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PAPER

Consistency Regularization on Clean Samples for Learning with
Noisy Labels

Yuichiro NOMURA†a), Nonmember and Takio KURITA†, Fellow

SUMMARY In the recent years, deep learning has achieved significant
results in various areas of machine learning. Deep learning requires a huge
amount of data to train a model, and data collection techniques such as web
crawling have been developed. However, there is a risk that these data col-
lection techniques may generate incorrect labels. If a deep learning model
for image classification is trained on a dataset with noisy labels, the general-
ization performance significantly decreases. This problem is called Learn-
ing with Noisy Labels (LNL). One of the recent researches on LNL, called
DivideMix [1], has successfully divided the dataset into samples with clean
labels and ones with noisy labels by modeling loss distribution of all train-
ing samples with a two-component Mixture Gaussian model (GMM). Then
it treats the divided dataset as labeled and unlabeled samples and trains the
classification model in a semi-supervised manner. Since the selected sam-
ples have lower loss values and are easy to classify, training models are in a
risk of overfitting to the simple pattern during training. To train the classi-
fication model without overfitting to the simple patterns, we propose to in-
troduce consistency regularization on the selected samples by GMM. The
consistency regularization perturbs input images and encourages model to
outputs the same value to the perturbed images and the original images. The
classification model simultaneously receives the samples selected as clean
and their perturbed ones, and it achieves higher generalization performance
with less overfitting to the selected samples. We evaluated our method with
synthetically generated noisy labels on CIFAR-10 and CIFAR-100 and ob-
tained results that are comparable or better than the state-of-the-art method.
key words: deep learning, noisy labels, image classification, consistency
regularization

1. Introduction

In recent years, the development of research on deep learn-
ing, a machine learning method, has led to the solution of
more advanced problems in many fields such as computer
vision, natural language processing, and recommendation
systems [2]. One drawback of methods using deep learn-
ing is that training model requires a large amount of data.
Labeling samples by experts is accurate, but very expensive
and time consuming. To solve this problem, some data col-
lecting techniques such as web crawling [3], [4] and crowd-
sourcing [5] have been developed. However, the labels on
websites and those given by human-annotators tend to be
inaccurate [3]–[5] and the performance of machine learning
model deteriorates due to over-fitting to these noisy labels.
In particular, the deep learning model for image classifica-
tion easily causes overfitting to the noisy labels due to its
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large number of parameters, and this phenomenon is called
the memorization effect [6], [7]. The problem of inaccu-
rate labeling of collected data is important in various fields,
and research on learning deep learning models to be robust
against the label noise is attracting a lot of attention.

Analysis of the memorization effects revealed that deep
learning model trained on dataset with noisy labels first
learns simple patterns then gradually overfits to the train-
ing samples with noisy labels, resulting in good generaliza-
tion performance in the early learning phase [6]. Taking ad-
vantage of this property, several approaches have been pro-
posed to tackle the problem of learning with noisy labels
(LNL) [8]–[10]. In particular, DivideMix [1] achieves excel-
lent results on baseline datasets with noisy labels by model-
ing the loss distribution to select clean samples and training
a classification model in a semi-supervised manner.

Following the results of DivideMix’s successful selec-
tion of clean samples, we propose to adopt a consistency
regularization on the selected samples during training for
preventing a classification model from overfitting to the sim-
ple patterns of the selected samples. The consistency reg-
ularization is one of the machine learning techniques de-
veloped in the field of semi-supervised learning. In our
problem setting, the consistency regularization encourages
model to make consistent predictions on the perturbed im-
ages that match the predictions to the original images. Since
the selected samples tend to be easy to classify, the sample
selection may overlook samples that have the correct label
but are difficult to classify. The consistency regularization
on clean samples mitigates this drawback by adding noise to
samples with simple patterns to reduce overfitting. In recent
years, several approaches for data augmentation have been
proposed, and we use one of them, RandAugment [11], to
perturb the selected samples. An overview of our method is
shown in Fig. 1.

The contributions of this study are summarized as fol-
lows. (1) We introduce the consistency regularization on
the samples selected as clean as an extension of DivideMix.
(2) Extensive evaluation on CIFAR-10 and CIFAR-100 with
synthetically generated label noise is performed to confirm
that DivideMix with the consistency regularization yields
comparably or better than state-of-the-art methods. (3) We
performed the ablation study on the value of hyperparameter
for consistency regularization based on dataset with noisy
labels and confirmed that consistency regularization con-
tributes to the generalization performance of model.
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Fig. 1 Diagram of DivideMix with consistency regularization. After the samples are divided into a
set of labeled samples Dθ and a set of unlabeled samples D̄θ by GMM (green box), each set is fed into
the model θ (bottom) and compute the loss function of MixMatch following DivideMix [1]. At the same
time, RandAugment is applied only to the labeled samplesDθ (top) to obtain modified samplesDc

θ and
is fed into θ to compute the cross entropy loss as a consistency regularization. The model θ is trained on
the total loss consists of the loss of MixMatch and the consistency regularization.

2. Related Works

2.1 Learning with Noisy Labels

Robust-loss approaches train the classification model with
a new loss function that mitigates the effect of label noise.
Mean Absolute Error (MAE) is a more noise tolerant loss
than widely used cross-entropy loss [12] and Generalized
Cross Entropy [13] is a method leverages the advantages
of both the MAE and cross entropy. Loss-correction ap-
proaches [8], [14] estimate the noise transition matrix to cor-
rect loss function and mitigate the effect of noisy labels
while training. Robust-loss and loss-correction techniques
do not utilize the robustness of deep learning in the early
learning phase [6].

Sample selection [9] exploits the robustness in the early
learning phase to determine if the samples are labeled cor-
rectly or not. The value of loss function on the mislabeled
data tend to be higher than ones with correctly labeled. Then
samples with lower loss value are selected as clean samples.
One drawback of the sample selection approach is that sam-
ples with low loss values and easy classification are always
selected over samples that are correctly labeled but difficult
to classify [15].

Label correction approaches also utilizes the robust-
ness of deep learning in the early learning stage to update
the original labels with the prediction output from the soft-
max layer of the training model [10], [16], [17]. Some other
approaches use both label correction and iterative sample
selection [1], [18], [19]. Most notably, DivideMix [1] uses
two networks for sample selection with a two-component
mixture model, and applies the semi-supervised learning
technique called MixMatch [20]. Recently, AugDesc [21]
has been proposed which models the loss distribution with
weakly augmented samples for sample selection and trains
the model with strongly augmented samples.

More recently, two studies similar to our method have
been published by R. Yi et al. [22] and K. Nishi et al. [21]

In the former work, the baseline model is a self-ensemble
network, and the sample selection is based on the total
classification loss of the model for the original images
and transformed images by scaling rotation, and flipping.
Our method differs from that method in that it selects im-
ages based on the loss distribution of the original image
and transforms the selected images with simple patterns
by RandAugment. Furthermore, the baseline model of our
method is DivideMix. In the latter work, K. Nishi et al. [21]
proposed AugDesc which utilizes weak augmentation and
strong augmentation to images for sample selection and pa-
rameter update. The images transformed by the weak aug-
mentation are fed to the model and calculate the loss values
for each image. The GMM is fitted to these values, and di-
vide the training image data into clean samples and noisy
samples. Based on these binary classification, the dataset
with strong augmentation is divided into labeled samples
and unlabeled samples, and the model is trained using a
semi-supervised learning method.

2.2 Dividemix

Dividemix [1] selects training samples with lower loss value
as a set of labeled data and the rest of the samples are
treated as a set of unlabeled data, and train the model in
a semi-supervised learning manner. Dividemix fits a two-
components Gaussian Mixture Model (GMM) [23] to the
loss distribution of all training samples to find the clean
probability of each sample then the samples, and divides the
samples based on that probability.

Let D = {X,Y} = {(xi, yi)}Ni=1 denote the training sam-
ples where xi is an image and yi is an one-hot vector repre-
sents label over L classes. Suppose the parameters of a deep
learning model are denoted as θ and the objective function
for training is the cross entropy loss �(θ) as follows:

�(θ) = {�i}Ni=1 =
{ −

L∑

l=1

yl
i log(pl

model(xi, θ))
}N
i=1 (1)

where pl
model is a softmax output from the model for class
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l. After � is computed for all training samples, a two-
component GMM is fitted to � using the Expectation-
Maximization algorithm. Probability that a sample being
clean is defined as wi and equals to the posterior probability
p(g|�i) for each sample from the Gaussian component gwith
smaller mean.

At each epoch, training data is divided into a labeled
set X and an unlabeled set U by setting a threshold τ on
wi given by GMM of one network, and the other network
is trained on the divided set in a semi-supervised manner.
By alternating the roles of the two networks, they teach an
estimated set of clean samples each other and avoid accu-
mulating confirmation bias.

After dataset is divided into two sets, and a mini-batch
of labeled set {(xb, yb, wb); b ∈ (1, · · · , B)} is given, label
refinement is performed as follows:

ȳb = wbyb + (1 − wb)pb (2)

where ȳb is a refined label, pb is a network’s prediction
(averaged across multiple augmentations of xb) and wb is
a clean probability given by the other network. And given a
mini-batch of unlabeled set {ub; b ∈ (1, · · · , B)}, predictions
on unlabeled samples from two networks are averaged to
estimate their labels q̂b. Each ȳb and q̄b are transformed by
sharpening function to reduce their temperature and obtain
ŷb and q̂b.

Given X̂ and Û, MixUp [24] is applied to them where
each sample is interpolated with another sample randomly
chosen from the combined mini-batch of X̂ and Û. The
transformed sets are denoted as X′ and U′. Finally, semi-
supervised method called MixMatch [20] is applied to the
augmented dataset X′ andU′.

The loss onX′ is the cross entropy lossLX and the loss
onU′ is the mean squared error LU as follows:

LX = − 1
|X′|

∑

x,p∈X′

∑

l

pl log(pl
model(x; θ)) (3)

LU = − 1
|U′|

∑

x,p∈U′
‖p − pmodel(x; θ)‖22 (4)

where p is a mixed label for input x. With the addition of
another regularization term Lreg which prevents assigning
all samples to a single class, the final total error is:

L = LX + λULU + λrLreg (5)

where λr is set to 1 for all experiments and λU is set to the
same value as used in the experiment of DivideMix [1].

2.3 RandAugment

Data augmentation is a widely used technique to increase
the number of training samples to enhance the general-
ization performance of image classification model. Typ-
ical data augmentation methods for images include rota-
tion, flipping, cropping, etc. In general, data augmentation

methods require expertise in each domain to apply plausi-
ble transformations to each sample. Recently, several ap-
proaches [25], [26] have been developed that learn optimal
policies on a small proxy task for automatically designing
augmentation strategies without prior knowledge of each
domain. However, these approaches require a huge com-
putational cost to find the optimal hyperparameters in their
search space.

Instead of searching for hyperparameters in a proxy
task, RandAugment [11] performs a grid search on the vali-
dation set to determine the best hyperparameters with drasti-
cally reduced computational cost. RandAugment is a simple
data augmentation method using hyperparameters n and m,
where n controls the number of transformations to be ap-
plied to a single sample and m controls the magnitude of
each transformation. RandAugment selects n transforma-
tion from the following transformations with uniform prob-
ability for every image in every minibatch.

• identity • autoContrast • equalize
• rotate • solarize • color
• posterize • contrase • brightness
• sharpness • shear-x • shear-y
• translate-x • translate-y

3. Consistency Regularization on Selected Samples

Our proposed method is based on DivideMix [1] which is an
excellent approach for learning with noisy labels by model-
ing the loss distribution and selecting clean samples. Since
recent studies show that a deep learning model in the early
learning phase is robust against the noisy labels [6], [15], Di-
videMix selects samples with small loss values that are easy
to classify as clean samples. In other words, DivideMix may
overfit to the samples with simple patterns and fail to select
samples with true labels but hard to classify.

Our method prevents DivideMix from overfitting to the
samples with simple patterns by introducing a consistency
regularization, which is widely used in semi-supervised
learning (SSL). In SSL, consistency regularization encour-
ages the training model to output the same values to the
perturbed version of the unlabeled sample as to the original
sample. In our method, consistency regularization is applied
to selected samples by GMM and it encourages predictions
on perturbed selected samples to be consistent with predic-
tions on the original ones. This prevents training model
from overfitting to the simple patterns, and encourages the
model to learn samples with true labels but hard to classify
by transforming easier samples by perturbation. While Di-
videMix uses only random cropping and horizontal flipping
as data augmentation methods, our method uses RandAug-
ment [11] as a method for adding perturbation to training
images. The abstract of our method is summarized in Fig. 1.

At first, we train two networks θ1, θ2 on the original
noisy dataset D = {X,Y} = {(xi, yi)}Ni=1 for a few epochs.
This training period comes from the belief about robust-
ness of deep learning in the early learning phase. After the
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warmup period, all training samples are fed into θ1 and θ2
and a two-components GMM is fit to these loss distribu-
tions. Then select a set of clean samples as a set of labeled
samplesDθ1 ,Dθ2 and define a complementary set as a set of
unlabeled samples D̄θ1 , D̄θ2 based on the output from a two-
components GMM. If a clean probability wi of each sample
i exceeds τ, i is selected as clean. As shown in DivideMix,
compute the refined labels ȳb and q̄b of each sample from
Dk and D̄k for k ∈ {θ1, θ2}. After transforming each label,
MixUp and MixMatch transforms each dataset intoD′θk and
D̄′θk . The loss on D′θk is the cross entropy loss LX and the
loss on D̄′θk is the mean squared error LU as follows:

LX = − 1
|D′θk |

∑

x,p∈D′θk

∑

l

pl log(pl
model(x; θ)) (6)

LU = − 1

|D̄′θk |
∑

x,p∈D̄′θk

‖p − pmodel(x; θ)‖22 (7)

where p is a mixed label for input x. In addition to these
two terms, the loss for MixMatch consists of a regularization
term as in Eq. (5).

Given a set of selected samplesDθk = {Xθk ,Yθk } where
k = {1, 2} be a set of clean samples for each network
(θ1, θ2) at each epoch, each label yb is refined to ŷb by la-
bel refinement and sharpening of DivideMix. Then for each
(xb, ŷb) ∈ Dθk for b ∈ (1, · · · , B), RandAugment is applied
to xb to convert the easy to classify samples into the hard to
classify samples and a modified sample and modified sets of
samples are denoted as xc

b andDc
θk
= {Xc

θk
,Yc
θk
} = {Xc

θk
, Ŷθk }

where yc
b ∈ Yc

θk
of each sample is equal to the ŷb of origi-

nal samplesDθk . In terms of the consistency regularization,
a sample (xb, ŷb) ∈ Dθk corresponds to original sample and
(xc

b, ŷb) ∈ Dc
θk

corresponds to the perturbed sample. Then
the consistency on selected samples for k-th network is de-
fined as follows:

Lc = − 1
|Dc
θk
|
∑

xc,ŷ∈Dc
θk

∑

l

ŷl · log(pl
model(xc; θ)) (8)

For the consistency regularization, we did not apply
MixUp for further modification of inputs. LX modifies Dθk
by MixUp, where MixUp is a linear interpolation between
a sample of Dθk and the other sample. Therefore LX main-
tains information that the label of xb is ŷb. Then the total
loss for each network is a sum of the loss of MixMatch and
the consistency regularization:

L = LX + λULU + λrLreg + λcLc (9)

where λc is a hyperparameter.
In Algorithm 1, we summarized the entire computa-

tional procedure. In later chapters, in addition to the com-
parison between the proposed method and existing methods,
we will discuss the change in the value of the error function
for the selected samples and the change in the accuracy of
sample selection by consistency regularization.

Algorithm 1 Training with Consistency Regularization
Input: Dataset with noisy labelsD = {X,Y} = {(xi, yi)}Ni=1, Two networks
θ1, θ2, sharpening temperature T , unsupervised loss weight λU , regu-
larization term weight λc, λr = 1, Beta distribution α for MixMatch,
Number of augmentations J

1: // Training stage
2: θ1, θ2 =WarmUp(D, θ1, θ2)
3: while e < MaxEpoch do
4: W2 = GMM(D, θ1)
5: W1 = GMM(D, θ2)
6: for k = 1, 2 do
7: D(k)

θk ,e
= {(xi, yi, wi)|wi ≥ τ,∀(xi, yi, wi) ∈ (D,Wk)}

8: D̄(k)
θk ,e
= {xi |wi < τ,∀(xi, wi) ∈ (D,Wk)}

9: for iter = 1 to num iter do
10: Draw a mini-batch {(xb, yb, wb)}Bb=1 fromDθk ,e
11: Draw a mini-batch {(ub)}Bb=1 from D̄θk ,e
12: for b = 1 to B do
13: xc

b = RandAugment(xb |N,M)
14: for j = 1 to J do
15: x̂b, j = Augment(xb)
16: ûb, j = Augment(ub)
17: end for
18: pb =

1
J

∑
j pmodel(x̂b, j; θk)

19: ŷb = wbyb + (1 − wb)pb

20: ŷb = Sharpen(ȳb,T )
21: q̄b =

1
2J

∑
j(pmodel(ûb, j; θ1) + pmodel(ûb, j; θ2))

22: q̂b = Sharpen(q̄b,T )
23: end for
24: X̂ = {(x̂b, j, ŷb); b ∈ (1, · · · , B), j ∈ (1, · · · , J)}
25: Û = {(ûb, j, q̂b); b ∈ (1, · · · , B), j ∈ (1, · · · , J)}
26: LX,LU = MixMatch(X̂, Û)
27: D(k),c

θk ,e
= {(x, y)|x ∈ xc, y ∈ ŷ}

28: Lc = ConsistencyRegularization(D(k),c
θk ,e

)
29: L = LX + λULU + λrLreg + λcLc

30: θk = SGD(L, θk)
31: end for
32: end for
33: end while

3.1 Extension of Consistency Regularization

For further improvement of our method, we introduced a
consistency regularization averaged over multiple inputs.
The new consistency regularization is defined as follows:

Lc = − 1
I · |Dc

θk
|

I∑

i=1

∑

xc,ŷ∈Dc,(i)
θk

∑

l

ŷl log(pl
model(xc; θ))

(10)

where I is the number of trials that create augmented version
of Dθk by RandAugment. Dc,(i)

θk
is the augmented dataset at

i-th trial. Lc encourages model to receive different represen-
tations of xc with consistent label ŷ over I trials.

4. Experiments

First, we performed an evaluation on a dataset containing
synthetically generated label noise, and then conducted a
comparison experiment with state-of-the-art approaches. In
later subsections, we evaluate the sensitivity of the model to
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Table 1 Comparison with baseline methods and current state-of-the-art approaches on CIFAR-
10 and CIFAR-100 with symmetric label noise in test accuracy (%). DivideMix [1] and AugDesc-
(SAW/WAW) [21] was reimplemented using public code. The mean accuracy and its standard deviation
are computed over five noise realizations.

CIFAR-10 CIFAR-100
Model Noise 20% 50% 80% 20% 50% 80%

Cross Entropy
Best 86.39 ± 0.51 79.49 ± 0.48 59.48 ± 1.19 61.99 ± 0.39 47.26 ± 0.59 22.35 ± 0.80
Last 83.63 ± 0.17 58.49 ± 0.31 26.44 ± 0.53 61.73 ± 0.37 38.58 ± 0.47 10.72 ± 0.20

DivideMix [1]
Best 96.07 ± 0.07 94.72 ± 0.06 92.72 ± 0.27 76.38 ± 0.16 72.98 ± 0.13 56.02 ± 0.62
Last 95.79 ± 0.07 94.44 ± 0.11 92.47 ± 0.31 75.93 ± 0.14 72.46 ± 0.07 55.65 ± 0.64

AugDesc-SAW [21]
Best 96.13 ± 0.07 94.55 ± 0.43 93.50 ± 0.40 78.86 ± 0.04 76.72 ± 0.17 55.44 ± 3.66
Last 95.96 ± 0.09 94.39 ± 0.44 93.33 ± 0.38 78.61 ± 0.04 76.44 ± 0.22 55.20 ± 3.65

AugDesc-WAW [21]
Best 96.17 ± 0.08 95.24 ± 0.13 93.56 ± 0.48 78.86 ± 0.09 76.67 ± 0.20 64.53 ± 0.50
Last 95.99 ± 0.09 95.04 ± 0.16 93.38 ± 0.49 78.61 ± 0.12 76.38 ± 0.20 64.30 ± 0.50

Ours (I=1)
Best 96.73 ± 0.08 96.20 ± 0.09 93.99 ± 0.13 80.83 ± 0.09 77.17 ± 0.27 61.19 ± 0.58
Last 96.47 ± 0.12 95.96 ± 0.09 93.78 ± 0.14 80.28 ± 0.14 76.73 ± 0.41 60.81 ± 0.68

Ours (I=2)
Best 96.67 ± 0.05 96.37 ± 0.07 93.83 ± 0.11 81.11 ± 0.17 76.50 ± 0.38 61.05 ± 0.45
Last 96.39 ± 0.04 96.11 ± 0.06 93.64 ± 0.09 80.51 ± 0.12 76.20 ± 0.35 60.68 ± 0.51

Table 2 The value of RandAugment hyperparameters N and M used in
Table 1 with CIFAR-10 and CIFAR-100 at different levels of noise rate.

CIFAR-10 CIFAR-100
Noise Rate 20% 50% 80% 20% 50% 80%
N 2 1 2 1 1 2
M 2 4 4 2 2 2
λc 0.5 0.5 0.1 0.5 0.5 0.1
λU 0 25 25 25 150 150

the hyperparameter λc in test accuracy and check the effect
of consistency regularization on the value of the loss func-
tion for the selected sample.

4.1 Datasets and Implementation Details

We used CIFAR-10 and CIFAR-100 [27] and dataset for val-
idating our proposed method. Both dataset contains 50K
training images and 10K test images of size 32× 32. We ex-
tract 5K samples from training samples as a validation set.
Following the prior works [1], [9], we add synthetically gen-
erated label noise with various noise rate to each dataset for
evaluating our method. The type of label noise is symmetric
noise, which randomly flips the labels of the training sam-
ples to one of the categories with a certain probability.

We used a 18-layers PreAct Resnet for CIFAR-10 and
CIFAR-100 experiments. We trained each model using SGD
with a moment of 0.9, a weight decay of 1.0e−4, and a batch
size of 128. The total number of training epochs is 300. The
initial learning rate is 0.02 and it’s multiplied by 0.1 at every
10 epochs after 150-th epoch. According to DivideMix, the
other hyperparameters are set as follows: J = 2, T = 0.5,
α = 4 and τ = 0.5. α and τ are the hyperparameter for beta
distribution of MixMatch and clean probability threshold for
GMM, respectively. λU is set as 25 except for 20% noise ra-
tio when it is set as 0 in the CIFAR10 experiment, and is set
as 150 except for 20% noise ratio when it is set at 25 in the
CIFAR-100 experiment. The warmup period is set to 10 for
CIFAR-10 and set to 30 for CIFAR-100. The hyperparam-
eters of RandAugment is determined by the classification
accuracy on the validation set and summarized in Table 2.

4.2 Comparison with State-of-the-Art Methods

We compared our method with DivideMix [1] and Augment
Descent (AugDesc) [21], which is the current state-of-the-
art for learning with noisy labels through sample selection
and data augmentation, using the same network architecture.
AugDesc defines the common random flip and crop image
augmentation as weak data augmentation, and AutoAug-
ment [25] as strong data augmentation. AugDesc models
loss distribution on weakly or strongly augmented training
samples by a two-component GMM to divide the dataset
into a labeled set and an unlabeled set. Then AugDesc
trains a classification model on strongly augmented train-
ing samples in a semi-supervised manner following train-
ing procedures of DivideMix. AugDesc-SAW (AugDesc-
WAW) trains model with strong (weak) data augmentation
during warmup period. The proposed method and AugDesc
are quite similar in terms of sample selection and data aug-
mentation strategy, but AugDesc is a method that learns
only with perturbed samples for parameter updates, whereas
our proposed method imposes constraints on classification
model to ensure that the outputs for perturbed samples
are similar to ones for original samples. This means that
AugDesc does not obtain information of original samples
and our proposed method receives samples selected as clean
more frequently than AugDesc. In Table 1, Cross-Entropy
denotes baseline model trained with Cross-Entropy loss us-
ing the same network architecture. We report the best test
accuracy obtained during training and mean test accuracy
averaged across the last 10 training epochs. The results with
different levels of symmetric label noise on CIFAR-10 and
CIFAR-100 are summarized in the Table 1 and the results
given by our method (Ours (I = 1)) is compared with the
above state-of-the-art approaches, where I is the number of
augmented samples used in the consistency regularization.
We also report the results from a variants of our method:
consistency regularization with 2 trials of data augmenta-
tion (Ours (I = 2)). As the number of I increases, the model
receives more augmented samples for stronger effect on pre-
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Fig. 2 Results of LX on CIFAR-10 and CIFAR-100 dataset with different values of lambda. Each
column shows different noise rate (20%, 50%, 80%). Top Row: LX vs number of epochs on CIFAR-10;
bottom row: LX vs number of epochs on CIFAR-100.

Table 3 Test accuracy on CIFAR-10 and CIFAR-100 with noisy labels
with different various on Attention module. The mean accuracy and its
standard deviation are computed over three noise realizations

CIFAR-10 CIFAR-100
Noise 20% 50% 80% 20% 50% 80%

λc = 0.1
Best 96.67 95.86 94.17 79.90 76.31 60.94
Last 96.36 95.51 93.91 79.40 75.89 60.57

λc = 0.5
Best 96.79 96.35 93.77 80.69 77.18 60.14
Last 96.48 96.09 93.52 80.38 76.79 60.01

λc = 1.0
Best 96.30 95.92 91.59 79.88 75.49 56.63
Last 96.09 95.74 91.21 79.48 75.83 56.29

λc = 1.5
Best 96.16 95.79 90.38 79.14 74.51 54.87
Last 95.76 95.52 90.19 78.73 74.02 54.45

venting overfitting. At the same time, learning the original
samples in the classification loss (LX) becomes more diffi-
cult. We prepared these variants to explore the appropriate
number of augmented samples in the consistency regulariza-
tion. Our method (Ours (I = 1)) achieves superior results on
CIFAR-10 with 50% label noise and CIFAR-100 with 20%
label noise than the state-of-the-art approaches. When the
noise rate of CIFAR-100 is 80%, AugDesc-WAW achieves
better results than the other methods. Our method (Ours
(I = 2)), which performs multiple trials of data augmenta-
tion to input, yields results comparative to or lower than ours
with I = 1.

4.3 Analysis of the Effectiveness of Consistency Regular-
ization

Table 3 shows the results of the analysis of the ef-
fect of the hyperparameter λc on the performance of the
model(Ours(I = 1)) on datasets with label noise. The value

of λc is one of {0.1, 0.5, 1.0, 1.5} in the experiment and Ta-
ble 3 shows that the performance of model is sensitive to
λc when the noise rate is high (80%) on both datasets. For
higher noise rate (80%), the model with smaller λc yields
better results. On the contrary, the results on the different
noise rate are less sensitive to the value of λc.

Figure 2 shows how the value of LX with different
value of λc changes as learning progresses on both datasets.
We observe the value of LX to confirm the effect of the con-
sistency regularization by changing the value of λc. Y-axis
of each plot shows the average value of LX for each epoch.
The value of λc is one of {0.0, 0.1, 0.5, 1.0, 1.5}, and the top
row is the result of CIFAR-10 and the bottom row is the
result of CIFAR-100. LX is the loss of MixMatch on se-
lected sample by GMM, and measures how well the model
fits those samples. In all plots, the value ofLX with larger λc

is greater than the ones with smaller λc. Since the best clas-
sification accuracy of our method is given when the value
of λc is nonzero, we can deduce that the larger value of
LX is better for generalization performance, and the consis-
tency regularization prevents model from overfitting to the
selected samples. However, if the value of λc is too large,
LX also becomes large. This causes the learning model to
underfit the selected sample, resulting in poor generalization
performance as shown in Table 3.

Figure 3 shows the number of selected samples as clean
and Area Under the Curve (AUC) for clean/noisy sample
classification at each epoch on CIFAR-10 and CIFAR-100
training data with various λc ∈ {0.0, 0.1, 0.5, 1.0, 1.5} when
the noise rate is 20% or 80%. In results on both CIFAR-10
and CIFAR-100, if λc > 0, the number of selected sam-
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Fig. 3 Results of the number of selected samples by GMM and AUC of classification accuracy for
noisy/clean labels at each epoch on CIFAR-10 and CIFAR-100. Top row: Each plot shows number of
samples selected as clean vs. Number of epochs. Bottom row: Each plot shows Area Under the Curve
(AUC) for clean/noisy classification vs number of epochs.

ples is greater than the case with λc = 0 while AUC is
comaparative or better. This means that the loss distribution
given by model trained with consistency regularization se-
lects the more samples with correct labels more accurately.
One possible explanation for less accurate sample selection
with λc = 0 is that the model overfits to the samples with
simple patterns and regards the samples with correct labels
but hard to classify as corrupted data.

4.4 Discussion

Table 1 shows that our method achieves superior results than
DivideMix [1] (baseline model) in all cases, and better than
or comparative to the results given by AugDesc [21] except
for 80% symmetric label noise on CIFAR-100 dataset. One
possible explanation for this shortage is that the number of
selected sample for each class is small by GMM for high
noise rate, while AugDesc applies strong data augmentation
to all training samples. Figure 4 shows that the number of
selected samples by GMM at each epoch and the number of
selected samples decreases as the noise rate in the dataset
increases. Hyper-parameter setting used in this experiments
are shown in Table 2. Therefore our method does not con-
sider the consistency on the enormous unlabeled (not se-
lected) samples during training when the noise rate is high.
For further improvements of our methods, we should ad-
dress the consistency on the unlabeled (not selected) sam-
ples during training. And we compared two variants of our
method (Ours(I = 1) and Ours(I = 2)) in Table 1. As the
value of I increases, the model receives more augmented

Fig. 4 Top and bottom plot show the number of selected samples vs num-
ber of epochs on CIFAR-10 and CIFAR-100 with different label noise ratio
over five trials.

samples, which is expected to have a stronger effect on pre-
venting over-fitting, but on the other hand, learning the orig-
inal samples in LX becomes more difficult. Experimental
results show that I = 1 is sufficient for learning.

Training model with consistency regularization re-
ceives the perturbed selected samples and their original ones
at the same time. Then model does not overfit to the selected
samples. As shown in Fig. 2 for both datasets with various
noise rates, the classification loss on the selected samples
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LX increases as the λc increases in both datasets with vari-
ous noise rates, indicating that the model using consistency
regularization does not overfit to the selected samples during
training. Also our method with nonzero λc achieved the best
classification accuracy, it’s provably showed that preventing
the model from fitting to the selected samples is benefit-
ing for higher generalization performance. Since the sam-
ples selected by fitting GMM to the loss distribution have
simple patterns and tend to be easy to classify [6], our con-
sistency regularization contributes to preventing the model
from overfitting to the simple patterns and results in higher
generalization performance.

Figure 3 showed that the number of selected sam-
ples and the value of AUC of classification accuracy for
noisy/clean labels given by our method is larger than the
baseline (λc = 0) during training when noise rate is small
(20%) in both datasets. This means that the model correctly
outputs high loss value to the samples with noisy labels and
the model was able to be trained with more correctly la-
beled samples during training. When the noise rate is 80%
in CIFAR-100, the results are also better than the baseline.
However, when the noise rate is 80% in CIFAR-10, the num-
ber of selected samples and AUC given by our method is
almost equal to the baseline. As shown in Table 1, the clas-
sification accuracy is also equal to the baseline. These re-
sults also support the claim that our method is less effective
when the noise rate is large, because the number of samples
to which consistency regularization is applied is small. One
possible improvement is to generate accurate pseudo-labels
for unlabeled samples, and apply consistency regularization
to them as well.

5. Conclusion

In this paper, we adopt a consistency regularization to the
selected samples by fitting GMM to the loss distribution for
learning with noisy labels. Our method selects clean sam-
ples and modify their representation by RandAugment, and
prevents the training model from overfitting to the easy sam-
ples with simple patterns. Experimental results show that
validity of our method to combat with noisy labels.
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