
656
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

PAPER

Android Malware Detection Based on Functional Classification

Wenhao FAN†a), Dong LIU†b), Nonmembers, Fan WU†, Member, Bihua TANG†, and Yuan’an LIU†, Nonmembers

SUMMARY Android operating system occupies a high share in the
mobile terminal market. It promotes the rapid development of Android ap-
plications (apps). However, the emergence of Android malware greatly en-
dangers the security of Android smartphone users. Existing research works
have proposed a lot of methods for Android malware detection, but they
did not make the utilization of apps’ functional category information so
that the strong similarity between benign apps in the same functional cat-
egory is ignored. In this paper, we propose an Android malware detection
scheme based on the functional classification. The benign apps in the same
functional category are more similar to each other, so we can use less fea-
tures to detect malware and improve the detection accuracy in the same
functional category. The aim of our scheme is to provide an automatic ap-
plication functional classification method with high accuracy. We design an
Android application functional classification method inspired by the hyper-
link induced topic search (HITS) algorithm. Using the results of automatic
classification, we further design a malware detection method based on app
similarity in the same functional category. We use benign apps from the
Google Play Store and use malware apps from the Drebin malware set to
evaluate our scheme. The experimental results show that our method can
effectively improve the accuracy of malware detection.
key words: Android, malware detection, functional classification, mobile
security, HITS algorithm

1. Introduction

Android operating system occupies a high market share.
Android apps develop fast, but research shows that there are
a large amount of malware endangering the safety of An-
droid users [1]. At present, there is still space for Android
malware detection technology to further improve the accu-
racy, and the existing research works do not make the best
use of the app functional category information. Through
the research of Android app functional classification, it is
found that benign apps of the same category have strong
similarity in implementation of their functionalities. Be-
sides, permissions, APIs and the relationship between APIs
of similar apps also have significant similarity. Based on
this similarity, we use static features to classify the apps ac-
cording to their functionalities. Malware detection methods
take advantage of the difference between malware and be-
nign apps. The difference in the same functional category

Manuscript received June 12, 2021.
Manuscript revised October 11, 2021.
Manuscript publicized December 1, 2021.
†The authors are with the School of Electronic Engineering,

and Beijing Key Laboratory of Work Safety Intelligent Monitor-
ing, Beijing University of Posts and Telecommunications, Beijing,
China.

a) E-mail: whfan@bupt.edu.cn
b) E-mail: liud@bupt.edu.cn

DOI: 10.1587/transinf.2021EDP7133

is more obvious so the accuracy of malware detection will
be higher in this case. What’s more, we can use less fea-
tures to detect malware in each functional category. When
we get the functional category label of the app, we use a
new method to measure the similarity between apps. This
method calculates the similarity between apps to detect mal-
ware in the same functional category. We innovatively pro-
pose to apply HITS algorithm to the process of API fea-
ture selection. HITS algorithm is an algorithm applied in
network retrieval. It can get the relevance ranking of web
pages related to users’ search keywords, so as to return the
most desired information. The ranking mechanism of the
algorithm makes use of the link relationship between web
pages, that is, one web page contains hyperlinks to other
web pages. Through the research, we found that the API
in Android apps has a similar relationship. In the app func-
tional classification, we increase the weight of the top APIs
selected by HITS algorithm, which introduces the factor of
the relationship between APIs and functionalities, and fur-
ther improves the accuracy of app functional classification.
On the basis of app functional classification, we propose a
method to calculate app similarity, which can calculate the
similarity between two apps by using the API feature and
the relationship between apps and APIs. Then, we borrow
and improve k-nearest neighbor (KNN) algorithm, using the
benign or malicious labels of known samples to identify un-
known samples. Due to the huge number of existing sam-
ples in the same category, it spends too much time calcu-
lating the similarity between the app to be tested and the
existing samples. We combine the samples with high simi-
larity. For some samples with high similarity, their benign
and malicious labels are not same. We adopt the strategy
of increasing the similarity threshold and discarding some
samples to solve this problem.

HITS algorithm is based on the link between web
pages, ranking the relevance between web pages and search
keywords. The core idea is to first obtain the initial set of
related web pages according to keywords, and then expand
the set by the link between web pages. HITS algorithm sets
an authority attribute and hub attribute for each web page
in the set, then iterates the web pages by the link and the
iteration formula. Finally, it filters out the top web pages ac-
cording to the authority value. From the perspective of API,
the API in Android apps is similar to web pages. Web pages
are connected by hyperlinks, which is similar to the calling
relationship between APIs. The core idea of HITS is that a
good hub web page will point to many good authority web

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

FAN et al.: ANDROID MALWARE DETECTION BASED ON FUNCTIONAL CLASSIFICATION
657

pages, and a good authority web page will be pointed to by
many good hub web pages. We find that there is a similar
logic in the calling relationship between the APIs. We can
apply the HITS algorithm to the API filtering. HITS algo-
rithm obtains the authority values of different APIs, and we
set the corresponding weights for the APIs according to the
authority values. Similar to web pages, the authority of API
features represents the relevance between API and function-
alities. The higher the authority, the more important the API
is in the implement of functionality. We set high weight
for them, so that they can play a greater role in classifica-
tion, so as to improve the accuracy. In other words, we set
weights for them according to the relationship between API
and functionality. Through our app classification method,
we have analyzed 12791 apps and extracted 17038 features
from 16 app categories of Google Play Store, and finally
achieved 86.6% classification accuracy.

KNN algorithm is a simple classification algorithm,
which determines the category of the samples to be tested
by counting the labels of the K nearest samples, and takes
the category of most of the K samples as the result. Al-
though the algorithm theory is simple, it often has good per-
formance in practice. Inspired by KNN algorithm, we pro-
pose a new distance function, that is, the similarity between
apps. The API and the relationship between the APIs are
used to measure the app similarity. Similar to KNN algo-
rithm, our scheme determines the category of the samples
according to the label of the adjacent samples. The disad-
vantage of KNN algorithm is that it needs a lot of computa-
tion to find the nearest K sample points. For this problem,
we use the similar sample merging strategy.

We make the following contributions in this paper:
Firstly, aiming at the problem of application functional

classification, this paper proposes an Android application
functional classification method based on HITS algorithm.
HITS algorithm is used to filter the API features of appli-
cations in this method. It sets different weights for API fea-
tures, and the API which plays a key role in the implementa-
tion of application’s functionality has higher weight. In this
way, this method improves the accuracy of functional clas-
sification. This method uses the filtered weighted API fea-
tures, combined with a variety of static features, and uses the
ensemble learning model to classify the applications accord-
ing to their functions. The app classification model based on
HITS algorithm is tested, which verifies the effectiveness of
HITS algorithm in Android app classification.

Secondly, this paper proposes an Android malware
detection scheme based on functional classification. The
scheme include a new method to calculate application simi-
larity. The types of APIs and the relationship between them
are taken into account in this method. It builds relation-
ship matrix for APIs according to apps’ code logic and data
flows and uses matrix operation to calculate the similarity
between the two apps. The scheme classifies the applica-
tions and detects malware within the same functional cate-
gory. This scheme uses KNN algorithm for reference, inte-
grates the concept of similarity into the process of malware

detection, and improves KNN algorithm for Android mal-
ware detection. The proposed scheme is compared with the
existing Android malware detection methods to prove the
effectiveness.

The reminder of this paper is organized as follows.
Section 2 details the background and related works. Sec-
tion 3 introduces the whole scheme. Section 4 describes
the empirical evaluation. Section 5 presents our conclusions
and future work.

2. Related Works

The existing Android malware detection technology is
mainly divided into two categories, one is the innovation
in application feature, the other is the innovation in machine
learning algorithm.

2.1 The Innovative Research Work on App Feature

Li et al. [2] proposed to use permission for malware detec-
tion, and designed a three-tier screening model for permis-
sion. Abro et al. [3] proposed using permission and intent
information to detect malware. Liang et al. [4] proposed
to construct permission combination for malware detection.
The above three methods ignore the differences in the use of
permissions between apps of different functional categories.
Peiravian et al. [5] proposed using API and permission in-
formation to detect malwares. Wu et al. [6] proposed us-
ing API, permission and intent information for malware de-
tection, and classified the intention of malware. These two
methods consider the API information, but the analysis of
the relationship between APIs is not enough. Enck et al. [7]
proposed using dynamic analysis method to detect malwares
and track sensitive information flow of apps in real time.
Xiao et al. [8] proposed using semantic model to process dy-
namic API call information. Ni et al. [9] proposed to extract
the dynamic API and permissions of apps to detect malware.
The average detection time of each app is 18 minutes. The
above three methods use the dynamic features of the app to
judge whether the app is a malware, but the dynamic analy-
sis needs to run the app, which takes a long time, and does
not cover the logic of the app code completely, so it is easy
to miss useful features.

2.2 The Innovative Research Work on Machine Learning
Algorithm

Arp et al. [1] first proposed to extract various static fea-
tures and use SVM algorithm to detect malware. Aafer et
al. [10] proposed that KNN algorithm can further improve
the accuracy of malware detection. Zhu et al. [11] pro-
posed to use rotation forest algorithm for malware detection.
Yerima et al. [12] proposed a new classifier fusion method
based on multi-level structure, which can effectively com-
bine with machine learning algorithm to improve the accu-
racy. Gaikwad et al. [13] proposed a classifier fusion method
to detect malicious intrusion. Wang et al. [14] proposed a

658
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

deep learning method to identify malware. Although the
above methods are innovated from the perspective of ma-
chine learning, there are some shortcomings, such as insuf-
ficient use of applied features, insufficient depth of feature
association mining, and weak interpretability.

Compared with the existing research works on Android
malware detection, our proposed malware detection scheme
based on functional classification fully considers the differ-
ences of different categories. At the same time, we propose
an app similarity calculation method based on APIs and API
relationship. Then we borrow and improve KNN algorithm
to realize malware detection.

3. Solution

Our scheme includes Android app processing, feature filter-
ing, application functional classification and malware detec-
tion. The overview of our scheme is shown in Fig. 1.

1. In the app processing stage, we use Apktool [15] to
decompile the program package (APK file) in the dataset,
analyze the AndroidManifest.xml and smali code file, and
obtain the static features of the app. We use term frequency-
inverse document frequency (TF-IDF) algorithm to prelim-
inarily filter the features of each category, and use the API
call relationship to expand the API set.

2. In the feature screening stage, HITS algorithm is
used to screen API features. We assign authority and hub
attributes to the APIs in the set, and use the calling relation-
ship between APIs to update the attribute values iteratively.
Finally, we select the API with the highest authority value
as the API set to construct the API feature vector.

3. In the app functional classification stage, the API
features filtered by HITS algorithm are combined with other
static features to construct feature vectors for machine learn-
ing, and the corresponding weights are set for API features
according to the result of HITS algorithm. The ensemble
learning algorithm is used to train the automatic classifica-
tion model. We adjust the parameters of the training model,
and select the optimal parameters for experimental analysis.

4. In the malware detection stage, we calculate the sim-
ilarity between each two apps in every functional category,
and merge the samples with high similarity. Finally, we bor-
row and improve KNN algorithm to judge the benign or mal-
ware category of the app to be tested.

Fig. 1 The overview of our scheme.

3.1 App Processing

In the first stage, we need to collect the permissions, intents,
hardware features and API related information from APK
files. API is the key element of the apps’ functionalities, and
it accounts for the largest proportion in feature set. After ex-
tracting the APIs from smali folder, we will be able to pick
up the implementation logic of the app’s functionality. Apps
in the same category have strong similarity in implementa-
tion. What’s more, the permissions declared by an app are
closely associated to the app’s functionality. When the app
is about to apply for hardware or user information resources
on smartphones, it must declare relevant permissions in ad-
vance. Therefore, the quantity and type of the declared per-
missions in app are similar in the same category. Apktool is
used to decompile APK files for getting these static features
from Android Manifest.xml and smali folder.

In order to improve the efficiency of machine learning
training and app detection, TF-IDF algorithm is employed
to preliminarily screen the static features used by each cate-
gory. TF-IDF is an algorithm for text feature filtering, which
is used to filter the most suitable topic words from the arti-
cle. It takes into account the frequency and the scope of
text occurrence. TF-IDF algorithm can also be applied to
filtering the app features. One static feature in an app can
be regarded as a word in an article. With this algorithm, we
can greatly reduce the quantity of the features.

After obtaining the API initially screened and the call
relationship between APIs, we use the call relationship to
expand the API set. The extension principle is to add all
APIs which have call relationship with the APIs filtered by
TF-IDF algorithm to the set.

The number of features filtered by TF-IDF algorithm
is not enough. If we only increase the number of features
filtered by TF-IDF algorithm, we will filter out some APIs
that are only used by a few apps in this category, which will
reduce the generalization ability of API features. Therefore,
we take advantage of the call relationships to expand the
initial API set, and then filter the set again through the sub-
sequent algorithm to select the most relevant APIs for the
app classification.

3.2 App Feature Filtering

The four main components of Android app are Activity,
Service, Broadcast Receiver and Content Provider. Among
them, activity is the foundation of Android app, and the
logic of interaction between app and user is defined in ac-
tivity. Activity has four states in its life cycle, which are
Running, Pause, Stop and Destroy. Seven callback meth-
ods are defined in the activity, covering every step of the life
cycle. The life cycle methods of activity will call various
third-party libraries and APIs to realize the app’s function-
alities [16]. Android app development is based on Java pro-
gramming language. In Java, method is made up of many
lines of code, which are arranged in order to realize special

FAN et al.: ANDROID MALWARE DETECTION BASED ON FUNCTIONAL CLASSIFICATION
659

functionality. The code is the content of API. And the APIs
have a great difference in implementation according to their
different functionalities. Some APIs, such as the life cycle
methods in activity, call a large number of methods from
other classes, while others contain the concrete implemen-
tation of functionality.

HITS algorithm allocates two attributes to web pages,
authority value and hub value. The authority value refers
to the importance of the content in the web page, and the
hub attribute represents the importance of the links in web
pages. It is indicated that a web page with high authority
value should have rich content and can be linked by many
other pages. A web page with high hub value should be
capable of hopping to many good and meaty pages, which
corresponds to the core hub in the web pages.

We put the web page and API together for analogy. We
discover that API has the same nature with web page in the
relationships of API calls. The link between web pages re-
sembles the call relationship between APIs. Besides, dif-
ferent types of API have differences on authority value and
hub value. The authority value of APIs containing complex
implementation of logic is higher than common APIs. Usu-
ally, the APIs with high hub value control the procedure of
activity, such as life cycle methods. They do not contain
complex logic, and most rely on calling other APIs to re-
alize the functionality. On this basis, we consider applying
HITS algorithm to select key APIs in app classification.

Therefore, according to the ideas of HITS algorithm,
we set the authority and hub attribute for each API in the
extension set. These two attributes are initialized to 1. Then
we update them iteratively according to the relationships be-
tween API calls.

Nevertheless, there is a difference between the quantity
of web page links and API calls. The link relationships in
web pages are dense, and all links can be obtained. How-
ever, the relationships of API calls are relatively sparse. The
source code of some Java based APIs cannot be obtained
by decompiling, so the relationships of API calls collected
are not comprehensive. In order to make up for this kind
of call relationships, we expand the definition of the call
relationship. We think there is a connection between the
APIs invoked in the same method. For instance, if method
A consists of method B and C, then we believe that there
are call relationships between method B and C. This will
increase the amount of the call relationships, and the fre-
quently called API will get higher weight.

The premise of HITS algorithm is that the hub value
and authority value are convergent, that is, the convergence
of the algorithm. For the expanded API set, a matrix M is
used to represent the relationships between APIs: mi j = 1
indicates that the ith API calls the jth API, otherwise, it is 0.
Vector H is designed to represent the hub values of all APIs,
in which the ith element represents the hub value of the ith
API. Vector A represents the authority value of all APIs, and
the ith element represents the authority value of the ith API.
The hub and authority values for all APIs are initialized to 1.
Based on the above settings, we get the following results:

Ak = MT Hk−1 (1)

Hk = MAk (2)

All the components of Z are 1.

Ak = (MT M)k−1MT Z (3)

Hk = (MMT)kZ (4)

MT M and MMT are symmetric matrices with n real
eigenvalues. In Hk = (MMT)kZ, the principal eigenvector of
Z and MMT is not orthogonal, so the vector H will eventu-
ally converge to the principal eigenvector of MMT . In order
to ensure that vector H is a unit vector, we will standardize
it after each iteration.

In Ak = (MT M)k−1MT Z, the principal eigenvector of
MT Z and MT M are not orthogonal, and vector A will even-
tually converge to the principal eigenvector of MT M. Simi-
larly, in order to ensure that vector H is a unit vector, we will
standardize it after each iteration. So far, we have proved the
convergence of HITS algorithm in APIs.

After the iteration, we acquire the APIs with high au-
thority values in each category. These APIs are filtered out
to represent the app and are closely related to the functional-
ity. Then we combine the APIs filtered from each category
for the construction of feature vectors. The process of HITS
is shown in Algorithm 1.

3.3 App Functional Classification

After two rounds of screening, the quantity of features
will be greatly reduced. Firstly, TF-IDF algorithm filters
the static features collected from AndroidManifest.xml and
generates the initial API set. Secondly, HITS algorithm fil-
ters the API features. These two kinds of features constitute

Algorithm 1 Process of screening APIs by HITS algorithm
Input: The set of call relationships; The expanded set of APIs; Max

iterations,m; Iteration parameters,min delta; The number of selected apis
in each category,k;

Output: The set of selected APIs, Sn;
for each category c in categories do

Initialize a vector H with all elements = 1;
Initialize a vector A with all elements = 1;
for t = 0→ m do

for i = 0→ range(size(A)) do
A[i]=0;
for j = 0→ range(size(H)) do

if APIi calls API j then
A[i]+=H[j]

Standardize vectorA;
for i = 0→ range(size(H)) do

H[i]=0;
for j = 0→ range(size(A)) do

if API j calls APIi then
H[i]+=A[j]

Standardize vectorH;
if Change of results < min delta then

break;
Add the top k APIs from category c to Sn;

return Sn and their authority values;

660
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Fig. 2 The overview of the functional classification.

Fig. 3 The overview of the malware detection.

the final feature set. For API features, we set corresponding
weights for them according to their authority values. In this
way, the API which is closely related to the category func-
tionality will get a higher weight, thus playing a greater role
in the app classification. We employ the final feature set to
match each app in the dataset. Then our method will gener-
ate a 17038-dimensional vector for each app. The first half
of the vector is matched with the static feature selected from
AndroidManifest.xml, and the second half is matched with
API features.

When generating a feature vector for a new app, we
first scan its AndroidManifest.xml. If it contains a feature
which exists in the final feature set, the corresponding posi-
tion of the feature in the vector will be set to 1, otherwise it
will be set to 0. After that, we will traverse its smali folder.
According to the fully qualified class name of the Activ-
ity registered in the AndroidManifest.xml, we scan the cor-
responding smali code file, so as to determine whether the
current app contains the valid API feature. When valid API
feature is found, the corresponding position in the feature
vector will be set to its weights according to API’s authority
value, otherwise it will be set to 0. With this method, we
generate the feature vectors for 12791 apps in the dataset.
Then these vectors will be used to train the machine learn-
ing module and test the effectiveness of our method.

Compared with single machine learning algorithm, en-
semble learning algorithm has higher fault tolerance [17].
We employ SVM algorithm, random forest (RF) algorithm,
NB algorithm, KNN algorithm, classification and regression
tree (CART) algorithm to build an ensemble learning model.
We choose the Bagging algorithm. The characteristic of
Bagging method is random sampling. It trains new mod-
els through repeated sampling, and finally uses soft voting
to generate the final result. The experimental result shows

that compared with weak classifiers, ensemble learning al-
gorithm gets better results [17]. The structure of the model
is shown in Fig. 2.

3.4 Malware Detection

We use the functional classification method to classify the
malware set, and combine the classified malware with the
labeled benign apps obtained from the Google Play Store
to form a malware detection dataset. Then we calculate the
similarity between the apps in the same functional category.
The overview of this model is shown in Fig. 3.

In order to calculate the similarity from the perspec-
tive of malware detection, we extract the APIs related to
the sensitive data flow in the app. The data flow inside
the app can explain whether the app has malicious behav-
ior. Firstly, we use SUSI [18] to extract the sensitive APIs,
which are mostly related to sensitive information, sensitive
permission and sensitive behavior of the app. Then we use
FlowDroid [19] to extract the data flow of the app. Flow-
Droid can effectively extract the data flow that exist in the
app. Using sensitive API and data flow, we can obtain the
data flow related to sensitive API, and retain these data flow
as sensitive data flow. Then we form a new API set, which
includes all APIs in these data flow. These APIs include
sensitive APIs and APIs related to sensitive data flow, which
can fully reflect the possible sensitive or malicious behavior
of the app.

After obtaining the final sensitive API set, we propose
a method to calculate the app similarity. The process of cal-
culating the similarity between apps in each functional cat-
egory is shown in Algorithm 2. We find that the similarity
between apps is not only reflected in the use of the same
API, but also reflected in the similarity between APIs. The

FAN et al.: ANDROID MALWARE DETECTION BASED ON FUNCTIONAL CLASSIFICATION
661

Table 1 Strategy of merging samples.

Sample label Solution

All are malware or all are benign apps The new sample retains the original label
Some are malware and the others are benign apps Increase the threshold of similarity and continue subdivision

Algorithm 2 Process of calculating the similarity
Input: The set of sensitive APIs; The set of sensitive data flows F; The

API relation matrix R; The vector P; The set of apps; The similarity
matrix S;

Output: The similarity between apps;
Initialize R with all elements = 0;
for each APIi in the set of sensitive APIs do

for each API j in the set of sensitive APIs do
if APIi and API j belong to the same relationship in F then

ri j = 1;

Initialize P with all elements = 0;
for i = 0→ range(size(The set of apps)) do

for i = j→ range(size(The set of sensitive APIs)) do
if appi includes API j then

pi j = 1;

S = PRPT ; return S;

similarity between APIs includes the relationship between
APIs, and it reflects the similarity between apps. We con-
struct a relation matrix, and use it to express the relationship
between APIs. For APIs that belong to the same data flow,
the corresponding position in the relation matrix is 1. Then
the similarity between two apps can be calculated by matrix
multiplication.

We construct the API relation matrix R. That is, for
the n-order matrix R, each row and each column correspond
to each API in the final sensitive API set. For the element
ri j, if APIi and API j has the extracted relationship, ri j = 1,
otherwise ri j = 0.

In order to calculate the similarity between apps, we
generate vectors P[n] with the same dimension as the num-
ber of APIs in the set, and combine them into app matrix P.
For the element pi j, if appi includes API j, pi j = 1, other-
wise pi j = 0.

Then the similarity matrix S can be generated by the
matrix operation PRPT , and the element si j represents the
app similarity between appi and app j. Compared with other
malware detection methods, our method can cover a wider
range of API relationships, and does not add more elements
to the vector of each app.

The purpose of calculating the app similarity is to find
nearby data samples from the app to be tested, and judge
whether the app is malware according to these samples.
Each new app detection needs to calculate the similarity
with each sample in the same functional category, and there
are a large number of samples in the dataset. In order to
reduce the amount of similarity calculation, we merge the
samples in the dataset. The strategy is to set a similar-
ity threshold, and merge the samples whose similarity ex-
ceeds the threshold. Because there are some similar sam-
ples which have different malicious or benign labels, we for-

mulate corresponding strategies to solve this problem. The
strategy is shown in Table 1.

The number of samples after merging is greatly re-
duced. When a new app arrives, the model only needs to
calculate the similarity with the merged samples. Then it
can screen out the nearest 30 samples. Finally, it determines
the label of the sample to be tested according to the labels
of nearby samples.

After setting the threshold, the amounts of samples in
each similar sample set are different. Some sets are split
after increasing the threshold, and the number of samples in
the set is reduced. Therefore, we set weights for the newly
generated samples. That is, the set with more samples has
higher weight after merging, while the set with less samples
has lower weight.

Through the above methods, we effectively reduce the
amount of computation. We replace the distance in KNN
algorithm with similarity between apps. The calculation of
matrix operation is far less than the calculation of Euclidean
distance between samples. At the same time, the relation-
ship between APIs in the similarity calculation is fully con-
sidered to ensure the accuracy of classification.

4. Empirical Evaluation

Both our scheme and the baseline are implemented by
Python and the experiments are conducted on a 3.8 GHZ×24
core CPU, 128 GB main memory PC. The PC is equipped
with windows10 operating system. We employ the algo-
rithms in the scikit-learn tool package [20] to train and test
the machine learning model. Based on Python, scikit-learn
tool package integrates common machine learning algo-
rithms and some classic datasets, which is convenient for
the experiments.

We choose Google Play Store as our input for app func-
tional classification. The web crawler downloads 12792
apps from Google Play Store, and these apps are spread
across 16 categories. The data we used in the experiments
is described in Table 2. In the experiment, we choose 90%
of the data as the training set and the remaining 10% as the
test set.

4.1 Functional Classification Experiment

Number of APIS selected by HITS algorithm: HITS algo-
rithm is employed to filter the APIs that are closely related
to functionalities, and we set different weights to these APIs
according to their authority values. In each category, the
number of APIs filtered by HITS directly affects the total
number of static features selected. Then it affects the clas-
sification accuracy of machine learning module. We select

662
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Table 2 Data set.

Category Number of apps

BOOKS AND REF. 795
COMICS 799
COMMUNICATION 794
ENTERTAINMENT 801
FINANCE 800
HEALTH AND FITNES 796
LIFESTYLE 803
MEDIA AND VIDEO 810
MUSIC AND AUDIO 805
NEWS AND MAGAZINES 790
PERSONALIZATION 793
PHOTOGRAPHY 804
SOCIAL 806
SPORTS 800
TOOLS 799
TRANSPORTATION 796

Fig. 4 Change of accuracy with quantity of APIs selected in each
category.

500 APIs from each category to start the experiment, adding
100 APIs to each experiment. According to the prelimi-
nary results, we conduct more detailed experiments in the
range of 900 to 1500, and the results are shown in Fig. 4.
As can be seen from the figure, when the number of APIs
filtered by each category is less than 1050, the classifica-
tion results show an upward trend with the increase of the
number. When the number exceeds 1050, the classification
results fluctuate in a small range, and there is no obvious
upward trend. Therefore, we finally selected 1050 APIs in
each category to add to the final static feature set.

We use ensemble learning algorithm to experiment on
16 app categories. The experimental result of each category
is shown in the figure. Here, we use the recall value as the
accuracy of each category, that is, the ratio of the number
of correctly predicted apps in each category to the number
of apps used for test in that category. In multi classification
problems, recall has the same value as accuracy.

As shown in Fig. 5, the classification accuracy of
BOOKS AND REFERENCE and COMICS is low. The
reason is these two categories are difficult to distinguish

Table 3 Descriptions of feature sets.

Feature type Wang et al. Our Solution

Request permissions 96 84
Filtered intents 126 34
Restricted API calls 34188 16800
Code-related information 5 0
Used permission 96 84
Hardware features 41 36
Suspicious API calls 78 0

Table 4 The precision results of each category.

Algorithm Parameter

SVM Linear kernel function,c=0.2
NB MultinomialNB

KNN 11
CART Default

RF 200

from other READING apps, and the main difference be-
tween them is the content theme. The categories with higher
classification accuracy are NEWS AND MAGAZINES,
SPORTS and PERSONALIZATION. These categories are
quite different from other categories in functionality. Take
SPORTS for example. In addition to applying for INTER-
NET, ACCESS NETWORK STATE and other common per-
missions, this kind of apps usually requests the permission
of SENSOR ENABLE. Besides, all functionalities of them
are about users’ health, so these apps are easy to be classi-
fied correctly. The apps in PERSONALIZATION provide
user with personalized smartphone settings, so they include
many APIs which is designed to change smartphone settings
and are different from other apps in functionality.

Wang [17] uses ensemble learning algorithm to clas-
sify apps by extracting static features. On the basis of
this method, we mine the relationships of API calls, intro-
duce HITS algorithm to filter API features and set different
weights to different APIs, so as to improve the classification
accuracy. In order to prove the effectiveness of our method,
we compare our method with Wang’s method [17]. The
number of features extracted by the two methods is shown
in Table 3.

Our method uses fewer types and the number of fea-
tures is less than the comparison method. Especially in the
number of API features, we use less than half of the com-
parison method. In this case, we employ the same ensemble
learning algorithm, and the final classification accuracy is
86.6%. The parameters of ensemble learning algorithm is
shown in Table 4. Besides, we spend less time on training
the machine learning module because we use fewer features.
The experimental results show that the classification accu-
racy of the comparison method is 79.3%, which is about
7% lower than ours. The detailed classification results of
each category are shown in the figure. As can be seen from
Fig. 6, in most categories, the accuracy of our method is
greater than, equal to, or slightly lower than the compar-
ison method. Among the six categories with lower accu-

FAN et al.: ANDROID MALWARE DETECTION BASED ON FUNCTIONAL CLASSIFICATION
663

Fig. 5 Accuracy in each category.

Fig. 6 Comparison of two methods.

racy than the comparison method, the accuracy of three cat-
egories has no significant difference in the classification re-
sults of the two methods. Only in the three categories of
COMICS, COMMUNICATION and ENTERTAINMENT,
the accuracy of the comparison method is over 10% higher
than ours. After analysis, we found that in these three cate-
gories, the comparison method extracted more features than
us. The main reason is that we control the quantity of APIs
filtered out from each category. Consequently, the classifi-
cation effect of some categories is not as good as the com-
parison method. The motivation of our method is to improve
the overall accuracy of the classification. It is allowed that
the accuracy of a small number of categories is lower than
that of existing methods. Increasing the number of features

in these categories will cause HITS algorithm to introduce
a large number of additional APIs, which will reduce the
detection efficiency. What’s more, the introduction of these
APIs will reduce the accuracy of other categories.

The precision results of each category are shown in Ta-
ble 5.

Besides, there are some other functional classification
methods, which use different static features and algorithms.
We also implemented Karina Sokolova et al. [21] and An-
droClass [22] as the comparative experiments. The experi-
mental result is shown in Table 6. It can be seen that the
effects of these methods are not as good as ours.

664
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Table 5 The precision results of each category.

Category Precision

BOOKS AND REF. 67%
COMICS 84%
COMMUNICATION 92%
ENTERTAINMENT 90%
FINANCE 79%
HEALTH AND FITNES 85%
LIFESTYLE 89%
MEDIA AND VIDEO 93%
MUSIC AND AUDIO 89%
NEWS AND MAGAZINES 96%
PERSONALIZATION 87%
PHOTOGRAPHY 85%
SOCIAL 83%
SPORTS 91%
TOOLS 47%
TRANSPORTATION 85%

Table 6 Descriptions of feature sets.

Method Accuracy Precision

Karina Sokolova 80.9% 81.8%
AndroClass 83.5% 87.4%
Ours 86.6% 90.2%

Table 7 Data set.

Category malware all

BOOKS AND REF. 296 1091
COMICS 315 1114
COMMUNICATION 302 1096
ENTERTAINMENT 345 1146
FINANCE 248 1048
HEALTH AND FITNES 264 1060
LIFESTYLE 278 1081
MEDIA AND VIDEO 343 1153
MUSIC AND AUDIO 301 1106
NEWS AND MAGAZINES 368 1158
PERSONALIZATION 345 1138
PHOTOGRAPHY 204 1008
SOCIAL 362 1168
SPORTS 250 1050
TOOLS 267 1066
TRANSPORTATION 274 1070

4.2 Malware Detection Experiments

The dataset consists of benign apps from Google Play Store
and malware from Drebin dataset. We use Android func-
tional classification method to distinguish the malware. We
choose Accuracy, Precision, Recall and F1-score as the eval-
uation indexes of the experimental results. After functional
classification, the amount of malware in each category and
the number of all apps in each category are shown in Table 7.

We use SUSI and Flow Droid to obtain the APIs re-
lated to sensitive data flow in each functional category. The
number of APIs filtered out by each category is shown in the
following Table 8.

The similarity between apps is obtained after matrix

Table 8 The number of APIs filtered out by each category.

Category Number of APIs

BOOKS AND REF. 487
COMICS 421
COMMUNICATION 314
ENTERTAINMENT 376
FINANCE 310
HEALTH AND FITNES 298
LIFESTYLE 345
MEDIA AND VIDEO 343
MUSIC AND AUDIO 389
NEWS AND MAGAZINES 396
PERSONALIZATION 397
PHOTOGRAPHY 395
SOCIAL 393
SPORTS 421
TOOLS 347
TRANSPORTATION 305

Table 9 The number of apps after merging.

Category Number of apps

BOOKS AND REF. 474
COMICS 435
COMMUNICATION 495
ENTERTAINMENT 487
FINANCE 456
HEALTH AND FITNES 462
LIFESTYLE 421
MEDIA AND VIDEO 414
MUSIC AND AUDIO 401
NEWS AND MAGAZINES 403
PERSONALIZATION 408
PHOTOGRAPHY 423
SOCIAL 446
SPORTS 420
TOOLS 417
TRANSPORTATION 400

Table 10 Effect comparison of two strategies.

Strategy Accuracy Precision Recall F1-score

retaining all APIs 98.9% 98.9% 99.6% 99.2%
retaining public APIs 91.1% 89.9% 91.9% 90.9%

operation. In order to reduce the computation, we merge
similar samples. According to different situations of each
category, we set different similarity thresholds, and merge
the samples whose similarity exceeds the threshold. After
merging, the number of samples in each category is shown
in Table 9.

We set weights for the merged samples according to
the number of samples before merging. Besides, we con-
sider the weight when we judge whether the app is mali-
cious. After merging, we design two strategies to determine
the representation of new samples. The effect comparison is
shown in Table 10. It is obvious that retaining all APIs is
better than retaining only public APIs.

What’s more, the detail experiment result of our
scheme in each category is shown in Table 11. When an

FAN et al.: ANDROID MALWARE DETECTION BASED ON FUNCTIONAL CLASSIFICATION
665

Table 11 Experimental result of our method.

Category Accuracy Precision Recall F1-score

BOOKS AND REF. 0.991 0.991 0.996 0.994
COMICS 0.992 0.993 0.996 0.994
COMMUNICATION 0.990 0.988 0.999 0.993
ENTERTAINMENT 0.987 0.988 0.994 0.991
FINANCE 0.988 0.986 0.998 0.992
HEALTH AND FITNES 0.991 0.991 0.996 0.994
LIFESTYLE 0.994 0.991 1.00 0.996
MEDIA AND VIDEO 0.986 0.984 0.996 0.990
MUSIC AND AUDIO 0.987 0.988 0.995 0.991
NEWS AND MAGAZINES 0.990 0.989 0.996 0.992
PERSONALIZATION 0.990 0.992 0.994 0.993
PHOTOGRAPHY 0.986 0.990 0.993 0.991
SOCIAL 0.991 0.991 0.995 0.993
SPORTS 0.989 0.990 0.995 0.993
TOOLS 0.986 0.983 0.999 0.991
TRANSPORTATION 0.988 0.986 0.997 0.992
ALL 0.989 0.989 0.996 0.992

Table 12 Comparison with KNN algorithm.

Algorithm Accuracy Precision Recall F1-score

KNN algorithm 95.1% 95.3% 94.6% 95.0%
Our algprithm 98.9% 98.9% 99.6% 99.2%

Table 13 Comparison with detecting malware directly.

Functional
classification Accuracy Precision Recall F1-score

No 95.6% 97.5% 93.6% 95.5%
Yes(Our scheme) 98.9% 98.9% 99.6% 99.2%

app is misclassified into a wrong category in our functional
classification method, it will affect subsequent malware de-
tection. However, in functional classification, misclassified
apps are more likely to be classified as the other similar
category. At the same time, the attributes extracted in the
functional classification stage and malware detection stage
are quite different. So those misclassified apps don’t have a
great impact on malware detection.

Compared with KNN algorithm, our algorithm is an
improvement based on KNN algorithm. Therefore, we com-
pare it with KNN algorithm directly. The experimental re-
sult is shown in Table 12. It can be seen that our scheme
has higher detection accuracy than KNN Algorithm in most
categories.

At the same time, we consider not to classify the apps
firstly, and directly use our malware detection method for
experiments. In this case, we find that more APIs are ex-
tracted, which results in a time-consuming process of cal-
culating the similarity. Moreover, because there are more
samples than before, the computational efficiency is greatly
reduced. The experimental results are shown in Table 13.

We select two classic malware detection methods. We
reproduced their methods and compared the result. The dif-
ference among them and experimental results are shown in
Table 14.

Table 14 Comparison with other classic methods.

Related work Algorithm Accuracy Precision Recall F1-score

Drebin [1] SVM 94.5% 91.4% 87.3% 89.3%
PIndroid [23] Ensemble learning 96.9% 94.9% 99.5% 97.2%
Our scheme Improved KNN 98.9% 98.9% 99.6% 99.2%

5. Conclusion

We propose a scheme of Android malware detection based
on functional classification. This scheme classifies the app
firstly, and then detects the malware in the same functional
category. The detection results show that our scheme is
more accurate than the existing malware detection research
works. We innovatively propose to apply HITS algorithm
to the API feature screening process of functional classifi-
cation, and propose a new method to calculate the similar-
ity between apps. Using this method and borrowing KNN
algorithm, we can detect Android malware in the same cat-
egory. We have decompiled the apps, extracted and filtered
features, built machine learning model, classified apps, and
detected malware. Finally, we achieved a detection accu-
racy of 98.9%, which is about 2% higher than the existing
Android malware detection method.

In the future work, we hope to consider more API re-
lations and expand the feature range of similarity between
apps. What’s more, deeper analysis of code logic difference
between malware and benign apps is meaningful. At the
same time, we hope to mine the data flow of the app and
analyze the detail relationship between the data flow and the
malicious behavior of the app.

Acknowledgements

This work was supported in part by the National Natural Sci-
ence Foundations of China under Grant No.61821001, and
in part by the Fundamental Research Funds for the Central
Universities.

References

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in
your pocket,” Network & Distributed System Security Symposium,
2014.

[2] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Signifi-
cant permission identification for machine-learning-based android
malware detection,” IEEE Trans. Industr. Inform., vol.14, no.7,
pp.3216–3225, 2018.

[3] F. Idrees and M. Rajarajan, “Investigating the android intents and
permissions for malware detection,” IEEE International Conference
on Wireless & Mobile Computing, pp.354–358, 2014.

[4] S. Liang and X. Du, “Permission-combination-based scheme for an-
droid mobile malware detection,” IEEE International Conference on
Communications, pp.2301–2306, 2014.

[5] N. Peiravian and X. Zhu, “Machine learning for android malware
detection using permission and API calls,” 2013 IEEE 25th Interna-
tional Conference on Tools with Artificial Intelligence, pp.300–305,
2013.

http://dx.doi.org/10.14722/ndss.2014.23247
http://dx.doi.org/10.1109/tii.2017.2789219
http://dx.doi.org/10.1109/wimob.2014.6962194
http://dx.doi.org/10.1109/icc.2014.6883666
http://dx.doi.org/10.1109/ictai.2013.53

666
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

[6] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droid-
Mat: Android malware detection through manifest and API calls
tracing,” 2012 Seventh Asia Joint Conference on Information Secu-
rity, pp.62–69, 2012.

[7] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P.
Cox, J. Jung, P. McDaniel, and A.N. Sheth, “TaintDroid: An
information-flow tracking system for realtime privacy monitoring
on smartphones,” ACM Trans. Comput. Syst., vol.32, no.2, Article
No.5, 2014.

[8] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A.K. Sangaiah,
“Android malware detection based on system call sequences
and LSTM,” Multimedia Tools and Applications, vol.78, no.4,
pp.3979–3999, 2019.

[9] Z. Ni, M. Yang, Z. Ling, J.-N. Wu, and J. Luo, “Real-time detection
of malicious behavior in android apps,” 2016 International Confer-
ence on Advanced Cloud and Big Data (CBD), pp.221–227, 2017.

[10] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in android,” International Con-
ference on Security and Privacy in Communication Systems, Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol.127, pp.86–103, 2013.

[11] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng,
“DroidDet: Effective and robust detection of android malware using
static analysis along with rotation forest model,” Neurocomputing,
vol.272, pp.638–646, 2018.

[12] S.Y. Yerima and S. Sezer, “DroidFusion: A novel multilevel classi-
fier fusion approach for android malware detection.,” IEEE Trans.
Cybern., vol.49, no.2, pp.453–466, 2017.

[13] D.P. Gaikwad and R.C. Thool, “Intrusion detection system using
bagging with partial decision treebase classifier,” Procedia Com-
puter Science, vol.49, pp.92–98, 2015.

[14] Z. Wang, J. Cai, S. Cheng, and W. Li, “DroidDeepLearner: Identify-
ing android malware using deep learning,” 2016 IEEE 37th Sarnoff
Symposium, pp.160–165, 2016.

[15] Apktool, https://ibotpeaches.github.io/apktool/, 2019.
[16] Android Developers, http://developer.android.com/guide/

components/fundamentals.html, 2019.
[17] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting android

malicious apps and categorizing benign apps with ensemble of clas-
sifiers,” Future Generation Computer Systems, vol.78, pp.987–994,
2018.

[18] P. Lam, E. Bodden, L. Hendren, and T.U. Darmstadt, “The soot
framework for java program analysis: A retrospective,” 2011.

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y.L.
Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps,” ACM Sigplan Notices, vol.49, no.6, pp.259–269, 2014.

[20] A. Swami and R. Jain, “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol.12, no.10, pp.2825–
2830, 2013.

[21] K. Sokolova, C. Perez, and M. Lemercier, “Android application clas-
sification and anomaly detection with graph-based permission pat-
terns,” Decision Support Systems, vol.93, pp.62–76, 2017.

[22] M.R. Hamedani, D. Shin, M. Lee, S.-J. Cho, and C. Hwang, “An-
droClass: An effective method to classify android applications by
applying deep neural networks to comprehensive features,” Wireless
Communications & Mobile Computing, vol.2018, pp.1–21, 2018.

[23] F. Idrees, M. Rajarajan, M. Conti, T.M. Chen, and Y.
Rahulamathavan, “PIndroid: A novel android malware detection
system using ensemble learning methods,” Computers & Security,
vol.68, pp.36–46, 2017.

Wenhao Fan received the B.E. and Ph.D.
degrees from the Beijing University of Posts and
Telecommunications (BUPT), Beijing, China,
in 2008 and 2013, respectively. He is currently
an Associate Professor with the School of Elec-
tronic Engineering, BUPT. His main research
topics include information security for mobile
smartphones, parallel computing and transmis-
sion, mobile cloud computing, and software en-
gineering for mobile internet.

Dong Liu received the B.E. degree from the
Beijing University of Posts and Telecommuni-
cations (BUPT), Beijing, China, in 2018, where
he is currently pursuing the master’s degree with
the School of Electronic Engineering, BUPT.
His main research interests include network and
information security, android software, and ma-
chine learning.

Fan Wu received the B.E. degree from the
University of Electronic Science and Technol-
ogy of China, Chengdu, China, in 2004, and
the Ph.D. degree from the Beijing University
of Posts and Telecommunications (BUPT), Bei-
jing, China, in 2009. She is currently an As-
sociate Professor with the School of Electronic
Engineering, BUPT. Her main research inter-
ests include network and information security,
and wireless sensor networks.

Bihua Tang received the M.E. degree from
the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 1984.
She is currently a Professor with the School of
Electronic Engineering in Beijing University of
Posts and Telecommunications. Her research in-
terests include wireless sensor network and the
Internet of Things.

Yuan’an Liu received the B.E., M.Eng., and
Ph.D. degrees in electrical engineering from the
University of Electronic Science and Technol-
ogy, Chengdu, China, in 1984, 1989, and 1992,
respectively. He is currently a Professor with the
Beijing University of Posts and Telecommuni-
cations (BUPT), Beijing, China, where he is also
the Dean of the School of Electronic Engineer-
ing. His main research interests include network
and information security, pervasive computing,
wireless communications, and electromagnetic

compatibility. Prof. Liu is a Fellow of the Institution of Engineering and
Technology, U.K., the Vice Chairman of the Electromagnetic Environment
and Safety of the China Communication Standards Association, the Vice
Director of the Wireless and Mobile Communication Committee, Commu-
nication Institute of China, and a Senior Member of the Electronic Institute
of China.

http://dx.doi.org/10.1109/asiajcis.2012.18
http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1109/cbd.2016.046
http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://dx.doi.org/10.1016/j.neucom.2017.07.030
http://dx.doi.org/10.1109/TCYB.2017.2777960
http://dx.doi.org/10.1016/j.procs.2015.04.231
http://dx.doi.org/10.1109/SARNOF.2016.7846747
https://ibotpeaches.github.io/apktool/
http://developer.android.com/guide/components/fundamentals.html
http://dx.doi.org/10.1016/j.future.2017.01.019
http://dx.doi.org/10.1145/2666356.2594299
http://dx.doi.org/10.1016/j.dss.2016.09.006
http://dx.doi.org/10.1155/2018/1250359
http://dx.doi.org/10.1016/j.cose.2017.03.011

