assumed, as shown in Fig. 4.
The S 1 and M1 points are symmetric with respect to the
candidate line and symmetric to point O1. The S 2 and M2
points are symmetric with respect to the candidate line and
symmetric to point O2. O1 and O2 are points on the candi-
date line at a given xi and xi − d/2, respectively. When the
four pixels are in the image plane, the function C is calcu-
lated using Eq. (11) otherwise C is 0. Nc is the total number
of combinations of Y , θ, j, and xi, when the four pixels are
in the image plane. A Wmax is the total value of the weights
of the features used in functions AB, A, and B. Function AB,
A, and B are as follows:

AB(Y, θ, j, xi) =

⎧⎪⎪⎨⎪⎪⎩w1 if |IS 1 − IM1| > T

w2 otherwise
, (12)

A(Y, θ, j, xi) =

⎧⎪⎪⎨⎪⎪⎩w3 if |IS 1 − IS 2| < T

0 otherwise
, (13)

B(Y, θ, j, xi) =

⎧⎪⎪⎨⎪⎪⎩w4 if |IM1 − IM2| < T

0 otherwise
. (14)

Here, AB counts symmetric points with respect to the can-
didate line with a different color. Functions A and B count
the points that have similar neighboring points along with
the candidate line. IS 1, IS 2, IM1, and IM2 are the pixel values
at S 1, S 2, M1 and M2, respectively. As shown in Fig. 4, the
distance from the points S 1, M1, S 2, and M2 into the can-
didate line is j. A threshold value of T is used to evaluate

Fig. 4 Local feature estimation. Four pixels are used for local feature
estimation at given Y , θ, j, and xi. These are S 1, S 2,M1, and M2. The red
line describes a candidate line given by an orientation angle θ and a vertical
position Y .

whether the points are similar or different. w1, w2, w3, and
w4 are the weights of the features.

4. Experimental Results

4.1 Dataset and Evaluation Criteria

We verified the performance of the proposed method using
the Singapore Maritime Dataset (SMD) and Buoy-Dataset
(BD), which are publicly available. The SMD consists of
onboard and onshore videos. The onboard videos were cap-
tured by a camera mounted on a moving board, and the on-
shore videos are captured by a static camera installed on-
shore. The videos contain complex maritime scenes that
have strong noise caused by wakes and waves, and color
changes in the sea. The resolution of the SMD videos was
1920 × 1080 pixels. The BD consists of videos captured
by a camera mounted on a floating buoy with resolution of
800 × 600 pixels. A challenge for the onboard videos of
SMD and BD is the large variation in the orientation and
position of the horizon line between adjacent frames. The
details of SMD and BD are given in Table 1. The ground
truth of the horizon line is given by the vertical position Y
and the orientation angle θ.

In previous studies [2], [7], [12]–[14], the performance
is commonly evaluated by mean absolute error (MAE) and
percentile error at 25th, 50th, and 95th. The 95th percentile
error indicates the detection result on complex scenes and
it is used to imply that the how detection method is robust
and consistent over datasets with great diversity [12], [13].
To compare our results, our study used the same percentile
errors. Moreover, MAE was used for analyzing parameter
analysis.

4.2 Parameter Setting

The proposed method needs to adjust the values of the pa-
rameters. Because they affect the performance, it is neces-
sary to investigate the optimal values of parameters. How-
ever, the number of parameters is very large. Hence, we
focused on population size, generation size, and threshold
of the local features (T ) because these have a significant in-
fluence on performance. The experimental results are de-
scribed in Sect. 4.3. The other parameters were empirically

Table 1 Details of Datasets [12].

Dataset Buoy Singapore maritime

Onboard Onshore

No. of videos 10 11 28

No. of frames 996 2772 12604

Min(Y-mean(Y)) -281.68 -436.30 -13.54

Max(Y-mean(Y)) 307.82 467.86 9.95

Standard deviation of Y 107.98 145.10 1.52

Min(θ-mean(θ)) -15.72 -26.34 -9.99

Max(θ-mean(θ)) 20.72 12.99 0.51

Standard deviation of θ 4.40 1.11 0.04
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fixed. The details are described as follows. The popula-
tion and generation sizes of the GA are 20 and 20 in both
coarse and fine optimization stages. The crossover and mu-
tation probabilities are 0.6 and 0.07, respectively, which af-
fect the convergence speed and diversity of the population.
The orientation adjustment parameter ρ and height adjust-
ment parameter λ are decoded from the chromosome. In the
coarse-optimization stage, the adjustment ranges of each pa-
rameters are described as follows,

• Orientation adjustment ρ: [−π/4, π/4],
• Height adjustment λ: [−3H/5, 3H/5].

To detect the horizon line that is particularly out of an image,
we set the range of height adjustment by a value that larger
than the height of an image. In coarse optimization, the pa-
rameters were roughly optimized. Hence, in the fine-step
optimization, the orientation and height adjustment ranges
exhibited a reduction of six times and two times, respec-
tively, with the ranges of coarse optimization. The chromo-
some length has 16 bits because each parameter is repre-
sented by eight bits in both optimization stages. We down-
sampled the input image for global feature estimation and
coarse optimization. The scale to downsample was S = 1/4
for the BD and S = 1/8 for the SMD. For quick local fea-
tures estimation, the range parameter to evaluate the local
features was Z = 6 and the sampling step was d = 4. In ad-
dition, the threshold value was T = 20, and the weights of
the local feature were w1 = 3, w2 = −2, w3 = 1, and w4 = 2.

4.3 Effectiveness of EVP and Parameter Analysis

As described in Sect. 3.2, in our coarse-to-fine evolutionary
method, the EVP is used for the optimization of HL param-
eters. In this section, to confirm the effectiveness of EVP
in this study, its performance was compared with the simple
GA (see Sect. 3.2) and exhaustive search (ES) on the SMD.
The same fitness function was used for the EVP and the sim-
ple GA, also the same function was used as an evaluation
function in the ES. In the experiment of this paper, the same
size of candidates was used in both coarse and fine optimiza-
tion stages. In the EVP and simple GA, the population and
generation sizes were the same, 5, 10, 20, 30, 40, and 50.
In the ES, we uniformly sampled the search space of two
parameters (Y and θ) for HL and the sampling resolutions
were similarly 5, 10, 20, 30, 40, and 50.

Figure 5 shows the MAE of vertical position and aver-
age processing time per frame on various numbers of can-
didates. The MAE of EVP was smaller than the simple GA
and ES in all the candidate sizes. Moreover, the processing
times of all methods were almost the same. Therefore, the
EVP is effective for HL detection on the video. Although the
number of candidates on each stage increased from 20× 20,
the accuracy of the EVP increased a little. Considering fast
detection of HL, 20 and 20 for the population and generation
sizes were optimal combination for the proposed method.
Hence, these values were used for comparison experiments
with related work.

Fig. 5 Accuracy and processing times (EVP, simple GA, and ES), which
were performed by fixing the threshold value of the local features (T = 20)
and changing the number of candidates on SMD.

Fig. 6 Accuracy of the proposed method, which was performed on two
datasets, SMD and BD by fixing the generation and population sizes (set as
20) and changing the threshold value of the local features.

To find the optimal threshold value of the local features
(T ), various values were set to the proposed method to com-
pare. The results are shown in Fig. 6. The lowest MAEs on
BD and SMD were T = 10 and T = 20, respectively. How-
ever, while comparing our method with related works, we
used the same threshold value T = 20 on all datasets like
Ganbold et al. [18].

4.4 Comparison Results and Consideration

The performance of the proposed method was compared
with the state-of-the-art HL detection methods, which were
compared in [13]. For fair comparison, the same datasets
and same evaluation criteria are used in this study. Jeong
et al. [13] compared their proposed method on the SMD
and BD with state-of-art methods including MusCoW-
ERT [12], MSCM-Life [16], the method of Fefilatyev et al.
(FGSL) [25], the method of Lipschutz et al. (LHSL) [15]
and two methods on [8] those are the Hough method
(Hough) and the intensity variation analysis based method
(IntV). We briefly summarize the above methods in the re-
lated work section. As far as we know, there is no method
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Table 2 Comparision of horizon detection on onboard videos from the SMD

Vertical position error (pixels) Orientation angle error (degrees)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Jeong ROI [13] 0.51 1.23 3.99 0.05 0.12 0.39

MusCoWERT [12] 0.54 1.49 8.17 0.06 0.25 0.88

MSCM-Life [16] 1.16 2.84 505.78 0.17 0.38 5.50

LHSL [15] 13.78 25.65 507.92 0.88 1.37 6.52

FGSL [13] 5.28 10.85 581.44 0.67 1.00 3.88

IntV [8] 13.36 24.89 498.17 0.87 1.35 6.12

Hough [8] 2.27 221.67 520.34 0.25 1.00 4.57

Ganbold [18] 0.58 1.26 4.74 0.06 0.14 0.55

Ours (CFEM) 0.51 1.09 3.83 0.05 0.11 0.44

Table 3 Comparision of horizon detection on onshore videos from the SMD

Vertical position error (pixels) Orientation angle error (degrees)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Jeong ROI [13] 0.99 2.09 12.87 0.04 0.10 0.67

MusCoWERT [12] 1.14 2.63 11.41 0.14 0.21 1.07

MSCM-Life [16] 1.63 3.88 81.59 0.11 0.18 1.14

LHSL [15] 14.96 27.92 109.00 0.75 1.03 3.86

FGSL [13] 5.88 11.53 64.70 0.75 1.00 2.87

IntV [8] 2.08 5.82 39.89 0.14 0.52 5.37

Hough [8] 3.12 165.02 460.24 0.14 0.36 3.80

Ganbold [18] 0.83 1.94 32.72 0.03 0.09 0.44

Ours (CFEM) 0.77 1.95 11.00 0.03 0.07 0.74

Table 4 Comparision of horizon detection on videos from the Buoy

Vertical position error (pixels) Orientation angle error (degrees)

25th percentile 50th percentile 95th percentile 25th percentile 50th percentile 95th percentile

Jeong ROI [13] 0.53 1.07 2.98 0.07 0.15 0.45

MSCM-Life [16] 1.54 2.97 11.56 0.33 0.57 11.56

LHSL [15] 0.66 1.50 3.76 0.17 0.33 0.67

FGSL [13] 0.60 1.35 3.84 0.18 0.36 0.79

IntV [8] 0.84 1.91 55.06 0.14 0.32 13.24

Hough [8] 0.77 1.76 4.46 0.18 0.37 0.89

Ganbold [18] 0.44 0.94 2.74 0.08 0.17 0.59

Ours (CFEM) 0.37 0.80 2.29 0.06 0.14 0.44

to use previous frame information.
The statistics of the errors in parameters Y and θ on

SMD are listed in Tables 2 and 3. The statistics of the errors
in parameters Y and θ on BD are listed in Table 4. The ex-
perimental results show that the proposed method performs
better on the SMD and BD datasets. In particular, the me-
dian positional error and median orientation error of the pro-
posed method were relatively smaller than those of all the
compared methods in all datasets. In addition, the proposed
method can detect the horizon line when the input image
is blurred, as shown in the bottom image of Fig. 8 (d). In
the 95th percentile, the orientation angle error of [13] was
smaller than that of the proposed method on the SMD, but
the position error of the proposed method was smaller than
that of the other methods. As shown in Fig. 7, the utiliza-
tion of global features in optimization criteria had the effect
of reducing false positives caused by changes in sea color.

Fig. 7 Comparison of the detection results. (a) Result of [18]. (b) Result
of proposed method.
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Fig. 8 Sample frames of horizon detection results using the proposed method. (a) the detection re-
sults the onboard dataset of SMD. (b) Detection results on the onshore dataset of SMD. (c) Detection
results on BD. (d) Detection results on complex scenarios, with occlusion of the horizon and blurred im-
ages. The red and blue dashed lines indicate the detection result of the horizon line and the coarse-step
optimization result, respectively, and the green line indicates the ground truth.

Table 5 Average processing time per frame in seconds

Onboard Onshore Buoy

Jeong ROI [13] 0.07 0.07 0.02

MusCoWERT [12] 9.2 9.5 5.8

MSCM-Life [16] 6.73 6.83 2.26

LHSL [15] 13.75 13.76 2.30

FGSL [13] 36.58 36.63 8.61

IntV [8] 0.30 0.30 0.01

Hough [8] 0.11 0.10 0.01

Ganbold [18] 0.04 0.04 0.02

Ours (CFEM) 0.05 0.05 0.02

Although the vertical position error decreased, orientation
angle error increased when the horizon line was mostly oc-
cluded by objects, as shown in the bottom row images in
Fig. 7.

Average processing times per image by our and com-
parative methods are provided in Table 5. The results of the
Jeong ROI [13], MSCM-Life [16], FGSL [25], LHSL [15],
Hough [8], IntV [8] were taken from [13]. They were im-
plemented using Phyton and executed on an Intel E5-1680
CPU. The MusCoWERT was taken from [12] and it was
implemented using MATLAB 2015b, and the result was
obtained on an Intel i7-3770 CPU. The proposed method
and method of Ganbold et al. [18] were implemented us-
ing C/C++ and were executed on an Intel i7-3770 CPU.
The MusCoWERT, MSCM-Life, FGSL, and LHSL were re-
quired several seconds per image. The methods of IntV and
Hough were relatively fast, but they were low detection ac-

curacy. The methods of Jeong ROI [13], Ganbold et al. [18],
and the proposed method processed the image within one-
tenth seconds and they were reliable detection accuracy.

The experimental results demonstrate that the proposed
method can detect the HL at high speed with high accu-
racy, is effective for HL detection on high resolution video
data. Example frames of the horizon line detection results
for SMD and BD are shown in Fig. 8 which indicates that the
proposed method accurately detected the horizon line in var-
ious maritime scenes. The detection results for complex sce-
narios are shown in Fig. 8 (d). The proposed method failed
for data in which the horizon line was mostly occluded by
objects.

5. Conclusion

In this study, we proposed a novel fast horizon line detection
method that optimizes the horizon parameters by using a
GA. We also adopted a coarse-to-fine approach to meet real-
time processing requirements. In addition, we introduced a
fast estimation of global and local feature estimations for
quick optimization. Previous methods extracted the candi-
dates of horizon using the edge information and use consec-
utive filtering to find the final solution. A limitation of these
methods is that if the candidates cannot be extracted from
edge information in the previous stage, they are not con-
sidered in the next stage, even though these candidates are
survival candidates in the filtering of the next stages. Unlike
these methods, our method is a heuristic optimization-based
method and local and global features are concurrently uti-
lized to evaluate each candidate. The proposed method does
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not extract edge information from multi-scale images, and
even for blurred input images, it can detect the horizon line.

The proposed method was tested on the SMD and BD,
which are publicly available datasets that contain complex
maritime scenes. In addition, we compared the performance
of the proposed method with that state-of-the-art methods,
which used the same datasets. The experimental results in-
dicated that the proposed method could detect the horizon
line more accurately than the compared methods. In particu-
lar, the median positional error and median orientation error
of the proposed method were relatively smaller than those
of all the compared methods in all datasets. The process-
ing speed of our method was approximately 20 f ps for high-
resolution images. However, the proposed method failed in
scenarios in which the horizon line was mostly occluded by
objects as shown at the top of Fig. 8 (d). The mostly oc-
cluded case is out of range of the proposed method. In future
work, we plan to explore other optimization criteria and fea-
tures for robust detection of HL in complex scenarios such
as the horizon is mostly occluded and the coastal line is vis-
ible.
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