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PAPER

Feature Description with Feature Point Registration Error
Using Local and Global Point Cloud Encoders

Kenshiro TAMATA†a), Nonmember and Tomohiro MASHITA†, Member

SUMMARY A typical approach to reconstructing a 3D environment
model is scanning the environment with a depth sensor and fitting the ac-
cumulated point cloud to 3D models. In this kind of scenario, a general
3D environment reconstruction application assumes temporally continuous
scanning. However in some practical uses, this assumption is unacceptable.
Thus, a point cloud matching method for stitching several non-continuous
3D scans is required. Point cloud matching often includes errors in the fea-
ture point detection because a point cloud is basically a sparse sampling
of the real environment, and it may include quantization errors that cannot
be ignored. Moreover, depth sensors tend to have errors due to the reflec-
tive properties of the observed surface. We therefore make the assumption
that feature point pairs between two point clouds will include errors. In
this work, we propose a feature description method robust to the feature
point registration error described above. To achieve this goal, we designed
a deep learning based feature description model that consists of a local fea-
ture description around the feature points and a global feature description
of the entire point cloud. To obtain a feature description robust to feature
point registration error, we input feature point pairs with errors and train
the models with metric learning. Experimental results show that our fea-
ture description model can correctly estimate whether the feature point pair
is close enough to be considered a match or not even when the feature point
registration errors are large, and our model can estimate with higher accu-
racy in comparison to methods such as FPFH or 3DMatch. In addition, we
conducted experiments for combinations of input point clouds, including
local or global point clouds, both types of point cloud, and encoders.
key words: 3D environment reconstruction, point cloud, registration, ma-
chine learning

1. Introduction

A model of 3D real environment can be applied in many
cases, such as augmented reality applications that add vir-
tual interaction to the real environment, visiting houses with
a head-mounted display, and reconstructing indoor struc-
tures for creating floor plans of buildings. A model of the
real 3D environment can be created by scanning the envi-
ronment with a sensor and then merging the sensor data into
an entire model of the target environment.

The point cloud is a data format for representing a
3D shape on a computer, and a 3D model of the real en-
vironment can generally be created by aligning the posi-
tions of multiple point clouds. For example, some meth-
ods for creating 3D models such as Kinectfusion [1], DVO-
SLAM [2], ElasticFusion [3], and BundleFusion [4] have
been proposed. Current 3D real environment modeling ap-

Manuscript received April 12, 2021.
Manuscript revised July 30, 2021.
Manuscript publicized October 11, 2021.
†The authors are with Osaka University, Toyonaka-shi, 560–

0043 Japan.
a) E-mail: tamata.kenshiro@lab.ime.cmc.osaka-u.ac.jp

DOI: 10.1587/transinf.2021EDP7082

plications such as Kinectfusion are based on the assumption
that captured frames are temporally continuous. In other
words, the differences in camera angles and camera posi-
tions between frames are assumed to be small, and the ini-
tial positions between the point clouds are assumed not to
differ greatly. However in an actual use of 3D scanning,
some kinds of scanning error may occur, including a quick
and large rotation of a sensor which cannot be assumed as
a continuous scan or termination and restarting of the scan-
ning due to an application error. In this case, the assump-
tion of a temporally continuous scanning are not satisfied,
and the alignment of the point clouds will fail. Then the
user have to scan the target environment again from the be-
ginning. In addition, a procedure of parallel scanning with
multiple sensors and creating a 3D model by merging the
scans is impossible in the condition of the temporally con-
tinuous scanning.

Some methods to align point clouds that have greatly
different initial positions have been proposed such as 3D
Match [5] or PPF Net [6], [7]. These methods describe fea-
tures that express geometric structures which the detected
points and their surrounding points composed of. Then,
these point clouds are aligned by matching positions of the
detected points using the described features. However, de-
tecting the same position in the real world from the two
frames is difficult because detecting a point accurately in a
point cloud is not as feasible as detecting corners from RGB
images. This problem arises from the difference in the distri-
butions of a point cloud and the missing parts due to occlu-
sion or sensing errors. The density of a point cloud is basi-
cally dependent on the observation angle and distance to the
target object. Moreover, sensing noise, which is dependent
on the characteristics of the sensor and object’s surface, also
affects the distribution of a point cloud and missing parts.
Thus, a point pair for starting the stitching process between
two point clouds should ideally be at the same point, but
this is not guaranteed even when taken from the same po-
sition. Moreover, some parts of the environment cannot be
observed by the sensor due to occlusion or reflection. In this
case, some of the corresponding feature points may not ex-
ist because the missing parts of two point clouds are differ-
ent. In this paper, we use “feature point registration error” to
describe the error in a pair of corresponding feature points
caused by sensing error or feature point detection error.

To achieve feature descriptions robust to feature point
registration error, we designed a feature description model
that uses local information around the feature points and
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global information from the entire point cloud. A pair of
local areas around a feature point with error sometimes dif-
fer significantly due to occlusion and camera angle. In this
case, an inference using local areas only for feature descrip-
tion fails. In addition, since there are usually many similar
local shapes but at different locations, the inference using
local areas only is not suitable. Feature description using
only the global information is greatly affected by the angle
and position of the camera since the overall shapes of the
point clouds varies by the angle and position of the camera.
We therefore design a feature descriptor robust to the errors
of point clouds measured temporally and discontinuously by
combining local and global information.

2. Related Work

Point cloud matching can be classified into coarse match-
ing and fine matching [8]. In a coarse matching, a transfor-
mation matrix for a rough registration of two point clouds
is estimated from feature points detection, description and
matching. In a fine matching, a transformation matrix for
the detailed alignment is estimated after a coarse match-
ing. Iterative closest point algorithm [9] is often used for
fine matching.

3D hand-crafted descriptors using local geometric
structures of point clouds including FPFH [10], PFH [11],
SHOT [12], Spin Images [13], and USC [14] have been pro-
posed. FPFH describes the features by searching neighbor
points in a certain range for each feature point and creating
histograms about the relationship of angles and distances to
each neighboring point. SHOT describes the features by di-
viding the region around a feature point into 32 regions and
for each region, computing the inner products of the normal
vectors of the points in the region and the normal vector of
the feature point.

3D learning based descriptors including 3DMatch [5],
PPFNet [6], perfect Match [15], and FCGF [16] have been
proposed. In order to learn point cloud data, point
cloud encoders including PointNet [17], PointNet++ [18],
DGCNN [19], Spidercnn [20], and Shell Net [21] also have
been proposed. For example, PointNet classifies or seg-
ments the input point clouds. In those kinds of tasks, Point-
Net describes feature vectors for each point using a parame-
ter shared model. In a classification task, PointNet describes
a class vector by describing a global vector from feature vec-
tors using max pooling or average pooling and inputting the
global vector to MLP layers. In a segmentation task, Point-
Net describes category vectors for each feature vector by
concatenating each feature vector and the global vector and
inputting them to parameter shared MLP layers.

Basically the above mentioned studies on feature de-
scription do not take into account sensing error and feature
point detection error, and they are designed based on the as-
sumption that a matched pair of two feature points should
be at the same or close location. However in the case of
an actual point cloud, a corresponding pair of feature points
may includes the previously mentioned registration errors.

To deal with those sensing error and feature point detection
error, in this study, we introduce a feature descriptor that is
robust to the feature point registration error in a point cloud
matching.

3. Method

We propose a method of feature description that accepts fea-
ture point registration error for aligning point clouds mea-
sured with temporal discontinuity. Figure 1 is the concept
of our feature descriptor. We design the feature descriptor
so that the distance between feature vectors will be close in a
feature space if the distance of the feature points is within τd

cm of each other in the real environment, and the distance
between feature vectors will be far in the feature space if
the distance of the feature points is further than τd cm from
each other in the real environment. To achieve this goal,
we apply metric learning to train the feature descriptor. We
therefore design the feature descriptor, which takes the local
area point cloud around the feature point and the entire point
cloud as input and train the descriptor by a metric learning
using contrastive loss [22] or triplet loss [23].

3.1 Feature Description Using Local and Global Area

We consider that local information may not be enough to
estimate whether the feature point pair is close enough to
be considered a match or not because the local shape may
be similar, but the location may be different in the real en-
vironment. For example, the local shape of a flat surface is
very common in indoor environments and to find a correct
pair of feature points using only local flat surface informa-
tion is very difficult. On the other hand, the point cloud
of a global area generally has rich and unique information
but its shape is highly depending on the sensor’s position,
orientation and so on. To achieve accurate feature descrip-
tion, we combine both local and global information. The
global area information has the geometric structure of the
whole point cloud, which can solve the problem that the lo-
cal shape may be similar, but the location may be different
in the real environment. In addition, the local area infor-

Fig. 1 An example of the feature point registration error. The green fea-
ture point p1 sampled from the upper point cloud, the corresponding point
at the same location in the lower point cloud is p2, and p3 is a feature point
registration error at the same location. p4 is a different position point as
p1 in the real environment. Our goal is to make a feature descriptor that
describes that the distances between the feature vectors of p1 and p2, p3
are close in the feature space, and the distance between the feature vectors
of p1 and the different position point p4 is far.
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Fig. 2 (a) and (b) are properties of a local area point cloud pair with the
feature point registration error. The orange area and circles show overlap,
and the black circles show non-overlap due to the feature point registration
error. The black arrows show the relationships between a feature point and
its surrounding points. In (a), blue and green local areas have the feature
point registration error, and the appearance varies by the error. However,
they have a large overlapping area. (b) shows that relationships between a
feature point and its surrounding points vary significantly due to the feature
point registration error even when the local area point cloud pair has a large
overlapping.

mation does not vary by a difference of a camera position
significantly, which can solve the problem that the shape of
the global area point cloud varies by the camera position
difference. In the feature description using local and global
area information, we consider that the local area information
should have detailed geometric structure in order to recog-
nize a feature point registration error. On the other hand,
the global area information should have a rough geometric
structure of the entire point cloud in terms of computational
cost and recognition accuracy. As an input point cloud for
describing features, we consider that a dense point cloud is
appropriate for a local area point cloud to recognize the de-
tailed local geometric structure, and a sparse point cloud is
appropriate to recognize the geometric structure of the en-
tire point cloud roughly. Therefore, we define the local area
point cloud as the dense point cloud sampled by nl points
existing within τl cm from the feature point and the global
region point cloud as the sparse point cloud sampled by ng
points from the entire point cloud.

3.2 Local Feature Description

Because the local area point cloud has a higher resolution of
local geometric structures compared to the global area point
cloud, the local area point cloud is more affected by the fea-
ture point registration error than the global area point cloud.
Figure 2 shows the influence of the feature point registration
on the local area point cloud pair. The appearances of the
local area point clouds vary with the feature point registra-
tion error, and the relationships between the feature points
and the surrounding points vary significantly with the error.
However, the local area point cloud pair has a large overlap-

Fig. 3 Our model uses both the local area points around the feature point
and the global points sampled from an original point cloud for feature de-
scription. In this paper, we call the local area encoder C-Net module and
the global area encoder S-Net module, and we call the model combining
these two models CS-Net.

ping area even when the pair has feature point registration
error. Therefore, in order to describe a local area feature that
is robust to the feature point registration error, we consider
describing the whole geometric structure of the local area to
be appropriate, instead of describing a relationship between
a feature point and surrounding geometric structure. Then,
local area feature description robust to the feature point reg-
istration error will be possible by detecting the overlap of
geometric structures between the local area point clouds.

3.3 Global Feature Description

The global area point cloud has a lower resolution com-
pared to the local area point cloud and has a whole geo-
metric structure of a point cloud. In addition, because the
global area point cloud is sampled over a wide range, the
global area point cloud is less affected by the feature point
registration error than the local area point cloud. The global
area feature should have information about where the fea-
ture point is located in the whole point cloud in order to
correctly estimate the feature point pairs that have the same
local geometric structure but different locations in the real
environment as we mentioned in Sect. 3.1.

3.4 Overall Model

Our model consists of two encoding blocks, the local area
encoder for a point cloud around the feature point and the
global area encoder for a point cloud as shown in Fig. 3. The
local area encoder describes a 128-dimensional feature vec-
tor, and the global encoder describes a 256-dimensional fea-
ture vector. After encoding the local and global area point
clouds, these output vectors are combined and input to the
fully connected layer to describe a feature vector of the fea-
ture point. The fully connected layer consists of input, in-
termediate, and output layer and they have 384, 512, 256
nodes, respectively.

We designed the local area encoder based on a model
that performs a classification task. The classification task
model is based on machine learning models such as Point-
Net [17], PointNet++ [18] and DGCNN [19]. It describes
a class vector by describing the feature vectors of the re-
lationships between each input point and other points and
summarizing the feature vectors using max pooling. This
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Fig. 4 C-Net module takes a local area point cloud around the feature
points from the original point cloud and describe a local area feature. The
local area point cloud has a higher resolution compared to the global area
point cloud. C-Net module, which is designed based on a classification
model, describes a local area feature using the local area point cloud.

Fig. 5 S-Net module takes the feature point and a global area point cloud
sampled a certain number of points from the entire original point cloud.
The global area point cloud has a lower resolution compared to the local
area point cloud, however it has the entire geometric structure information.
S-Net module describes features with relationships between the global area
point cloud and feature point.

architecture describes the information of the whole geomet-
ric structure of the input point cloud. Therefore, we use
the architecture of the classification task model in order to
encode the local area point cloud, as shown in Fig. 4. We
employed DGCNN to encode the local area point clouds.

We designed the global area encoder based on a model
that performs a segmentation task. Generally, a model for a
segmentation task based on machine learning describes cat-
egory vectors for each input point and inputs category vec-
tors to parameter-shared, fully connected layers. For each
point, this architecture describes the relationship between
the point and the whole geometric structure of the input
point cloud. Therefore, we use the architecture of a model
for the segmentation task in order to encode the global area
point cloud, as shown in Fig. 5. We employed DGCNN for
encoding the global area point clouds, as well as the local
area encoder.

In this paper, we call the local area describing block,
the global area describing block, and the combined model
C-Net module, S-Net module, and CS-Net, respectively. We
aim to make a feature descriptor robust to feature point reg-
istration error by inputting feature point pairs including the
errors into CS-Net as training data.

4. Experiments

We evaluate how our method CS-Net describes feature vec-
tors robust to feature point registration error. To check if
CS-Net can presume that the pairs of feature point are pos-
itive or negative correctly even if the distances of the er-
rors of the positive pairs increase, we evaluate CS-Net using
the keypoint matching benchmark [5], [24], [25] on multi-
ple sets of pairs of feature points with different sizes of the
feature point registration error of positive pair respectively.
The keypoint matching benchmark is defined as

1
N

N∑

i=1

I( f (xn
i ) − f (yn

i )), (1)

I(x) :=

⎧⎪⎪⎨⎪⎪⎩
1, if ‖x‖ < θ
0, otherwise,

(2)

where N is the number of negative feature point pairs, the
function f (·) is a point cloud feature descriptor, xn

i and yn
i

are the negative feature point pair, and θ is a threshold at
which the recall of the positive pairs is 95%.

Keypoint matching benchmark calculates a false-
positive error rate, and the lower the false-positive ratio, the
better the performance.

4.1 Experiment Setup

We prepared datasets for training and evaluation using
3DMatch RGBD benchmark [5]. The datasets in the
3D Match RGBD benchmark consists of Analysis-by-
Synthesis [26], 7-Scenes [27], SUN3D [28], RGB-D Scenes
v.2 [29] and Halber et al. [30]. They contain RGB images,
depth images and camera positions obtained from 62 real
environments. The dataset we prepared was divided into a
training dataset and an evaluation dataset. These datasets
have triplets consisting of a base, positive and negative an-
chors. The training dataset has 30,000 triplets, and the eval-
uation has 10,000 triplets. The base, positive and negative
anchors have a local area point set and a global area point
set. We set the number of local area points to 2048, sampling
radius threshold to 30 cm, and number of global area points
to 2048, represented by nl, τl, and ng, respectively. CS-Net
is implemented with pytorch. We evaluated the both con-
trastive loss [22] and triplet loss [23], which are generally
used in metric learning, to train CS-Net. We train CS-Net
for 250 epochs using ADAM [31] with the learning rate of
0.001.

4.2 Comparison Results

To confirm that our method can describe feature vectors
robust to feature point registration error, we evaluated our
method with a keypoint matching benchmark [5] on the four
datasets with different feature point registration errors of the
positive pairs. The four datasets have positive pair errors of
0-5 cm, 5-10 cm, 10-15 cm, and 15-20 cm, and the errors of
the negative pairs are more than 20 cm for both training and
evaluation datasets. We compared our method with hand-
crafted methods, including FPFH [10], SHOT [12], and Spin
Image [13] and a learning based method, 3DMatch [5], us-
ing the datasets. The result of this evaluation is shown
in Table 1, which summarizes the error rate calculated by
Eq. (1) of each feature description model for each size of
feature point registration error. The results show that our
CS-Net model trained with contrastive loss performed best,
and CS-Net trained with triplet loss performed second best.
3D Match, the learning-based feature description method,
was better than hand-crafted features such as FPFH, SHOT,
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Table 1 We evaluate CS-Net and related works using a keypoint match-
ing benchmark for each dataset that has positive pairs with different sizes
of the feature point registration error. This table summarizes the error rate
calculated by Eq. (1). Our method is more accurate than related studies and
prevents a significant decrease in accuracy due to the errors.

0-5 cm 5-10 cm 0-15 cm 15-20 cm
CS-Net(triplet) 13.3 14.4 15.6 15.4
CS-Net(cont) 10.7 11.4 11.9 11.5

3DMatch(triplet) 49.7 49.9 53.3 57.8
3DMatch(cont) 52.1 55.6 59.2 64.6

FPFH 76.3 79.0 81.1 81.6
SHOT 90.3 91.8 91.8 91.8

Spin Images 92.6 93.2 92.5 93.8

and Spin Image. In addition, the accuracy of 3D Match de-
creases significantly with an increase of the feature point
registration error, whereas the accuracy of CS-Net only de-
creased marginally. These results show that CS-Net can de-
scribe features robust to feature point registration error.

4.3 Combination Study

As we mentioned in Sect. 3, we designed CS-Net based on
two assumptions. One is the assumption that the point cloud
feature descriptor should use both local and global area in-
formation as inputs, and the other is the assumption that C-
Net module is suitable for local area encoding and S-Net
module is suitable for global area encoding. To confirm
these two assumptions, we evaluated the combinations of
the different inputs and models. Moreover, we confirm the
performances of two loss functions for training CS-Net. The
results are shown in Table 2.

4.3.1 Local and Global Inputs

CS-Net consists of a C-Net module to encode a local area
and an S-Net module to encode a global area. In this sec-
tion, we confirm that whether we need to use both modules
by comparing C-local-Net, the model for only the local area
and S-global-Net, the model for only the global area. Ta-
ble 2 shows that performance of both inputs of local and
global area are better than the performances of C-local-Net
and S-global-net with contrastive and triplet loss. In addi-
tion, S-global-Net that uses only global areas performs bet-
ter than a C-local-Net that uses only local areas. There-
fore the models using only local area information do not
have the ability to describe the features in the matching of
point clouds measured discontinuously, and global area in-
formation is very important. We confirmed that the use of
global area information improves the feature description and
the use of local area information together with global area
shows better performance. However, the feature description
from only a local area is inefficient.

4.3.2 C-Net Module for a Local Area and S-Net Module
for a Global Area

In CS-Net, C-Net module describes features of the local

Table 2 We investigate the performance of the proposed method CS-Net
with different combinations of local area and global area point clouds and
C-Net module and S-Net module of encoders. This table also summarizes
the error rate calculated by Eq. (1), as well as Table 1.In the case of the both
inputs of global and local point cloud, the model name is described in the
order of the model describing the features of the local area and the model
describing the features of the global area. For example, CS-Net means a
combination of C-Net module for the local feature description and S-Net
module for the global feature description. In the case of the both inputs of
global and local point cloud, the model name is described in the order of
the feature descriptor and used input. For example, C-local-Net means the
model consisting only C-Net module for the local feature description. The
experimental results shows that CS-Net achieved the highest performance
and describing the global area point clouds by S-Net module is significant
for the feature description.

0-5 cm 5-10 cm 0-15 cm 15-20 cm

CS-Net(triplet) 13.3 14.4 15.6 15.4
CS-Net(cont) 10.7 11.4 11.9 11.5

CC-Net(triplet) 40.3 42.7 44.8 47.7
CC-Net(cont) 44.8 46.6 48.5 52.0
SS-Net(triplet) 16.0 16.5 17.8 19.2
SS-Net(cont) 13.4 13.8 14.0 14.4

SC-Net(triplet) 34.7 37.8 42.4 47.5
SC-Net(cont) 48.4 51.0 52.7 55.2

C-local-Net(triplet) 41.4 43.7 47.1 49.5
C-local-Net(cont) 44.9 45.8 48.0 50.8

S-local-Net(triplet) 62.8 65.2 65.8 68.9
S-local-Net(cont) 49.3 51.9 53.3 57.6

C-global-Net(triplet) 95.1 95.1 95.1 95.0
C-global-Net(cont) 94.9 95.0 95.1 95.0

S-global-Net(triplet) 17.7 18.7 18.6 17.7
S-global-Net(cont) 21.9 20.2 22.8 21.0

area and S-Net module describes features of the global area.
In this section, we confirm which module is more suitable
for local and global area encoding by comparing the perfor-
mance of C-local-Net and S-local-Net, and the performance
of C-global-Net and S-global-Net. Then we compare the
performances of all combination of two encoders in the case
of the both area.

Table 2 shows that C-local-Net performs better than S-
local-Net, and S-global-Net performs better than C-global-
Net unlike the case with only local areas. Therefore when
using either one of the two areas, C-Net module is suitable
for the local area feature description and S-Net module is
suitable for the global area feature description. In the case
of a feature description using both local and global areas,
CS-Net, SS-Net, SC-Net, and CC-Net perform better in that
order when using triplet loss, and CS-Net, SS-Net, CC-Net,
and SC perform better in that order when using contrastive
loss. Therefore when using the both local and global areas,
C-Net module is suitable for the local area feature descrip-
tion and S-Net module is suitable for the global area feature
description. The performances of both CC-Net and SC-Net,
which uses C-Net module to describe the global area, are
lower than that of CS-Net and SS-Net because C-Net mod-
ule can not learn the global area information. In addition,
the global information is supposed to have a very significant
role as discussed in Sect. 4.3.1, even when both areas are
used because CS-Net and SS-Net have better performance
than SC-Net and CC-Net. We therefore conclude that C-
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Net module is suitable for the local area feature description
because CS-Net performs better than SS-Net.

Compared with CS-Net, SS-Net and S-global-Net,
which uses the S-Net module for global feature description,
C-local-Net and S-local-Net, which use only local area for
feature description, tend to have a higher error rate as the
feature point registration error increases. This suggests that
using the information in the global area is important for the
feature description robust to the feature point registration
error because the information in the local area changes sig-
nificantly with feature point registration errors, and the in-
formation in the global area is less affected by that error.

4.3.3 Triplet Loss vs. Contrastive Loss

We used triplet loss and contrastive loss for training the
models. Table 2 shows that CC-Net, SC-Net, C-local-Net,
S-global-Net perform better with triplet loss, while CS-Net,
SS-Net, S-local-Net perform better with contrastive loss. C-
global-Net has little difference in performance due to the
loss functions. The performances have no tendency to be
better with contrastive or triplet loss when using only local
area, only global area, and the both areas. In addition, the
difference in the number of trainable parameters does not af-
fect the evaluation performance regularly depending on the
loss function used. Therefore, it is not possible to systemati-
cally determine the performance of triplet loss or contrastive
loss due to differences in model structure, differences in in-
put data, and differences in the number of trainable parame-
ters.

5. Conclusion

In order to align real environmental point clouds with dif-
ferent initial camera positions, we proposed a feature de-
scriptor called CS-Net that is robust to feature point reg-
istration error in point cloud matching. We confirmed that
CS-Net can discriminate between pairs of feature points that
are close to each other and those that are distant with higher
accuracy than the other methods compared in this paper. We
also confirmed that CS-Net can estimate whether the feature
point pair is close enough to be considered a match or not,
even when feature point registration error is large. More-
over, in the combination study, we confirmed that CS-Net,
which uses both local and global area point clouds as inputs,
outperformed C-local-Net and S-global-Net, which exclu-
sively use local or global areas, by a margin of 34.0% error
and 6.8% error on average, respectively. We also found that
the C-Net module is suitable for local area encoding and the
S-Net module is suitable for global area encoding.
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