
396
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

PAPER

SimpleZSL: Extremely Simple and Fast Zero-Shot Learning with
Nearest Neighbor Classifiers

Masayuki HIROMOTO†a), Hisanao AKIMA†, Members, Teruo ISHIHARA†,
and Takuji YAMAMOTO†, Nonmembers

SUMMARY Zero-shot learning (ZSL) aims to classify images of un-
seen classes by learning relationship between visual and semantic features.
Existing works have been improving recognition accuracy from various ap-
proaches, but they employ computationally intensive algorithms that re-
quire iterative optimization. In this work, we revisit the primary approach
of the pattern recognition, ı.e., nearest neighbor classifiers, to solve the ZSL
task by an extremely simple and fast way, called SimpleZSL. Our algo-
rithm consists of the following three simple techniques: (1) just averaging
feature vectors to obtain visual prototypes of seen classes, (2) calculating a
pseudo-inverse matrix via singular value decomposition to generate visual
features of unseen classes, and (3) inferring unseen classes by a nearest
neighbor classifier in which cosine similarity is used to measure distance
between feature vectors. Through the experiments on common datasets,
the proposed method achieves good recognition accuracy with drastically
small computational costs. The execution time of the proposed method on
a single CPU is more than 100 times faster than those of the GPU imple-
mentations of the existing methods with comparable accuracies.
key words: zero-shot learning, image recognition, nearest neighbor clas-
sifier, singular value decomposition

1. Introduction

Image classification has been a representative problem to be
solved by machine learning in decades. The most remark-
able progress in recent years is the emergence of deep learn-
ing. Deep learning has greatly improved the classification
accuracy for pattern recognition, and it is said that the deep
learning now outperforms even humans [1], [2]. However,
most of the works train their classifiers by supervised learn-
ing, which requires a large amount of labeled training data.
On the other hand, humans can learn classes of objects just
by seeing them few times or even without seeing. Learning
from limited data is a next challenging problem for machine
learning to realize more human-like AIs.

Few-shot learning (FSL) and zero-shot learning (ZSL)
are the tasks that tackle the above problem. The more diffi-
cult one is ZSL, which aims to recognize objects whose in-
stances have not been seen during training [3]–[8]. In ZSL
image classification setting, semantic descriptions of both
seen and unseen classes are provided in addition to the vi-
sual features of the seen classes. The task is to classify im-
ages of unseen classes by learning relationship between vi-
sual and semantic features.

Manuscript received April 21, 2021.
Manuscript revised August 24, 2021.
Manuscript publicized October 29, 2021.
†The authors are with Fujitsu Research, Fujitsu Limited,

Kawasaki-shi, 211–8588 Japan.
a) E-mail: hiromoto@fujitsu.com

DOI: 10.1587/transinf.2021EDP7089

Existing works try to solve ZSL problem mainly from
two approaches. One is a non-generative approach, in which
visual-semantic relationship are learned by using embed-
ding spaces. Some works learn projection functions from
embedding spaces of visual features to those of semantic
features, or functions in the opposite direction. There are
also several works that utilize common intermediate em-
bedding spaces to learn the visual-semantic relationship. In
any case, such projection functions are obtained by opti-
mization, where a loss function is minimized through iter-
ative processes as in the case of the majority of the super-
vised learning methods. The other approach for ZSL is a
generative one, which utilizes generative models to synthe-
size visual features of unseen classes from semantic descrip-
tions. Generative adversarial networks (GAN) and varia-
tional auto-encoders (VAE) are often used as generators for
visual features of unseen classes. These algorithms are pow-
erful and they can generate plausible visual features useful
for classification. However, their training process requires
a large computational cost due to iterative optimization pro-
cesses such as backpropagation.

In this paper, we try to solve the ZSL problem by an ex-
tremely simple way, named SimpleZSL. Our approach can
be categorized into the generative one rather than the non-
generative one, but it generates visual features by a very
simple and deterministic way, more specifically, by calcu-
lating a pseudo-inverse matrix of semantic features. With
this pseudo-inverse matrix, visual features of unseen classes
are generated from visual prototypes of seen classes, which
is obtained just by averaging visual features of training sam-
ples. Since this approach do not have any optimization pro-
cess, the training of ZSL can be accelerated very much. In
addition, when we use the visual features obtained by the
above simple way, we found that a nearest neighbor classi-
fier effectively works as a classifier for inference. The dis-
tance among the visual features is calculated by cosine sim-
ilarity of feature vectors. This means that we do not need
to train classifiers, which also shorten the training time of
ZSL. Note that our work does not cover how to obtain vi-
sual and semantic features. We assume that they are given,
as with other existing works. We do not take into account
the computation for training of deep CNNs to extract visual
features from images. For more information, please refer to
experimental settings in Sect. 4.

Our contributions are summarized as follows:

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

HIROMOTO et al.: SIMPLEZSL: EXTREMELY SIMPLE AND FAST ZERO-SHOT LEARNING WITH NEAREST NEIGHBOR CLASSIFIERS
397

• We propose SimpleZSL, which can generate visual
features of unseen classes by a simple deterministic
method without iterative optimization.
• Our method consists of the following simple tech-

niques: (1) just averaging feature vectors to obtain
visual prototypes of seen classes, (2) calculating a
pseudo-inverse matrix via singular value decomposi-
tion to generate visual features of unseen classes, and
(3) inferring unseen classes by a nearest neighbor clas-
sifier in which cosine similarity is used to measure dis-
tance between feature vectors.
• Experiments on common datasets show that Sim-

pleZSL achieves good recognition accuracy with dras-
tically small computational costs.

2. Related Work

Existing works for zero-shot learning can be categorized
into two groups: non-generative and generative methods.

In the non-generative group, some works learns the
mapping from visual features to semantic features to clas-
sify query samples of unseen classes in the semantic space.
The earlier works [3], [9] adopt nearest neighbor classi-
fiers, and the later works learn the mappings by using linear
embeddings [10]–[14] or non-linear embeddings [15], [16]
through optimization to minimize loss functions that are re-
spectively defined in their works. On the other hand, there
exits a reverse approach that learns the mapping from se-
mantic to visual features [17]. There also exists an approach
using bi-directional mapping between visual and seman-
tic spaces [18], and some works that do not use the above
mappings but learn the projection to a common intermedi-
ate space from both visual and semantic spaces [19]–[23]
or directly learn classifiers without using mapping func-
tions [24]. In any case, these methods learn projection func-
tions from/to visual and semantic spaces via iterative opti-
mization processes.

Another approach to ZSL is using generative models,
which is a recent poplar approach and various works have
been proposed [25]–[35] with the development of the gen-
erative models such as GANs and VAEs. These generative
approaches generally outperform the non-generative models
(see Sect. 4) at the cost of large computation needed to train
the generative models.

In summary, the above existing ZSL methods include
iterative optimization, resulting in long training time. Does
it really needed for ZSL? Is there any easier way to solve
ZSL problem? For this question, we found a hint in [36],
which reports that a simple nearest neighbor classifier is still
useful for few-shot learning (FSL). FSL is a task to learn
classification function from a few training samples. Inspired
by this work [36], in this paper we tackle ZSL by a very
simple approach with a nearest neighbor classifier. Unlike
the above mentioned non-generative earlier methods [3], [9],
which utilize nearest neighbor classifiers for semantic fea-
tures, our method takes a very simple generative approach
and uses a nearest neighbor classifier for generated visual

features. To the best of our knowledge, our work is the first
generative ZSL method utilizing a nearest neighbor classi-
fier for visual features. As reported in [17], classification on
visual spaces also has an advantage to mitigate the effect of
the hubness problem [37], which is a well-known issue for
ZSL when utilizing a nearest neighbor classifier.

Note that there is another ZSL problem setting called
transductive ZSL, different from the already explained set-
ting called inductive ZSL. In the transductive setting, some
unlabeled images from unseen classes are available during
training. There are also several works for transductive ZSL.
In this paper, however, we only consider the inductive set-
ting and make the transductive problems out of scope.

3. Method

Our proposed method, called SimpleZSL, is based on the
most primitive pattern recognition algorithm: nearest neigh-
bor classifiers. In addition, SimpleZSL generates unseen vi-
sual features with a linear model by calculating a pseudo-
inverse matrix of semantic features.

3.1 Definition and Notation

Here we define the ZSL problem. Suppose that we have
a training sample set Dtr = {xi, yi, ai}Ntr

i=1, which contains
Ntr samples of visual features xi ∈ Xs, their correspond-
ing class labels yi ∈ Ys, and semantic features ai ∈ As of
seen classes. The visual feature xi is a dvis-dimension vec-
tor, which is obtained by a feature extractor (e.g., CNNs).
The class labels yi are one of the labels from a set of seen
classes Ys. The number of the seen classes is denoted by
nsc = |Ys|. The semantic feature ai is a datt-dimension vector
consisting of values between 0 to 1, which are the attribute
values corresponding to the class yi. Since the attributes are
assigned for each class, the number of the possible seman-
tic features is equal to the number of the seen classes, i.e.,
|As| = |Ys| = nsc. A test set is denoted asDts = {xi, yi, ai}Nts

i=1,
xi ∈ Xu, yi ∈ Yu, ai ∈ Au, whereXu,Yu, andAu are the sets
of visual features, labels, and semantic features of unseen
classes, respectively. The number of the unseen classes is
denoted by nuc = |Yu| = |Au|. In ZSL, the semantic features
of unseen classes,Au, are available while training. The goal
of ZSL is to learn a classifier to predict the labels yi ∈ Yu

for unseen visual features xi ∈ Xu, through training on Dtr

andAu.

3.2 Overview

The training process of the proposed method is illustrated in
Fig. 1. The training consists of two phases: the first phase
to generate visual prototypes of seen classes (blue boxes in
Fig. 1), and the second phase to generate visual features of
unseen classes (yellow boxes in Fig. 1). As a result of the
above two-phase training, visual prototypes for both seen
and unseen classes are generated and stored in a prototype
memory. The test process is realized by nearest neighbor

398
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

Fig. 1 A training process of SimpleZSL. The blue boxes represent visual prototypes of seen classes,
which are calculated by averaging visual features of training samples. The yellow boxes are visual
features of unseen classes, which are generated from semantic features of seen and unseen classes. See
Fig. 2 for the calculation executed in the visual feature generator.

matching in the prototype memory. The detail of each pro-
cess is explained below.

3.3 Prototype Generation for Seen Classes

In the first phase of the training process, visual prototypes
of seen classes are generated just by averaging all the sam-
ples in a class. For each class c in seen classes Ys, a visual
prototype xproto

c is calculated as

xproto
c =

∑
xi∈Xc

xi

|Xc| , c ∈ Ys, (1)

whereXc is a set of the visual features belonging to the class
c. As a result, we obtain a series of nsc visual prototypes of
unseen classes, {xproto

1 , · · · , xproto
nsc
}, which will be stored in

the prototype memory.

3.4 Feature Generation for Unseen Classes

The second phase of the training process is the most im-
portant part of SimpleZSL. In this part, generated visual
features of unseen classes {xgen

c }c∈Yu are calculated from the
visual prototypes of seen classes {xproto

c }c∈Ys with the help
of the semantic features of both seen classesAs and unseen
classes Au. Let us represent the above visual and seman-
tic features of seen and unseen classes in matrix forms as
follows:

{xproto
c }c∈Ys := Xs ∈ Rnsc×dvis , (2)

{xgen
c }c∈Yu := Xu ∈ Rnuc×dvis , (3)

As := As ∈ Rnsc×datt , (4)

Au := Au ∈ Rnuc×datt . (5)

What we have to do is first learning a projection func-
tion f (·) that relates visual and semantic spaces as

As = f (Xs), (6)

and then generating unseen visual features by

Xu = f −1(Au). (7)

In this work, we adopt a linear model for f . With a projec-
tion matrix W ∈ Rdatt×dvis , Eqs. (6) and (7) are written as

Xs = AsW, (8)

Xu = AuW = Au A−1
s Xs. (9)

Note that each row of the projection matrix W represents a
decomposed visual feature corresponding to a particular en-
try of the semantic feature. W can be calculated by A−1

s Xs.
Since the inverse matrix of As is not possible to calculate di-
rectly, we utilize a pseudo-inverse matrix A+s instead of A−1

s .
The procedure to generate unseen visual features becomes

Xu = Au A+s Xs, (10)

as illustrated in Fig. 2.
In our method, a pseudo-inverse matrix is calculated by

using singular value decomposition (SVD). If

A = Q1ΣQT
2 (11)

is the singular value decomposition of A, we have the
pseudo-inverse matrix

A+ = Q2Σ
+QT

1 , (12)

where Q1 and Q2 are orthogonal matrices, Σ is a diagonal
matrix consisting of A’s large singular values (followed by

HIROMOTO et al.: SIMPLEZSL: EXTREMELY SIMPLE AND FAST ZERO-SHOT LEARNING WITH NEAREST NEIGHBOR CLASSIFIERS
399

Fig. 2 The calculation for feature generation in the proposed method. nsc and nuc are the number of
seen and unseen classes, and dvis and datt are the dimensions of the visual and semantic feature vectors,
respectively.

zeros), and Σ+ is the diagonal matrix consisting of the re-
ciprocals of A’s large singular values (again, followed by
zeros). As observed in Sect. 4.5.1, the number of the large
singular values in Σ affects the classification accuracy of
ZSL. In our method, up to n-th largest singular values of
As are included and the others are replaced with zeros. n is
determined by a cutoff parameter α as

n = int(αN), (13)

where N is the size of Σ, in concrete, which is equal to the
smaller value of datt and nsc.

Although the computational complexity of SVD is
O(N3), this does not matter because N = min(datt, nsc) is
not a large value (usually tens or hundreds). As a result,
SimpleZSL realizes fast generation of unseen visual features
without heavy optimization processes.

3.5 Nearest Neighbor Classifier

For a test, SimpleZSL utilizes a nearest neighbor classifier
to predict labels for unseen images. Given the visual pro-
totypes of unseen classes obtained in the training process,
our classifier selects a class label c whose visual prototype
is most similar to the query x by a nearest neighbor rule:

y(x) = arg max
c∈Yu

sim(x, xgen
c), (14)

where sim(,) measures cosine similarity of two vectors,
which is defined as

sim(u1, u2) = cos(u1, u2) =
u1 · u2
‖u1‖‖u1‖ . (15)

3.6 Generalized Zero-Shot Learning

SimpleZSL can be easily extended to generalized ZSL
(GZSL) settings. In GZSL, a test query is selected from
both seen and unseen classes, and the classifier is required
to predict the label from a union set of seen and unseen
classes. We can solve GZSL problem with SimpleZSL just
by slightly modifying the nearest neighbor classifier as fol-
lows:

y(x) = arg max
c∈Ys∪Yu

sim(x, xproto/gen
c). (16)

This means that the query x is matched not only with un-
seen classes but also with seen classes. However, it often
happens that a query is more likely to be classified into seen
classes than unseen classes. Although we can not simulta-
neously improve classification accuracy for both seen and
unseen classes because there is a trade-off between them,
we can increase their harmonic mean (often used to mea-
sure GZSL performance) by adjusting a parameter affecting
the trade-off. In this work, we introduce a offset parameter β
that assigns weights for similarity measurement depending
on whether the visual prototype belongs to seen or unseen
classes:

sim(x, xproto/gen
c) =

⎧
⎪⎪⎨
⎪⎪⎩

cos(x, xproto
c), c ∈ Ys

cos(x, xgen
c) + β, c ∈ Yu

. (17)

Note that, since GZSL is a difficult problem as dis-
cussed in other works [29], [40], [42], our method is not a
fundamental solution for GZSL. However, we found that
our method effectively works for several datasets as shown
in the experimental results.

4. Experiments

4.1 Dataset and Evaluation Criteria

The performance of the proposed method is evaluated
on widely-used datasets: SUN [38], CUB [39], AWA1 [3],
AWA2 [40], and aPY [41]. The statistics of the datasets
are summarized in Table 1. For the evaluation criteria,
we follow the GUB setting [40]. The classification accu-
racy is measured with Top-1 (T1) accuracy. In the case of
GZSL, it is measured with the harmonic mean of accuracies,
H = 2US/(U + S), where U and S are accuracies of unseen
and seen classes, respectively.

4.2 Implementation

The visual features are extracted by ResNet101 [1], as in
GUB [40]. The dimension of the visual feature is dvis =

2048. Following [36], we apply two types of preprocessing
for visual features, normalizing and centering. We perform
both normalizing and centering for CUB and SUN datasets,
and only centering for the other datasets. We directly use
the attributes whose values are between 0 to 1 as semantic

400
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

Table 1 Statistics of the datasets used for evaluation, in terms of the number attributes (datt), the
number of seen (nsc) and unseen (nuc) classes, and the number of samples for training (Dtr) and test
(Dts). The breakdown of the number of seen and unseen samples in the test set is also shown.

Dataset datt nsc nuc Dtr Dts (seen) Dts (unseen)
SUN [38] 102 645 72 10320 2580 1440
CUB [39] 312 150 50 7057 1764 2967
AWA1 [3] 85 40 10 19832 4958 5685
AWA2 [40] 85 40 10 23527 5882 7913
aPY [41] 64 20 12 5932 1483 7924

Table 2 Zero-shot learning accuracy on SUN, CUB, AWA1/2, and aPY datasets. T1 means Top-1
accuracy of ZSL. U, S, and H are accuracies of GZSL, where U and S mean unseen and unseen classes
and H is their harmonic mean. Methods in upper rows are non-generative, and those in lower rows are
generative ones. The best result in each category is in bold. All the values are in %. ‘*’ indicates
re-implementation by [40] to follow GUB settings.

SUN CUB AWA1 AWA2 aPY
ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

Method T1 U S H T1 U S H T1 U S H T1 U S H T1 U S H
DAP* [3] 39.9 4.2 25.1 7.2 40.0 1.7 67.9 3.3 44.1 0.0 88.7 0.0 46.1 0.0 84.7 0.0 33.8 4.8 78.3 9.0
IAP* [3] 19.4 1.0 37.8 1.8 24.0 0.2 72.8 0.4 35.9 2.1 78.2 4.1 35.9 0.9 87.6 1.8 36.6 5.7 65.6 10.4
CONSE* [9] 38.8 6.8 39.9 11.6 34.3 0.6 72.2 3.1 45.6 0.4 88.6 0.8 44.5 0.5 90.6 1.0 26.9 0.0 91.2 0.0
CMT* [16] 39.9 8.1 21.8 11.8 34.6 7.2 49.8 12.6 39.5 0.9 87.6 1.8 37.9 0.5 90.0 1.0 28.0 1.4 85.2 2.8
DEVISE* [11] 56.5 16.9 27.4 20.9 52.0 23.8 53.0 32.8 54.2 13.4 68.7 22.4 59.7 17.1 74.7 27.8 39.8 4.9 76.9 9.2
SSE* [19] 51.5 2.1 36.4 4.0 43.9 8.5 46.9 14.4 60.1 7.0 80.5 12.9 61.0 8.1 82.5 14.8 34.0 0.2 78.9 0.4
ALE* [10] 58.1 21.8 33.1 26.3 54.9 23.7 62.8 34.4 59.9 16.8 76.1 27.5 62.5 14.0 81.8 23.9 39.7 4.6 73.7 8.7
SJE* [12] 53.7 14.7 30.5 19.8 53.9 23.5 59.2 33.6 65.6 11.3 74.6 19.6 61.9 8.0 73.9 14.4 32.9 3.7 55.7 6.9
ESZSL* [13] 54.5 11.0 27.9 15.8 53.9 12.6 63.8 21.0 58.2 6.6 75.6 12.1 58.6 5.9 77.8 11.0 38.3 2.4 70.7 4.6
LATEM* [15] 55.3 14.7 28.8 19.5 49.3 15.2 57.3 24.0 55.1 7.3 71.7 13.3 55.8 11.5 77.3 20.0 35.2 0.1 73.0 0.2
SYNC* [20] 56.3 7.9 43.3 13.4 55.6 11.5 70.9 19.8 54.0 8.9 87.3 16.2 46.6 10.0 90.5 18.0 23.9 7.4 66.3 13.3
SAE* [14] 40.3 8.8 18.0 11.8 33.3 7.8 54.0 13.6 53.0 1.8 77.1 3.5 54.1 1.1 82.2 2.2 8.3 0.4 80.9 0.9
DEM [17] 61.9 20.5 34.3 25.6 51.7 19.6 57.9 29.2 68.4 32.8 84.7 47.3 67.2 30.5 86.4 45.1 35.0 11.1 75.1 19.4
RNet [21] - - - - 55.6 38.1 61.1 47.0 68.2 31.4 91.3 46.7 64.2 30.0 93.4 45.3 - - - -
PSR [22] 61.4 20.8 37.2 26.7 56.0 24.6 54.3 33.9 - - - - 63.8 20.7 73.8 32.3 38.4 13.5 51.4 21.4
DCN [23] 61.8 25.5 37.0 30.2 56.2 28.4 60.7 38.7 65.2 25.5 84.2 39.1 - - - - 43.6 14.2 75.0 23.9
ZSKL [18] 61.7 20.1 31.4 24.5 51.7 21.6 52.8 30.6 70.1 17.9 82.2 29.4 70.5 18.9 82.7 30.8 45.3 10.5 76.2 18.5
CVCZSL [24] 62.6 36.3 42.8 39.3 54.4 47.4 47.6 47.5 70.9 62.7 77.0 69.1 71.1 56.4 81.4 66.7 38.0 26.5 74.0 39.0
GFZSL* [25] 60.6 0.0 39.6 0.0 49.3 0.0 45.7 0.0 68.3 1.8 80.3 3.5 63.8 2.5 80.1 4.8 38.4 0.0 83.3 0.0
SP-AEN [26] 59.2 24.9 38.6 30.3 55.4 34.7 70.6 46.6 - - - - 58.5 23.3 90.9 37.1 24.1 13.7 63.4 22.6
cycle-UWGAN [27] 59.9 47.2 33.8 39.4 58.6 47.9 59.3 53.0 66.8 59.6 63.4 59.8 - - - - - - - -
f-CLSWGAN [28] 60.8 42.6 36.6 39.4 57.3 57.7 43.7 49.7 68.2 57.9 61.4 59.6 - - - - - - - -
SE-(G)ZSL [29] 63.4 40.9 30.5 34.9 59.6 41.5 53.3 46.7 69.5 56.3 67.8 61.5 69.2 58.3 68.1 62.8 - - - -
CADA-VAE [30] - 47.2 35.7 40.6 - 51.6 53.5 52.4 - 57.3 72.8 64.1 - 55.8 75.0 63.9 - - - -
LisGAN [31] 61.7 42.9 37.8 40.2 58.8 46.5 57.9 51.6 70.6 52.6 76.3 62.3 - - - - 43.1 - - -
TCN [32] 61.5 31.2 37.3 34.0 59.5 52.6 52.0 52.3 70.3 49.4 76.5 60.0 71.2 61.2 65.8 63.4 38.9 24.1 64.0 35.1
f-VAEGAN [33] 64.7 45.1 38.0 41.3 61.0 48.4 60.1 53.6 - - - - 71.1 57.6 70.6 63.5 - - - -
TF-VAEGAN [34] 66.0 45.6 40.7 43.0 64.9 52.8 64.7 58.1 - - - - 72.2 59.8 75.1 66.6 - - - -
IZF-Softmax [35] 68.4 52.7 57.0 54.8 67.1 52.7 68.0 59.4 74.3 61.3 80.5 69.6 74.5 60.6 77.5 68.0 44.9 42.3 60.5 49.8
SimpleZSL (ours) 60.1 52.8 29.9 38.2 48.4 44.2 36.0 39.7 68.5 56.7 75.5 64.8 67.9 52.5 79.7 63.3 37.5 29.7 63.4 40.4

features. The program is written in Python scripting lan-
guage. We use NumPy library to implement SVD to com-
pute a pseudo-inverse matrix.

4.3 Comparison with State-of-the-Art Methods

The performance of the proposed method and other ZSL
methods including state-of-the-art ones is compared in Ta-
ble 2. For SimpleZSL, the cutoff parameter for SVD is set to
α = 0.7 and the offset parameter for GZSL is set to β = 0.13.
As shown in the results, ZSL accuracy of SimpleZSL is
worse than the state-of-the-art methods, but better than most
of the non-generative methods and comparable to the earlier
generative ones. For GZSL, H scores, which indicate the

GZSL performance considering the trade-off between accu-
racies for seen and unseen classes, show similar results as
ZSL accuracy. We can see that SimpleZSL achieves good
performance in spite of its extremely simple algorithm.

The reason why our SimpleZSL shows lower perfor-
mance than some latest algorithms can be simply considered
as follows. In ZSL algorithms with generative approach, a
function that generates visual features from semantic fea-
tures is learned. We utilize a very simple linear function
for this purpose, whereas other methods adopt GAN-based
complex and expressive functions at the cost of large com-
putations. Our result indicates the potential of the simple
linear generative function, and at the same time its limita-
tion for recognition performance compared to more com-

HIROMOTO et al.: SIMPLEZSL: EXTREMELY SIMPLE AND FAST ZERO-SHOT LEARNING WITH NEAREST NEIGHBOR CLASSIFIERS
401

Fig. 3 Measured execution time of ZSL algorithms against their accuracy. The methods marked as
circles are run on a CPU, while the triangles also use a GPU. Our SimpleZSL is remarkably faster than
the existing methods.

Table 3 Deep learning frameworks and source code URLs used to measure execution time of ZSL
algorithms.

Method DL framework URL
ALE [10], DeViSE [11], SJE [12],

ESZSL [13], SAE [14]
n/a https://github.com/mvp18/Popular-ZSL-Algorithms

DEM [17] TensorFlow 1.15 https://github.com/lzrobots/DeepEmbeddingModel ZSL
RNet [21] PyTorch 0.4.1 https://github.com/lzrobots/LearningToCompare ZSL
DCN [23] PyTorch 0.4.1 https://github.com/Nir3usHaHaHa/Generalized-Zero-Shot-Learning-with-Deep-Calibration-

Network-NIPS18
CVCZSL [24] PyTorch 0.4.1 https://github.com/kailigo/cvcZSL
f-CLSWGAN [28] PyTorch 1.7.1 https://github.com/JieRen98/f-CLSWGAN
LisGAN [31] PyTorch 0.4.1 https://github.com/lijin118/LisGAN
TCN [32] PyTorch 0.4.1 http://vipl.ict.ac.cn/resources/codes/code/TCN ICCV2019.zip
TF-VAEGAN [34] PyTorch 0.3.1 https://github.com/akshitac8/tfvaegan

plex functions.

4.4 Computational Cost

To see the efficiency of our algorithm, we measure the exe-
cution time of the ZSL algorithms. Figure 3 plots the mea-
sured execution time against the reported ZSL accuracy of
the existing works and our proposed method. We use pub-
licly available source codes as listed in Table 3 and follow
default parameter settings for each dataset. We use GPU
implementation if available (plotted by triangles in Fig. 3).
Our SimpleZSL and some earlier methods are run on a CPU
without using a GPU (circles in Fig. 3). The machine specs
used for the evaluation are summarized in Table 4. Note that
the measured execution time of all the methods is the total
of training and testing processes on each datset, but does not
include the visual feature extraction process by CNNs. We

Table 4 Specifications of the evaluation machine.

CPU Intel Core i7-9700K @ 3.60 GHz
RAM 16 GB
OS Linux 5.10
GPU NVIDIA GeForce RTX 2070
VRAM 8 GB
CUDA 11.2

could not evaluate all the methods listed in Table 2 since
some works do not publish their source codes or the source
codes could not be executed in our environment because of
their dependencies on old libraries currently not available.

For the existing methods, we can see that the execution
time exponentially increases as accuracy improves, although
the complex methods employ GPU acceleration. The pro-
posed method, however, realizes drastically fast execution
in less than three seconds. This is more than 100 times

402
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

Fig. 4 Change of ZSL accuracy when the cutoff parameter α is changed. Accuracy is shown in %.
The x-axis is plotted with n = int(αN), where N is the number of the singular values. The magnitude of
singular values is also plotted, where n represents the index of the singular values in descending order.

Fig. 5 Change of GZSL performance when the offset parameter β is changed. U and S are accuracies
of unseen and seen classes, and H is their harmonic mean. The values are in %.

faster than those of the GPU implementations of the existing
methods with comparable accuracies under SUN, CUB, and
AWA1/2 datasets. The speedup for aPY dataset is smaller
than the other datasets because of its small scale of the prob-
lem, but still more than 7x faster than the other methods.
This result shows that SimpleZSL is suitable for resource-
limited computing environments, such as mobile or embed-

ded devices.

4.5 Ablation Study

In the proposed method, two parameters α and β affecting
ZSL and GZSL performance are utilized. We conduct fur-
ther analysis to see the effect of these parameters.

HIROMOTO et al.: SIMPLEZSL: EXTREMELY SIMPLE AND FAST ZERO-SHOT LEARNING WITH NEAREST NEIGHBOR CLASSIFIERS
403

4.5.1 Cutoff Parameter for SVD

As described in Sect. 3.4, the cutoff parameter α determines
how many singular values are used to calculate a pseudo-
inverse matrix. Figure 4 shows the change of T1 accuracy
of ZSL when α is swept from 0 to 1. The magnitude of
the singular values is also plotted in descending order. We
can see that the accuracy is improved as α increases from 0.
However, in the region near α = 1, the accuracy drops ex-
cept for SUN dataset. These results imply the following two
facts. One is that the larger singular values are important for
feature generation. It is considered that the singular values
behave as latent variables for semantic features. The other
is that utilization of all the small singular values spoils the
quality of feature generation. Too many singular values may
cause a similar situation to so-called over fitting. Through
this analysis, we manually determine the cutoff parameter as
α = 0.7, performing well for all the datasets.

4.5.2 Offset Parameter for GZSL

Our method increases the value of the harmonic mean H,
which is used to measure GZSL performance, by adding
an offset β to the similarity scores of unseen classes as de-
scribed in Eq. (17). To see how the offset parameter affects
the classification accuracy of seen and unseen classes, we
perform additional experiments by changing the parameter
β. Figure 5 shows the results on the five datasets. We can
see trade-offs between the accuracies of seen (S) and unseen
(U) classes, as mentioned in Sect. 3.6. As a result, their har-
monic mean H has a peak around from β = 0.1 to 0.2, in
general.

As we can see from the results, the best offset param-
eters depend on datasets. If you want to determine the best
offset for each dataset, you can use validation data from the
training set to search an optimal parameter. The required
execution time for grid search of β in 30 steps like Fig. 5 is 1
or 2 seconds, which does not spoil the fast execution of our
SimpleZSL. However, particularly for AWA1/2 and aPY
datasets, because of the small number of the seen classes,
separation of the validation set from the training set may
deteriorate classification accuracy. Therefore, we do not
use validation set but manually determines the parameter
as β = 0.13 for the experiment in Sect. 4.3. Note that the
utilization of the common parameter β = 0.13 through all
the datasets is a severe condition, while some works tune
hyperparameters for each dataset.

5. Conclusion

In this paper, we propose SimpleZSL, which consists of very
simple techniques—just averaging feature vectors to ob-
tain visual prototypes of seen classes, calculating a pseudo-
inverse matrix via singular value decomposition to gener-
ate visual features of unseen classes, and inferring unseen

classes by a nearest neighbor classifier. These calcula-
tions do not include iterative optimization that incurs large
computational costs. Through the experiments, SimpleZSL
shows good recognition accuracy and achieves more than
100 times faster than the existing methods with comparable
accuracies. This work gives us the findings that a simple lin-
ear model is sufficient to generate visual features of unseen
classes and that the nearest neighbor classifier is still useful
even for ZSL, which is one of the recent challenging prob-
lems in computer vision. We hope that this work will be an
opportunity to rethink the approach for ZSL, and also will
be used as a baseline to compare the performance of future
ZSL algorithms.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” IEEE Conf. Comput. Vis. Pattern Recog.,
pp.770–778, 2016.

[2] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
IEEE Conf. Comput. Vis. Pattern Recog., pp.7132–7141, 2018.

[3] C.H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based clas-
sification for zero-shot visual object categorization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol.36, no.3, pp.453–465, 2013.

[4] H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new
tasks,” AAAI, vol.2, pp.646–651, 2008.

[5] M. Rohrbach, M. Stark, and B. Schiele, “Evaluating knowledge
transfer and zero-shot learning in a large-scale setting,” IEEE Conf.
Comput. Vis. Pattern Recog., pp.1641–1648, 2011.

[6] X. Yu and Y. Aloimonos, “Attribute-based transfer learning for ob-
ject categorization with zero/one training example,” Eur. Conf. Com-
put. Vis., pp.127–140, 2010.

[7] X. Xu, F. Shen, Y. Yang, D. Zhang, H. Tao Shen, and J. Song,
“Matrix tri-factorization with manifold regularizations for zero-shot
learning,” IEEE Conf. Comput. Vis. Pattern Recog., pp.2007–2016,
2017.

[8] Z. Ding, M. Shao, and Y. Fu, “Low-rank embedded ensemble se-
mantic dictionary for zero-shot learning,” IEEE Conf. Comput. Vis.
Pattern Recog., pp.2050–2058, 2017.

[9] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome,
G.S. Corrado, and J. Dean, “Zero-shot learning by convex combina-
tion of semantic embeddings,” Int. Conf. Learn. Represent., 2014.

[10] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-em-
bedding for image classification,” IEEE Trans. Pattern Anal. Mach.
Intell., vol.38, no.7, pp.1425–1438, 2016.

[11] A. Frome, G.S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato,
and T. Mikolov, “Devise: A deep visual-semantic embedding
model,” Adv. Neural Inform. Process. Syst., pp.2121–2129, 2013.

[12] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, “Evaluation
of output embeddings for fine-grained image classification,” IEEE
Conf. Comput. Vis. Pattern Recog., pp.2927–2936, 2015.

[13] B. Romera-Paredes and P. Torr, “An embarrassingly simple ap-
proach to zero-shot learning,” Int. Conf. Mach. Learn., pp.2152–
2161, 2015.

[14] E. Kodirov, T. Xiang, and S. Gong, “Semantic autoencoder for
zero-shot learning,” IEEE Conf. Comput. Vis. Pattern Recog.,
pp.4447–4456, 2017.

[15] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele,
“Latent embeddings for zero-shot classification,” IEEE Conf. Com-
put. Vis. Pattern Recog., pp.69–77, 2016.

[16] R. Socher, M. Ganjoo, C.D. Manning, and A. Ng, “Zero-shot learn-
ing through cross-modal transfer,” Adv. Neural Inform. Process.
Syst., pp.935–943, 2013.

[17] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding

http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2018.00745
http://dx.doi.org/10.1109/tpami.2013.140
http://dx.doi.org/10.1109/cvpr.2011.5995627
http://dx.doi.org/10.1007/978-3-642-15555-0_10
http://dx.doi.org/10.1109/cvpr.2017.217
http://dx.doi.org/10.1109/cvpr.2017.636
http://dx.doi.org/10.1109/tpami.2015.2487986
http://dx.doi.org/10.1109/cvpr.2015.7298911
http://dx.doi.org/10.1109/cvpr.2017.473
http://dx.doi.org/10.1109/cvpr.2016.15
http://dx.doi.org/10.1109/cvpr.2017.321

404
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.2 FEBRUARY 2022

model for zero-shot learning,” IEEE Conf. Comput. Vis. Pattern
Recog., pp.2021–2030, 2017.

[18] H. Zhang and P. Koniusz, “Zero-shot kernel learning,” IEEE Conf.
Comput. Vis. Pattern Recog., pp.7670–7679, 2018.

[19] Z. Zhang and V. Saligrama, “Zero-shot learning via semantic simi-
larity embedding,” Int. Conf. Comput. Vis., pp.4166–4174, 2015.

[20] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha, “Synthesized
classifiers for zero-shot learning,” IEEE Conf. Comput. Vis. Pattern
Recog., pp.5327–5336, 2016.

[21] F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H.S. Torr, and T.M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” IEEE Conf. Comput. Vis. Pattern Recog., pp.1199–1208,
2018.

[22] Y. Annadani and S. Biswas, “Preserving semantic relations for
zero-shot learning,” IEEE Conf. Comput. Vis. Pattern Recog.,
pp.7603–7612, 2018.

[23] S. Liu, M. Long, J. Wang, and M.I. Jordan, “Generalized zero-shot
learning with deep calibration network,” Adv. Neural Inform. Pro-
cess. Syst., pp.2005–2015, 2018.

[24] K. Li, M.R. Min, and Y. Fu, “Rethinking zero-shot learning: A con-
ditional visual classification perspective,” Int. Conf. Comput. Vis.,
pp.3583–3592, 2019.

[25] V.K. Verma and P. Rai, “A simple exponential family framework for
zero-shot learning,” Eur. Conf. Mach. Learn. Princ. Pract. Knowl.
Discov., vol.10535, pp.792–808, 2017.

[26] L. Chen, H. Zhang, J. Xiao, W. Liu, and S.F. Chang, “Zero-shot vi-
sual recognition using semantics-preserving adversarial embedding
networks,” IEEE Conf. Comput. Vis. Pattern Recog., pp.1043–1052,
2018.

[27] R. Felix, V.B. Kumar, I. Reid, and G. Carneiro, “Multi-modal cycle-
consistent generalized zero-shot learning,” Eur. Conf. Comput. Vis.,
vol.11210, pp.21–37, 2018.

[28] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata, “Feature generating
networks for zero-shot learning,” IEEE Conf. Comput. Vis. Pattern
Recog., pp.5542–5551, 2018.

[29] V. Kumar Verma, G. Arora, A. Mishra, and P. Rai, “Generalized
zero-shot learning via synthesized examples,” IEEE Conf. Comput.
Vis. Pattern Recog., pp.4281–4289, 2018.

[30] E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, and Z. Akata, “Gen-
eralized zero-and few-shot learning via aligned variational autoen-
coders,” IEEE Conf. Comput. Vis. Pattern Recog., pp.8239–8247,
2019.

[31] J. Li, M. Jing, K. Lu, Z. Ding, L. Zhu, and Z. Huang, “Leverag-
ing the invariant side of generative zero-shot learning,” IEEE Conf.
Comput. Vis. Pattern Recog., pp.7394–7403, 2019.

[32] H. Jiang, R. Wang, S. Shan, and X. Chen, “Transferable contrastive
network for generalized zero-shot learning,” Int. Conf. Comput. Vis.,
pp.9764–9773, 2019.

[33] Y. Xian, S. Sharma, B. Schiele, and Z. Akata, “f-VAEGAN-D2: A
feature generating framework for any-shot learning,” IEEE Conf.
Comput. Vis. Pattern Recog., pp.10267–10276, 2019.

[34] S. Narayan, A. Gupta, F.S. Khan, C.G.M. Snoek, and L. Shao, “La-
tent embedding feedback and discriminative features for zero-shot
classification,” Eur. Conf. Comput. Vis., pp.479–495, 2020.

[35] Y. Shen, J. Qin, L. Huang, L. Liu, F. Zhu, and L. Shao, “Invertible
zero-shot recognition flows,” Eur. Conf. Comput. Vis., vol.12361,
pp.614–631, 2020.

[36] Y. Wang, W.L. Chao, K.Q. Weinberger, and L. van der Maaten,
“SimpleShot: Revisiting nearest-neighbor classification for few-shot
learning,” arXiv:1911.04623, 2019.

[37] A. Lazaridou, G. Dinu, and M. Baroni, “Hubness and pollution:
Delving into cross-space mapping for zero-shot learning,” ACL-
IJCNLP, pp.270–280, 2015.

[38] G. Patterson and J. Hays, “SUN attribute database: Discovering,
annotating, and recognizing scene attributes,” IEEE Conf. Comput.
Vis. Pattern Recog., pp.2751–2758, 2012.

[39] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,

and P. Perona, “Caltech-UCSD Birds 200,” tech. rep., California In-
stitute of Technology, 2010.

[40] Y. Xian, C.H. Lampert, B. Schiele, and Z. Akata, “Zero-shot
learning—a comprehensive evaluation of the good, the bad and
the ugly,” IEEE Trans. Pattern Anal. Mach. Intell., vol.41, no.9,
pp.2251–2265, 2018.

[41] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing ob-
jects by their attributes,” IEEE Conf. Comput. Vis. Pattern Recog.,
pp.1778–1785, 2009.

[42] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha, “An empiri-
cal study and analysis of generalized zero-shot learning for object
recognition in the wild,” Eur. Conf. Comput. Vis., pp.52–68, 2016.

Masayuki Hiromoto received B.E. degree
in Electrical and Electronic Engineering and
M.Sc. and Ph.D. degrees in Communications
and Computer Engineering from Kyoto Univer-
sity in 2006, 2007, and 2009 respectively. He
was a JSPS research fellow from 2009 to 2010 in
Kyoto University, worked with Panasonic Corp.
from 2010 to 2013, and was an assistant profes-
sor from 2013 and a senior lecturer from 2017 in
Kyoto University. In 2019, he joined Fujitsu Re-
search, where he is currently a senior researcher.

His research interests include VLSI design methodology, computer vision,
and artificial intelligence. He is also a member of IEEE and IPSJ.

Hisanao Akima received the B.E., M.S.,
and Ph.D. degrees from Tohoku University, Sen-
dai, Japan, in 2000, 2002, and 2006, respec-
tively. From April 2006 to March 2013, he was
with Central Research Laboratory, Hitachi, Ltd.,
Tokyo, Japan, where he worked on spherical
aberration corrector for electron microscopes.
From April 2013 to March 2018, he was an
assistant professor in the Research Institute of
Electrical Communication, Tohoku University.
Currently, he is a senior researcher in Fujitsu

Ltd., Tokyo, Japan. His current research interests include artificial intel-
ligence and brain-inspired computing.

Teruo Ishihara received the B.E. degree
in Electrical Communication from Tohoku Uni-
versity, Sendai Japan in 1987. He joined Fu-
jitsu Ltd., Kawasaki Japan in 1987 and has been
engaged in development of DSPs for commu-
nication systems. Currently, he is an expert in
Fujitsu Ltd. and is engaged in research and de-
velopment of new computer architectures.

http://dx.doi.org/10.1109/cvpr.2017.321
http://dx.doi.org/10.1109/cvpr.2018.00800
http://dx.doi.org/10.1109/iccv.2015.474
http://dx.doi.org/10.1109/cvpr.2016.575
http://dx.doi.org/10.1109/cvpr.2018.00131
http://dx.doi.org/10.1109/cvpr.2018.00793
http://dx.doi.org/10.1109/iccv.2019.00368
http://dx.doi.org/10.1007/978-3-319-71246-8_48
http://dx.doi.org/10.1109/cvpr.2018.00115
http://dx.doi.org/10.1007/978-3-030-01231-1_2
http://dx.doi.org/10.1109/cvpr.2018.00581
http://dx.doi.org/10.1109/cvpr.2018.00450
http://dx.doi.org/10.1109/cvpr.2019.00844
http://dx.doi.org/10.1109/cvpr.2019.00758
http://dx.doi.org/10.1109/iccv.2019.00986
http://dx.doi.org/10.1109/cvpr.2019.01052
http://dx.doi.org/10.1007/978-3-030-58542-6_29
http://dx.doi.org/10.1007/978-3-030-58517-4_36
http://dx.doi.org/10.3115/v1/p15-1027
http://dx.doi.org/10.1109/cvpr.2012.6247998
http://dx.doi.org/10.1109/tpami.2018.2857768
http://dx.doi.org/10.1109/cvpr.2009.5206772
http://dx.doi.org/10.1007/978-3-319-46475-6_4

HIROMOTO et al.: SIMPLEZSL: EXTREMELY SIMPLE AND FAST ZERO-SHOT LEARNING WITH NEAREST NEIGHBOR CLASSIFIERS
405

Takuji Yamamoto received the B.S. de-
gree from Keio University in 1986. In 1986, he
joined Fujitsu Laboratories Ltd. Japan, where he
is currently a Senior Expert. He has been en-
gaged in research on high-speed communication
systems and computing systems. His current
interests include the next generation computing
with high performance and low power.

