
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022
1135

PAPER

Cluster Expansion Method for Critical Node Problem Based on
Contraction Mechanism in Sparse Graphs

Zheng WANG†, Member and Yi DI†a), Nonmember

SUMMARY The objective of critical nodes problem is to minimize
pair-wise connectivity as a result of removing a specific number of nodes in
the residual graph. From a mathematical modeling perspective, it comes the
truth that the more the number of fragmented components and the evenly
distributed of disconnected sub-graphs, the better the quality of the solu-
tion. Basing on this conclusion, we proposed a new Cluster Expansion
Method for Critical Node Problem (CEMCNP), which on the one hand ex-
ploits a contraction mechanism to greedy simplify the complexity of sparse
graph model, and on the other hand adopts an incremental cluster expan-
sion approach in order to maintain the size of formed component within
reasonable limitation. The proposed algorithm also relies heavily on the
idea of multi-start iterative local search algorithm, whereas brings in a di-
versified late acceptance local search strategy to keep the balance between
interleaving diversification and intensification in the process of neighbor-
hood search. Extensive evaluations show that CEMCNP running on 35 of
total 42 benchmark instances are superior to the outcome of KBV, while
holding 3 previous best results out of the challenging instances. In ad-
dition, CEMCNP also demonstrates equivalent performance in comparison
with the existing MANCNP and VPMS algorithms over 22 of total 42 graph
models with fewer number of node exchange operations.
key words: critical node problem, contraction mechanism, incremental
cluster expansion, iterative local search, diversified late acceptance local
search

1. Introduction

Given an undirected graph G(V, E), associated with a prede-
fined integer K, the main objective of Critical Node Problem
(CNP) is trying to remove a subset of K nodes, labeled as S,
S ⊂ V , such that the number of pair-wise connectivity in
the residual graph G[V\S] is minimum. It is clear that the
leaving graph separated by the critical node set S consists of
various connected branches, usually removing any deleted
node in S to the residual sub-graph is bound tightly to in-
crease the target value of CNP.

Due to its nature properties of physical significance,
there exists a number of applications which are closely re-
lated with CNPs. Starting from identifying a small number
of key nodes in a network in academic area [1], [2], to an-
notate critical nodes in order to ensure they operate reliably
for transporting people and goods throughout the field of
transportation engineering [3]. In addition, CNPs likewise
applications equally play an important role in military and

Manuscript received July 12, 2021.
Manuscript revised January 12, 2022.
Manuscript publicized February 24, 2022.
†The authors are with the the School of Information and Com-

munication Engineering, Hubei University of Economics, Wuhan,
China.

a) E-mail: diyi8710@hbue.edu.cn (Corresponding author)
DOI: 10.1587/transinf.2021EDP7150

terrorist networks, for the sake of finding specific vital fa-
cilities and key leaders whose deletion would result in the
maximum breakdown of communication between individu-
als in the battlefield and terrorist networks. Whereas the sec-
ond one stands for the correlation tracking, whose ultimate
goal is to discovery a series of crony influences because of
certain important nodes infection in a dynamic way. Sim-
ilar cases exist in the hot spot and sensitive news analysis
on social media, as well as COVID-19 pandemic infection
chain tracking [4]. Under such conditions, government and
scientists should not only pay attention to “critical nodes”
(known as super-spreaders), but also keep a watchful eye on
the wide spectrum of radiation arising from super-spreaders
(acknowledged as asymptomatic carriers or close contacts).

When turning to the theoretical model of CNP, a undi-
rected graph was brought up. However, the CNP has been
shown to be NP-hard [5], even though in the tree structure,
it is proven to be NP complete when considering non-unit
edge costs [6]. Researches crowed by a series of special
patterns including interval graphs, regular graphs, planar
graphs, bipartite graphs, split graphs and trees have been
studied [7], [8], as well as random graphs and complex net-
works. However, the denser the connections between nodes
are, the higher the time complexity of CNP is.

To date, there exists two clades with regard to Critical
Node Problem, One is exact approaches and the other is ap-
proximation algorithms. From a practical point of view, the
former makes every effort to pursue the optimal solutions
responding to the proposed impending problems in reason-
able time limit, who is usually indicated as an integer linear
programming model with a non-polynomial number of con-
straints. And the latter often returns a solution for a com-
binatorial optimization challenging that is provably close to
the optimal. A detailed classification of the extant methods
is provided in Fig. 1.

Exact approaches are more attractive due to the nature
that they are theoretically able to guarantee the optimal-
ity solutions, note that the dynamic programming, branch-
and-cut, and path enumeration method are the typical rep-
resentatives. In fact, for some applications, finding the
optimal solution to the intractable problem may not be a
necessity, usually a near-optimal or suboptimal will suf-
fice. In these cases, approximation algorithms demonstrate
quite predictable performance without provable approxima-
tion bounds, note that computation time for very large net-
works remains an important issue in these methods as well.
The lower branch drawn in Fig. 1 falls into this category.

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

1136
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

This work explores a new designed paradigm to deal
with the Critical Node Problem in sparse graphs, accord-
ing to the findings presented in [5], which indicates that in-
creasing the number of disconnected components, as well as
leaving the average of node sizes among connected branches
as much as possible result in a better objective of the CNP,
we put forward an incremental cluster expansion algorithm
which commits to maintain the size of formed components
within reasonable limitation. For this purpose, first we es-
timate the theoretical optimal number of vertex set in ulti-
mately separated sub-graphs in terms of maximal indepen-
dent set, and then continuously expand the scale of cluster
(defined in Sect. 3, which starts from a random or chosen be-
ginning node) by bringing in new neighbors until meets the
calculated upper bound. In principle, our proposed method
CEMCNP is still based on the idea of heuristic search. Dif-
ferent from traditional algorithms, CEMCNP holds the fol-
lowing characteristics.

• In order to obtain high quality initial solutions,
CEMCNP makes use of an incremental cluster expan-
sion mechanism to iteratively separate the graph into
many disconnected components, whose vertex num-
bers are kept within optimum limits;

• In face with the heavy computational cost, CEMCNP
introduces a contraction mechanism to greedy alleviate
the effect of vertex scale without loss of accuracy;

• To speed up the computations of the objective function
for CNP, CEMCNP takes advantage of a Incremen-
tal Estimation Mechanism to evaluate the effectiveness
between neighborhood interchange in low complexity.
Moreover, CEMCNP also adopts a multi-start search to
escape the local optimal solutions, as well as a diversi-
fied late acceptance local search strategy to guarantee
the diversification and intensification of candidate so-
lution set.

The rest of the paper is organized as follows. Section 2
gives our basic idea of Critical Node Problem, which is di-
vided into two subsections recorded as problem domain def-
inition and provenances of idea. Together in Sect. 3 we in-
troduce the proposed CEMCNP algorithm, followed by the

Fig. 1 Existing approaches for solving the SRFLP.

comparative evaluation in Sect. 4. And at last conclude the
paper.

2. Basic Idea of Critical Node Problem

2.1 Problem Domain Definition

Critical Nodes problem (CNP)
INPUT: An undirected graph G = (V, E), where |V | =

n and |E| = m, together with a predefined integer K, K < n.
OUTPUT: A subset of vertices S, S ⊂ V , |S| ≤ K,

which minimizes the object function f (S):

f (S) =
∑

Ci⊂G(V\S)

|Ci| (|Ci| − 1)
2

(1)

Where Ci is the set of all connected components in the
residual graph G = (V\S) after removing the whole nodes in
S.

2.2 Provenances of Idea

2.2.1 Provenance of Cluster Expansion

When we focus our analyses on the scenario given the opti-
mal solution as described in Fig. 2, it comes the truth that
maximizing the number of components in the remaining
graph, as well as minimizing the total square difference in
sub-graph size leads to optimize the ultimately solutions.

Intuitively, separating the undirected graph into pieces
of equal size within optimal range contributes to the decline
of objective value in terms of Lemma 1 and Lemma 2 in [5].
At the same time, we notice that nodes in each connected
component in the residual graph keeps mutual reachable.
Therefore, if we iteratively divide the remaining graph into
sub-graph whose scale meets the theoretically reasonable
value until the removed nodes size reaches the predefined
threshold K, these separated pieces of sub-graphs then ul-
timately consist of a initial settlement which may approach
the optimal solution. That’s the essence of our proposed
cluster expansion mechanism. In order to detailed describe
the algorithm, several necessary definitions are given in the

Fig. 2 Scenario of CNP given the optimal solution.

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1137

Fig. 3 An illustrative example of cluster expansion.

following.

Definition 1. Cluster, stands for a set of vertices connected
in the remaining graph, together with the adjacent edges
between each other.

Definition 2. Dominated node set, is generally accompa-
nied with a predefined cluster, whose removing makes the
cluster isolate from the residual graph. For simplicity, the
dominated node set of a cluster usually consists of all the
neighbors coming from the nodes standed in the cluster.

According to Fig. 3 (b) (first appeared in the work of
[35]), we notice that after deleting the node set S = {V4,V7},
the remaining graph is divided into two subsets of vertices,
listed by cluster1 : {V1,V2,V3,V8} and cluster2 : {V5,V6}
respectively. Taking deeply studies for Fig. 3, we found the
truth that on the one hand, a vertex collection of {V4,V7}
makes up the dominated node set for cluster1, and on
the other hand, it also belongs to the dominated node set
for cluster2. In this way, we easily deduce the following
corollary.

Corollary 2.1. A dominated node set (labeled as MNS) for a
particular cluster separates the graph into many other clus-
ters, partial or total collections of vertices including in MNS
make up of dominated node sets responding to these newly
formed clusters respectively in the residual graph.

Proof. Firstly, it is obvious that the dominated node set of
MNS isolates the particular cluster from the current graph,
as a result, the remaining sub-graph after eliminating this
particular cluster together with its dominated node set is
also separated by the same MNS. Moreover, in the worst
case, the residual graph still keeps connected. In the general
case, there exists a scenario in which the rest vertices con-
stitute several pieces of connected components (clusters) in
term of the MNS, usually part of the MNS can separate these
clusters from each other. �

Figure 3 (c) gives an example for Corollary 2.1, there
exists a dominated node set MNS of {V3,V7} for cluster1, a
partial set of MNS which only containing node {V3} stands

Fig. 4 An example of node selection for CNP in sparse graph.

for a dominated node set for cluster3, and the whole col-
lection of MNS which including both nodes {V3,V7} makes
up another dominated node set for cluster2 in the remaining
graph.

To grasp the underlying methodology of our proposed
cluster expansion, two key points must be taken into con-
sideration. One is the way how the cluster grows, and the
other is the optimal size for this chosen cluster. However,
the proposed algorithm employs two kinds of methodolo-
gies to extend the cluster incrementally, marked as random
growth and greedy expansion respectively. These two strate-
gies are detailed described in the following section.

When turning attention to the second point, a optimal
number of connected components based on maximum in-
dependent set is given according to Lemma 1 in [3]. In
combination with Lemma 1 in [5], with considering the
circumstance in which the theoretical optimal solution ap-
peared, where a subset collection of K nodes separated the
graph G = (V, E) into L equal-sized clusters, the cardinal-
ity of each cluster can be computed by

[
n−k

L

]
. In view of

Lemma 1 in [3], the expression has a lower bound
[

n−k
α(G)

]
.

Note that finding the maximum independent set in sparse
graph is proved to be NP-hard [41], a maximal independent
set is adopted in the process of implementation instead. This
is the main idea of cluster expansion, which tries to keep the
cardinality of new formed cluster at a certain threshold fluc-
tuating in a small range out of the lower bound.

2.2.2 Provenance of Contraction Mechanism

In face of sparse graphs, connections between nodes are
scarce. It is ineffective to choose the leaf node (the degree
of node is one) as candidate for CNP on account of less re-
duction of pair-wise connectivity in the remaining graph.
In most cases, it is important to identify the cut vertices
and bridges of the graph since the number of disconnected
components or isolated nodes (nodes of degree 0) increas-
ing rapidly after removing these cut vertices from the graph.
This can be illustrated in Fig. 4.

Figure 4 shows a CNP example with thirteen nodes
and K = 1, it is clear that S = {V4} is the best solu-
tion whose removal from the graph leads to five connected
components induced by {V1,V2,V3}, {V5,V6}, {V7,V8}, {V9}
and {V10,V11,V12,V13}with a pair-wise connectivity

(
3
2

)
+

1138
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Fig. 5 An implementation of Contraction Mechanism on Fig. 4.

(
2
2

)
+

(
2
2

)
+

(
4
2

)
= 11. While compared with node V3

and V10, node V4 gives more powerful capability in splitting
the undirected graph. For this purpose, two metrics named
branch number and path depth are defined.

Definition 3. Branch number, the branch number of a node
vi represents the number of newly introduced connected
components due to the removal of node vi in the remaining
graph.

Definition 4. Leaves contraction, leaves contraction is an
operation which firstly identifies the set of leaf nodes L f in
the graph G = (V, E), and then removes these leaf nodes,
together with its adjoin edges including in L f set from graph
G, so as to form a new graph G(V\L f).

Definition 5. Path depth, Supposing that each node in the
graph G = (V, E) is attached with a scalar which is initial-
ized to zero, we iteratively run the routine of leaves con-
traction, and during each round the scalars lying upon the
neighbors of new founded leaf nodes are incremented by one
based on the current values belong to the leaves. This rou-
tine of leaves contraction keeps running until no new leaf
nodes exist in the residual graph. As a result, the final scalar
attached with node Vi is known as the path depth of Vi.

In combination with the significance of branch num-
ber and path length, our contraction mechanism appears in
a formal specification in Algorithm 1.

In brief, the contraction mechanism algorithm starts
with the leaf nodes which are initialized with specific val-
ues, and then refreshes the two-tuples (Bnk, Pdk) for each
node vk next to these leaf nodes. As soon as the two metrics
updates, the founded leaf nodes are departed from the pre-
vious graph, so as to form a new graph. The routine iterates
continuously until no new-founded leaf nodes appear in the
current graph. Figure 5 gives the detailed implementation
on Fig. 4 for Algorithm 1.

From a practical point of view, the proposed contrac-
tion mechanism gives the reasons why we choose as the best
solution in Fig. 4. Logically, the metric of branch number
is important to characterize the splitting capacity which di-
vides the graph into pieces. Meanwhile, another metric of
path depth maintains the centrality away from leaves. The-
oretically speaking, the bigger the branch number and the

Algorithm 1: Pseudo-code of Contraction Mecha-
nism

Input: an undirected graph G = (V, E) ;
a two-tuples(Bni, Pdi): the Branch number and Path
depth of node vi;
(Bni, Pdi) = (1, 0), for each node vi, vi ∈ V and vi is
a leave node;
(Bni, Pdi) = (0, 0), for each node vi, vi ∈ V and vi
is not a leave node.

Output: the final convergent set of two-tuples (Bni, Pdi) for
each node vi

1 while there exists at least one leaf node in graph G do
2 find the set of leaf nodes set L f ;
3 if there are only two leaf nodes Vp and Vq in L f then
4 choose the node with the bigger value of Bnx for Vx;
5 (Bnx, Pdx)← (Bnx, Pdx + 1);
6 G ← (Vx);
7 else
8 foreach V j in L f do
9 (Bn j Tmp, Pd j)← (1, Pd j) ;

10 foreach Vk , (Vk ,V j) ∈ E do
11 Pdk ← Pd j + 1 ;
12 remove the node V j from the current graph,

then G ← (V\{V j});
13 if the neighbor number of Vk is greater than

1 in the graph G(V\{V j}) then
14 Bnk ← Bnk + Bn j Tmp;
15 end
16 end
17 end
18 end
19 end
20 Return the final convergent set of two-tuples (Bni, Pdi) for

each node Vi

path length, the more capable to be a better candidate for
CNP. It can be shown in Fig. 5, where node V4 achieves the
ultimate binary arrays (Bn4, Pd4) as (6, 3). As a result, we
choose node V4 as the current best candidate for CNP. While
look deep into the scenario in Fig. 5, this contraction mech-
anism has the following property.

Corollary 2.2. Each graph without loops will converge to a
single node with maximal path depth based on the contrac-
tion mechanism.

Proof. Supposing that there exists a graph G = (V, E) with
n nodes and m edges left after deleting L nodes during the
Kth iteration of contraction operation, and meanwhile no leaf
nodes can be found in the next (K + 1)th iteration. It is clear
that each node v has a degree of at least two since no leaves
exist. As a result, we have the conclusion that m ≥ n. If
we hold the hypothesis that there is no circuit in the remain-
ing graph G = (V, E), thus the graph G = (V, E) must be
a tree with n nodes. According to the nature of the tree, it
meets the requirement that m < n, which is in contradic-
tion with the condition m ≥ n. In this way the assumption
does not hold. There must be at least one loop in the graph
G = (V, E). Therefore, graphs without loops will eventu-
ally reduce to one node after iteratively eliminating all the
other nodes with their adjacent edges, and the path depth ly-
ing upon the last node is the longest iteration depth of this

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1139

Fig. 6 An implementation of contraction mechanism in cyclic graph.

contraction mechanism. �

In principle, it is practical to take advantage of the pro-
posed contraction mechanism while the graph is loop-free.
Furthermore in most case, the sparse graphs usually contain
a certain number of loops, our proposed contraction mech-
anism also plays an important role in reducing the scale of
node numbers without loss of accuracy in CNP applications,
this can be illustrated in Fig. 6.

Contrary to the loop-free graphs, models with circuit
fail to converge to a single node based on the leaves con-
traction mechanism. However, it still makes a great effect
on decreasing the node scale, while at the same time keeps
the exactly calculated paired metrics (Bnk, Pdk) upon each
node Vk. These new formed tuples help tremendously in
choosing the candidate solution for CNP, for example, a
node with bigger value of two-tuples (Bnk, Pdk) is more ad-
visable. Figure 6, node V4 presents the best solution be-
cause the elimination of which splits the graph into more
pieces compared with any other nodes holding the same or
less path depth metric.

3. Method

In this section, we present the framework of Cluster Expan-
sion Method for Critical Node Problem (CEMCNP) based
on the contraction mechanism, which is brought up in com-
bination with a multi-start and diversified late acceptance
local search strategy.

3.1 General Scheme

Up to now, iterated local search still plays a great role
in widely-used meta-heuristic approaches, which iteratively
applies local search to modifications of the newly intro-
duced search point. To keep the diversity of solutions, a
multi-start framework is introduced in order to enlarge the
searching scope while trapping in the local optimum. Al-
gorithm 2 shows the pseudo code of proposed CEMCNP.
It is well known that better initial solution usually guaran-
tees fast convergence and more satisfying results in heuristic
search algorithms. As a result, our CEMCNP method starts
with a novel cluster expansion based construction phase at
the beginning of each round (see “CEBaseConstruction” in
line 4), which increasingly separates out specified dimen-
sion clusters from residual graph in terms of the cluster

Algorithm 2: Pseudo-code of Cluster Expansion
Method for CNP

Input: an undirected graph G = (V, E), node number n = |V |,
node set N = {v|v ∈ V};
time limit tmax, historical length HL;
maximum number of iterations MaxIters ;
weighting coefficient β, parameter best cluster size L;
fluctuate value D.

Output: the best solution S∗ found so far
1 foreach round r = 1 : n do
2 randomly select a mode v from set N;
3 N ← N\{v};
4 S0 ← CEBasedConstruction (v, β, L,D),
5 S∗ ← S0;

6 S
′ ← DLALS (S0,HL,MaxIters);

7 if f (S) < f (S∗) then
8 S∗ ← S

′
;

9 end
10 terminateFlag← false;
11 repeat
12 S

′′ ← NMBasedPerturbation
(
S
′)

;

13 if S
′
� S

′′
then

14 S
′ ← DLALS

(
S
′′
,HL,MaxIters

)
;

15 end
16 if f (S

′
) < f (S∗) then

17 S∗ ← S
′
;

18 else
19 terminateFlag← true;
20 end
21 until t >= tmax OR terminateFlag;
22 end
23 Return the best found solution S∗

expansion process, as well as a contraction mechanism (see
Sect. 3.2). Afterwards, CEMCNP then employs a diver-
sified late acceptance local search procedure (DLALS in
line 5 for short) to acquire a local optima around the ini-
tial solution (see Sect. 3.3). With resorting to an iteratively
paired node migration based perturbation (see the notation
“NMBasedPerturbation” in line 11), together with the lo-
cal search operation, CEMCNP can rapidly jump to a new
search region, and attain a local optimal solution as soon
as possible. At each round, CEMCNP approach repeats the
above-mentioned procedure until no better result found or
time limit is met.

3.2 Cluster Expansion Based Construction

In general, a good initial solution usually speeds up the
search process moving towards the direction where a good
solution arises. And meanwhile, the time consumed in con-
structing it should also be considered. In this algorithm, a
better initial solution is build by iteratively separating out
right-sized clusters from the residual graph, this process ter-
minates when the total number of dominated node set be-
longing to such clusters exceeds the upper bound K. Once
this iterative process stops, a greedy approach which con-
tinuously deletes a node from current solution with mini-
mal increment of objective function is brought in. Notice
that when the cardinality of current solution reaches K, a

1140
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Algorithm 3: Pseudo-code of ClusterExpansion-
BasedConstruction

Input: an undirected graph G = (V, E), node number n = |V |,
node set N = {v|v ∈ V};
solution upper bound K, weighting coefficient β;
parameter best cluster size L, fluctuate value D;
the selected node v.

Output: the initial solution S0, |S0 | = K
1 S0 ← {};
2 while |S0 | < K do
3 find the largest cluster of G as G′;
4 contractionMechanism(G′);
5 if graph G′ can converge to a single node u then
6 S0 ← S0 ∪ {u};
7 G ← G(V\{u});
8 continue;
9 else

10 newCluster C ← {},
11 newClusterDominatedNodes DnsC ← {};
12 if node v is in the sub-graph G′ then
13 C ← C ∪ {v};
14 else
15 randomly select a node v′ from the sub-graph G′;
16 C ← C ∪ {v′};
17 DnsC ← ClusterExpansion(C,G′, b, L,D)
18 S0 ← S0 ∪ DnsC ;
19 G ← G(V\(S0 ∪C));
20 end
21 end
22 end
23 while |S0 | > K do
24 u∗ ← argu∈S0

min{ f (S0\{u}) − f (S0)};
25 S0 ← S0\{u∗};
26 end
27 Return the initial solution S0

good initial solution comes up. The detailed peusedo-code
of cluster expansion based construction is provided in Algo-
rithm 3. With considering the conclusion declared in [5], we
hold the hypothesis that better solution of CEMCNP should
maximally split the graph and simultaneously minimize the
variance among the size of divided components. In this way,
the proposed construction method always begins to frag-
ment the graph from a large connected component instead
of a small one, this can be shown in line 3.

In order to cut down the heavy time consuming cost, a
contraction mechanism runs at the beginning of each round
(line 4). With the help of leaves contraction operation, each
node v covers a paired tuple (Bnv, Pdv). the number of
searches will drop by several orders of magnitude by means
of these metrics. At the same time, the iteratively calcu-
lated metrics branch number and path depth still provide
the comprehensive reference information for deciding the
best candidate. In particular, when the graph turns to be an
acyclic undirected graph, greedily picking up the node with
the biggest paired metrics (Bn, Pd) from the largest compo-
nent well consists of our initial solution (line 5-9). Taken
from the results of multiply runs, we found the truth that
once a graph converges to a single node by means of the
leaves contraction operation, any of its sub-graph exhibits

the same characteristic. However, most of the time there
still exists denumerable loops in the current graph, we then
take advantage of a cluster expansion process (line 10-18)
which iteratively cuts the graph into pieces with reasonable
numbers and size to decrease the pair-wise connectivity in
the residual graph. In the end, a greedy approach to keep
the size of initial solution under the upper bound of K is
needed (line 23-25). Obviously, the cluster expansion opera-
tion consists of the core component of this cluster expansion
based construction algorithm. In order to put into practice,
three critical points should be considered: the starting point
of a cluster, the way to broaden the cluster and terminal con-
dition of expansion operation.

3.2.1 The Starting Point of a Cluster

The definition of a starting point covers two meanings: one
is the beginning node when gets down to constructing a new
solution in face of the original graph. As described in Algo-
rithm 2, CEMCNP takes turns to choose a node as the be-
ginning entry of the cluster expansion during each round of
solution construction phase. In this way, every node standed
in the original graph can take the role of sponsor to obtain
a new solution. And the other one stands for the beginner
when starts to separate a cluster from a large connected com-
ponent. Normally a random approach is desirable (see line
15 in Algorithm 3).

3.2.2 The Way to Broaden the Cluster

Once a starting point, together with a complementary graph
is determined, cluster expansion routine tries best to parti-
tion the graph into appropriate clusters in terms of the con-
tinuously growing dominated node set. With considering
the scenario in Fig. 2, we assume that the deleted nodes in S
consist of the best solution for CNP in this graph.

It is not hard to find that the nodes in the identical clus-
ter are mutual reachable, and the nodes standing in different
clusters are inaccessible. The reason behind this is that the
nodes assembling in S break down the connections between
these nodes. From this perspective, the solution S carries an-
other form of expression: the union of dominated node set
associated with scattered clusters in the remaining graph.
Based on this idea, cluster expansion routine continuously
constructs new cluster from neighborhoods, and simultane-
ously leaves the dominated node as part of solution for CNP.
Once the total size of accumulated dominated nodes exceeds
the upper bound K, this iterative process then terminated.

To our knowledge, many factors govern the way to
broaden the cluster. As described in Fig. 7, coupled nodes
V6 and V7 consist of the incipient cluster C0 = {V6,V7} (re-
gion marked by solid line eclipse), as long as we further
enlarge the cluster, three nodes labeled as V5, V9 and V10

should take into consideration, note that the regions covered
by candidate are drawn by dotted line eclipse. In order to
distinguish the best one among those candidates, cluster ex-
pansion routine adopts three measurable scalars.

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1141

Fig. 7 An illustration for cluster expansion operation.

A. The incremental cardinality of dominated node
set: stands for the increasing or decreasing number of dom-
inated node set while putting a new candidate node into the
original cluster. For example, consider the simple scenario
of expanding node V9 into the cluster C0 (thus form a new
cluster C1 = {V6,V7,V9}), then the dominated node set for
C0 (labeled as Dns0) is Dns0 = {V5,V9,V10}, as well as
the dominated node set Dns1 = {V5,V8,V10,V11,V12} for
C1. The incremental cardinality of dominated node set is 2,
which means it needs two more nodes to isolate C1 from the
residual graph in comparison with C0. In the normal course
of things we are inclined to choose the candidate with less or
even negative growth of cardinality of dominated node set,
due to the reason that the less nodes stayed in dominated
node set, the more nodes left to cut the residual graph.

B. The branch number of candidate: a metric to
measure the number of dispersed clusters after removing the
candidate from the residual graph.

C. The path depth of candidate: represents the length
starting from the furthest leaf to this candidate, which is an
emblem of centrality. Taken altogether, the main principle
behind the three metrics can be briefly stated.

Rule 1: the candidate with less incremental cardinality of
dominated node set for the newly formed cluster is pre-
ferred to be the right node added into the increasing
cluster;

Rule 2: the candidate with larger branch number and path
depth is inclined to be the dominated node, so as to
partition the residual graph into more pieces with high
equalization among the divided clusters.

If we take the notations C, DnsC , N(u) as a newly
formed cluster, the associated dominated node set for clus-
ter C and the neighborhoods for node u in graph G = (V, E)
respectively. For a candidate node v which is about to join
the cluster C, expressions such as Bnv and Pdv represent the
abovementioned branch number of candidate and path depth
of candidate in order. By definition, it is easy to deduce the
following formula:

DnsC = ∪
μ∈C

N(μ) −C (2)

Especially, as long as we put forward a candidate v into
the newly cluster C, the set of DnsC∪{υ} can be quickly cal-
culated by:

DnsC∪{υ} = (N(v) −C) ∪ DnsC − {v} (3)

Based on the established set of rules, three correspond-
ing joint statistics are taken into consideration when we put
a candidate node v into the current cluster C.

A. The incremental cardinality of dominated node
set ΔDnsC→(C∪{v}): is denoted by ΔDnsC→(C∪{v}) =∣∣∣DnsC∪{v}

∣∣∣ − |DnsC | in the evolution from current cluster C
to a newly expanded cluster C ∪ {v}, which can be easily
calculated by:∣∣∣DnsC∪{υ}

∣∣∣ − |DnsC | = |N(v) −C| − 1 (4)

B. The sum of branch number in dominated node
set DnsC is defined by Sum BdDnsC :

Sum BnDnsC =
∑
v∈DnsC

Bnv − |Scross| + 1,

Scross = {μ|μ ∈ DnsC ∧ Bnu > 1} (5)

This statistic carries a distinct physical meaning, which
reveals the number of connected components left after re-
moving the dominated node set DnsC from the residual
graph. For example, if we remove the dominated node set
DnsC0 = {V5,V9,V10} for cluster C0 in Fig. 7, the dispersed
connected components are made up of seven collections,
listed by {V1,V2,V3}, {V4}, {V5,V6,V7}, {V8}, {V11}, {V12},
{V13,V14,V15,V16} respectively. However, the total number
of scattered clusters can be easily computed according to
Eq. (5):

Sum BnDnsC0
= BnV5 + BnV9 + BnV10 −

|{V5,V9,V10}| + 1 = 3 + 4 + 2 − 3 + 1 = 7

Thus we hold the principle that the larger the value of
Sum BnDnsC , the more connected components can be found.

C. The sum of mean difference of path depth in
dominated node set DnsC is described as SMD PdDnsC :

SMD PdDnsC =
∑
v∈DnsC

∣∣∣∣Pdv − PdDnsC

∣∣∣∣,

PdDnsC =

∑
v∈DnsC

Pdv

|DnsC | (6)

Actually, the direct motivation behind the statistic of
SMD PdDnsC is that it is recommendable to keep the to-
tal square difference in connected component size as small
as possible. As a result, we hope to isolate the graph
from the center of topology throughout each round of par-
tition. Therefore we take the principle that the smaller the
SMD PdDnsC , the more consistent in terms of cluster sizes.

With the help of the above-mentioned joint statistics,
together with the proposed rules, we then give a detailed
presentation how it works. To begin with, considering the
suitcase in which a cluster C0 = {V6,V7} is about to ex-
pand to a new cluster C1 = {V6,V7} ∪ {v}, v ∈ DnsC0

in Fig. 7. Note that the corresponding reference quantities
ΔDnsC0→(C0∪{v}), Sum BnDnsC0∪{v} , SMD PdDnsC0∪{v} for each

1142
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Table 1 An illustration of parameter calculation

cluster C0 DnsC0 Candidate v DnsC0∪{v} f ΔDnsC0→(C0∪{v}) Sum BnDnsC0∪{v} SMD PdDnsC0∪{v}
V5 {V3,V4,V9,V10} 7 1 8 7/2

{V6,V7} {V5,V9,V10} V9 {V5,V8,V10,V11,V12} 10 2 7 6
V10 {V5,V9,V13} 8 0 8 4/3

candidate are given in Table 1.
From a statistical point of view, the candidate V10 car-

ries the largest value of Sum BnDnsC0∪{υ} , as well as the least
ΔDnsC→(C∪{v}) and SMD PdDnsC0∪{v} compared with the other
two candidates V5 and V9. In other words, the dominated
node set for newly formed cluster C1 = {V6,V7,V10} segre-
gates the graph into the most fermentations, together with
the minimum square difference in connected components
size. As a result, the solution of S = {V5,V9,V10} shares the

minimum pair-wise connectivity

(
3
2

)
+

(
3
2

)
+

(
2
2

)
= 7

on the one hand, and takes up the least elements itself on the
other. Without loss of generality, the performance measure-
ment of candidate v (denoted by Score(v)) is assessed based
on the following function.

Score(v) = β × Sum BnDnsC∪{v}

SMD PdDnsC∪{v}

− (1 − β) × ΔDnsC→(C∪{v}) (7)

Where β is the weighting coefficient between the ra-
tio of Sum BnDnsC0∪{v} to SMD PdDnsC0∪{v} and the incremen-
tal value ΔDnsC→(C∪{v}), which is empirically set according
to the practical application scenarios.

3.2.3 The Terminal Condition of Expansion Operation

According to the inference in Sect. 2, a theoretical optimal
solution for CNP happens in the scenario where a subset
collection of K nodes separates the graph G = (V, E) into
L equal-sized clusters, and the cardinality of each cluster is
close or equal to

[
n−k

L

]
. In reality, even in the cases where an

exact global optimum is known, the size of clusters usually
appears not to be the same. As a result, the proposed clus-
ter expansion operation loosens the equal-sized restriction,
which allows the scale of newly formed cluster to fluctuat-
ing within a small range out of the theoretical optimum. For
example, in Algorithm 3, cluster expansion adopts a fluctu-
ate parameter D to keep the cardinality of cluster between
[L − D] and [L + D]. In other words, the expansion opera-
tion terminates once the size of cluster meets this predefined
threshold interval [L − D, L + D]. In combination with the
three coherent subroutines: starting a cluster, broadening the
cluster and terminating the expansion, we can summarized
the main point of cluster expansion as follows.

As depicted in Algorithm 4, the proposed cluster ex-
pansion always choose the candidate with the maximum
score value in a greedy way (line 4-7), thus leads to a more
efficient and fast search process. However, our cluster ex-
pansion operation also adopts a stochastic growth mode,
which randomly pick up a candidate into the cluster instead.

Algorithm 4: Pseudo-code of ClusterExpansion
Input: current sub-graph G′, initial new cluster C0,

weighting coefficient β;
parameter best cluster size L, fluctuate value D.

Output: the newly formed cluster C, associated with its
responding dominated node set DnsC

1 C ← C0;
2 while |C| < L + D do
3 TmpDnsC ← ∪

μ∈C∪
N(μ) −C;

4 foreach node v in TmpDnsC do
5 calculate the Score(v) based on Eq. (7);
6 end
7 vmax ← arg max

v∈TmpDnsC
Score(v);

8 C ← C ∪ {v′};
9 DnsC ← ∪

μ∈C
N(μ) −C;

10 end
11 Return the ultimately cluster C, DnsC

The performance between them will be released in the com-
parative evaluation section.

3.3 Diversified Late Acceptance Local Search

3.3.1 Implementation of DLALS

A better initial solution does well in the rapid convergence
of search, meanwhile the search strategy has an equally im-
portant effect on cutting down the heavily computation cost
in the optimization process. Two main factors should be
taken into consideration: one is the time cost, and the other
is the ability of making good balance between the diversi-
fication and intensification in living candidates. With re-
sorting to the idea of late acceptance hill climbing (LAHC)
algorithm in [42], we adopt a diversified late acceptance lo-
cal search (DLALS) [42] approach, which takes into account
worsening, improving and sideways candidates with the aim
to improve the diversity of proceeding solutions. Similar to
LAHC, DLALS imports an array of size HL (also denoted
by history length) that is used to stay a number of feasible
solutions. Notice that LAHC employs an acceptance crite-
rion in a greedy way which accepts the candidate solution
only if its objectivity is better that that of the current solu-
tion. As a result, this greedy strategy naturally make the
search fall into local optimum quickly. In contrast, DLALS
adopts a new acceptance strategy to increase diversity of the
values stored in the historical array, as well as a new replace-
ment mechanism to further improve the evolution on the one
hand, escape the local optimum in terms of bringing in a bit
poor candidates on the other. Algorithm 5 writes out the full
implementation of DLALS in our CEMCNP approach.

Using a memorable fitness array with a fixed length HL

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1143

Algorithm 5: Pseudo-code of DLALS
Input: an initial solution S ;

fitness array Ψ with historical length HL;
for 0 ≤ i ≤ HL,Ψi = f (•);
maximum number of iterations MaxIters.

Output: the best solution S∗ found so far.
1 S∗ ← S, f (S∗)← f (S);
2 for ∀i ∈ {0, 1, 2, . . . ,HL − 1} do
3 Ψi ← f (S);
4 end
5 fmax ← f (S), num max← HL;
6 index iter ← 0, idle iters← 0;
7 while idle iters < MaxIters do
8 Ψpre ← f (S);
9 S ′ ← ClusterBasedSwap(S);

10 f (S ′)← IterativeDynamicEvaluation(S, S′);
11 k ← (index iter) mod HL;
12 if f (S′) = f (S) or f (S′) < Ψmax then
13 S← S′, f (S)← f (S′);
14 if f (S) < f (S∗) then
15 S∗ ← S, f (S∗)← f (S);
16 idle iters← 0;
17 else
18 idle iters← idle iters + 1;
19 end
20 end
21 if f (S) > Ψk then
22 Ψk ← f (S);
23 end
24 else if f (S) < Ψk and f (S) < Ψpre then
25 if Ψk = Ψmax then
26 num max← num max − 1;
27 end
28 Ψk ← f (S);
29 if num max = 0 then
30 re-compute Ψmax, num max;
31 end
32 end
33 end
34 Return The best found solution S∗

to store the feasible solutions is the main characteristic of
DLALS. In addition, two enhanced operations (denoted by
acceptance and replacement strategy respectively) based on
the fitness array come into being.

A. Acceptance Strategy: As long as a new candidate
solution S′ with its fitness value f (S′) comes in, it is nec-
essary to compare it with the maximum fitness value in the
fitness array, rather than the current value of Ψk. The candi-
date S′ would be accepted if f (S′) = f (S) or f (S′) < Ψmax,
the first condition allows accepting new candidate with fit-
ness value equal to Ψmax on the one hand, while the second
condition holds the candidate with smaller fitness value than
Ψmax. In summary, accepting sideways or worsening moves
increases the diversity level of the search (see line 12-20).

B. Replacement Strategy: The replace operation hap-
pens in two scenarios, one is when the fitness value f (S) of
the new candidate S is larger than Ψk, which still under the
constraint of f (S′) < Ψmax, then the value in Ψk is replaced
by f (S) (see line 21-23). Such a replacement increases the
probability of accepting more worsening moves, so as to fur-
ther improve the solutions in future iterations. The other

appears as long as f (S) is smaller than Ψk, the replacement
is done just when f (S) is smaller than the previous value
of Ψpre as well. Such a replacement avoids wiping off other
large values in the fitness array prematurely (see line 24-28).

In comparison with LAHC liked approaches, DLALS
tries to hold larger fitness values in the historical array when
the search encounters non-improving moves on the one
hand, and cautiously replace large fitness values with small
ones when the search progressing into improving moves on
the other. Once all the maximal elements in the fitness array
are substituted, the variables of Ψmax and nummax need to be
recalculated (see line 29-31).

3.3.2 Cluster Based Swap and Iterative Dynamic Evalua-
tion Mechanism

To generate a candidate solution, DLALS resorts to a
cluster-based two-phase node exchange operation (denoted
by “ClusterBasedSwap” at line 9) in connection with
component-based neighborhood structure [34], which ex-
change a node u ∈ S with a node v ∈ (V\S) from a large
cluster Cg. Let G(V\S) be the residual graph separated by
the current solution S, and {C1,C2, . . . ,CT } be the collec-
tion of connected clusters in G(V\S). Here a largest cluster
Cg stands for the cluster whose size meets the requirement
|Cg| ≥ L (L is a predefined threshold). In generally, the
value of L is defined as the arithmetical mean of the num-
ber of nodes in the largest and smallest connected clusters
in the residual graph G(V\S). To further reduce the size of
the above-mentioned cluster-based neighborhood, our two-
phase node exchange strategy is carried out in two steps:
Firstly removes a node v standing in the large cluster Cg
from the residual graph G(V\S). For the sake of efficiency, a
node v with the highest score value (according to Eq. (7)) af-
ter running the contraction routine in cluster Cg is preferred.
Secondly adds a node u to the residual graph G(V\(S∪{v})).
Usually we choose the node u that minimally deteriorates
the objective function. This cluster based swap search can
be examined in Algorithm 6. With the help of this greedy
exchange strategy, the computational cost to traverse the
candidate solution drops dramatically from K(|V | − K) to
K(|Z|), where Z = ∪|Ci |≥LCi.

Node-exchange operation is a basic move operator
widely adopted by local-search heuristics, which is done in
two steps: one is to find the best exchange sequence, and
the other is to re-compute the objective function in terms of
the selected pair of nodes. As depicted above, DLALS em-
ploys a two phases of paired “remove” and “add” routines,
which first greedily removes the node with high score from
the large clusters, and then adds the node with minimum
growth of the objective function into the residual graph. Un-
fortunately, to re-evaluate the pair-wise connectivity from
scratch is time-consuming. In order to further improve the
computational efficiency, we take advantage of an iterative
dynamic evaluation mechanism to recalculate the objective
function in a cumulative manner. For convenience, we first
list two key definitions in the following.

1144
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Algorithm 6: Pseudo-code of IterativeDynamicE-
valuation

Input: a solution S, with cluster configuration I = (Δ,map);
fitness array a solution S′ after two-phase node exchange.

Output: objective value of f (S′), with new I′ = (Δ′,map′).
1 obtain the move (u, v) based on the transforming from S to S;
2 foreach m ∈ N(u) and map(m) = map(u) do
3 C ← DFS(m);
4 map(w)← C, ∀w ∈ C;
5 Δ← Δ ∪C;
6 Δ f ← Δ f + (|C| × (|C| − 1))/2;
7 end
8 Δ← Δ\map(u);
9 map(u)← Φ, C′ ← Φ;

10 foreach n ∈ N(v) and map(n) ⊂ Δ do
11 C′ ← C′ ∪ map(n);
12 Δ← Δ\map(n);
13 Δ f ′←Δ f ′ + (|map(n)| × (|map(n)| − 1))/2;
14 end
15 Δ← Δ ∪C′ ∪ {v};
16 map(w)← C′, ∀w ∈ C′;
17 Δ f ′ = |C′| × (|C′| − 1)/2 − Δ f ′;
18 I′ : (Δ′,map′)← I : (Δ,map);
19 f (S′)← f (S) − Δ f + Δ f ′;
20 Return Objective value f (S′), with new I′ : (Δ′,map′)

Definition 6. Given a candidate solution S, a move is a
paired node exchange operation, denoted as (u, v), where
u is a node to be added to S from the residual graph, and v
is the node to be removed from S.

Definition 7. The current cluster configuration is defined as
a two-tuples I = (Δ,map), where Δ = ∪i=1,2,...,mCi is a union
of all the connected clusters in the residual graph G(V\S),
map(v) : V → C is a function which maps a node v to the
connected cluster Ci containing v.

In light of the above concepts, our iterative dynamic
evaluation mechanism can be explained in Algorithm 6.
Considering the suitcase when moves a node u from the
residual graph G(V\S) to S, it is necessary to check the par-
titioned clusters due to the elimination of node u, usually a
depth-first traversal search (DFS) rooting at the adjacency
list of node u is to succeed (see line 2-7). Once a node v
is moved from S to the residual graph, the evaluation of in-
crease in objective function is performed by traversing the
neighbor list of node v to testify whether its removal leads
to re-connect some existing clusters so as to form a large
new cluster (see line 10-14). In this way, the incremental of
the objective function from S to S ∪ {u}\{v} is briefly calcu-
lated in terms of the number and size of new-formed or dis-
appeared clusters according to the neighborhood structure,
instead of the whole graph.

Furthermore, we notice that once a solution S changes
to another solution S′, the corresponding cluster configu-
ration also shifts from I : (Δ,map) to I′ : (Δ′,map′).
In most cases, especially for the two node-change scenar-
ios, the difference between Δ and Δ′ is subtle, for example
most of the clusters both in the two set are nearly the same.
Since our evaluation mechanism totally relies on the cluster

configuration, it is easy to obtain the change in the value of
the objective function before and after (see line 6, 13, 17,
19). Once we begin a new round of search, the new-formed
cluster configuration I′ immediately become the starting
point for the next round of search. This process continu-
ally circulates until the solution converges, that is the exact
connotation what the “iterative” means.

3.4 Node Migration Based Perturbation

In line with the aforementioned studies in [36], [37], our
node migration based perturbation generates a new starting
candidate for the next round once the neighbourhood search
relapses into a local optima. This node migration based per-
turbation operates as a destructive-constructive procedure,
which first expands S with ne nodes (here ne is a indication
of the perturbation strength) randomly taken from a large
cluster, and then circularly removes a node from S with
minimum pair-wise connectivity in the residual graph un-
til the cardinality of S meets the threshold K. Specifically,
we make use of a map list to memorize the first expanded
ne nodes, and verify whether the removed ne nodes are the
same. This works like a tabu table, which guarantees the dif-
ferences between the nodes swapped in and out, so as to the
keep the search moving forward. The perturbation method
consists in fragmenting the largest connected components
in the induced graph in order to reach more homogeneous
components so as to reduce the number of node pairs still
connected. Therefore, the perturbation method aims at pro-
viding a suitable diversification of the incumbent solution
keeping into account these principles. The idea behind this
is that, from a theoretical point of view, the minimization of
pair-wise connectivity in the CNP results also in the max-
imization of the number of components while at the same
time minimizing the variance in component cardinalities.

4. Comparative Evaluation

In this section, we will carry out computational experiment
and comparison of the proposed algorithm CEMCNP with
the state-of-the-art methods for CNP, as well as an alterna-
tive version CEMCNP* where the cluster expansion choos-
ing the candidate with the maximum score value in a greedy
way is replaced by randomly picking up a candidate into the
cluster instead.

4.1 Benchmark Instances with Characteristics Observed
by Contraction Mechanism

Our calculating examples are composed of two widely-used
benchmark datasets: synthetic dataset and real-work dataset
respectively. Notice that the scale of these examples ranges
from 121 to 23133 nodes, the types of coverage models con-
tain sparse graphs and dense graphs, as well as Hamiltonian
graphs. In order to characterise the graph precisely, certain
known global common features on these two datasets are
provided: the average degree d = 2×|E|

|V | , where |V | and |E|

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1145

Table 2 The known and deduced characteristics by contraction

Graph d nc Coeff MaxPd Dnodes Pd Bn Jns
BA500 1.996 1 0.000 8 499 0.582 1.324 164
BA1000 1.998 1 0.000 10 999 0.585 1.322 324
BA2500 1.999 1 0.000 10 2499 0.580 1.329 825
BA5000 2.000 1 0.000 13 4999 0.61 1.334 1672
ER235 2.979 2 0.006 5 53 0.28 0.430 48
ER466 3.004 4 0.002 5 92 0.24 0.38 84
ER941 2.976 12 0.005 5 203 0.26 0.40 177
ER2344 2.986 14 0.001 4 483 0.22 0.38 419
FF250 4.112 1 0.276 5 79 0.344 0.556 83
FF500 3.312 1 0.247 5 226 0.492 0.796 195
FF1000 3.634 1 0.216 8 384 0.441 0.691 362
FF2000 3.413 1 0.245 5 761 0.427 0.682 725
WS250 9.968 1 0.473 1 0 0 0 0
WS500 5.984 1 0.420 1 0 0 0 0
WS1000 9.992 1 0.483 1 0 0 0 0
WS1500 5.997 1 0.480 1 0 0 0 0
Bovine 3.140 1 0.044 4 63 0.12 0.60 10
Circuit 3.167 1 0.052 3 25 0.13 0.20 25
E.Coli 2.780 1 0.024 4 188 0.21 0.74 57
USAir97 12.80 1 0.396 2 55 0.07 0.24 27
HumanDis 4.605 1 0.430 4 96 0.15 0.32 112
TrainsRome 2.133 1 0.018 55 60 5.87 0.47 79
EU flights 53.08 2 0.402 3 184 0.10 0.25 109
openflights 14.96 371 0.331 4 350 0.07 0.26 125
Yeast 2.681 185 0.024 6 1090 0.41 0.78 527
Ham1000 3.996 1 0.002 1 0 0 0 0
Ham2000 3.996 1 0.000 1 0 0 0 0
Ham3000a 3.999 1 0.000 1 0 0 0 0
Ham3000b 3.998 1 0.001 1 0 0 0 0
Ham3000c 3.997 1 0.001 1 0 0 0 0
Ham3000d 3.995 1 0.000 1 0 0 0 0
Ham3000e 3.997 1 0.001 1 0 0 0 0
Ham4000 3.999 1 0.001 1 0 0 0 0
Ham5000 4.0 1 0.000 1 0 0 0 0
powergrid 2.669 1 0.103 8 1588 0.33 0.56 1229
Oclinks 14.57 4 0.057 4 398 0.12 0.33 220
facebook 43.69 1 0.519 2 75 0.002 0.021 11
Grqc 5.526 355 0.630 5 1099 0.17 0.32 813
Hepth 5.259 429 0.284 5 1968 0.169 0.324 1584
Hepph 19.73 278 0.659 3 1372 0.091 0.187 1168
astroph 21.10 290 0.318 4 1180 0.053 0.106 1107
condmat 8.078 567 0.264 5 2195 0.081 0.156 2096

indicate the number of nodes and edges respectively; the
number of connected branches nc; the value of the cluster-
ing coefficient Coeff which signals the tendency of nodes
to cluster together. Moreover, a number of additional im-
portant quantities based on our contraction mechanism for
solving the CNP are also provided in Table 2. Let the nota-
tions MaxPd, Dnodes, Pd, Bn be the maximum path depth,
nodes elapsed due to leaves contraction, the average path
depth and branch number respectively in terms of the con-
traction mechanism. We also define the number of joint
nodes as Jns whose removal separates the residual graph
into at least two blocks.

As long as we pay attention to the Barabasi-Albert
(BA) graphs, it is clear that all the graphs such as BA500,
BA1000, BA2500 and BA5000 can eventually shrink down
to a single node by means of our contraction mechanism,
which is in accordance with the value of Dnodes. Mean-
while, the Jns value of these graphs accounts for nearly
33% of the total nodes. Once we greedily choose the joint
node as a feasible candidate during each round of iteration,
the ultimately formed initial solution is inclined to converge
to a near optimum in a fast way. As a result, the number
of node exchanges spending on the local search phase will
drop down accordingly, this can be confirmed in the charac-
teristic of “#exch” (the average number of node exchanges
to achieve the optimum) in the following experiment.

In addition, with the help of contraction mechanism,
we can reduce the size of the feasible candidate nodes from
25 to 2195 up to ten iterations (also known as the field of
MaxPd) on the datasets other than the Barabasi-Albert (BA)

Table 3 Parameter settings of the proposed CEMCNP algorithm
Parameter Value Description

tmax 3600 seconds time limit for each round
MaxIters 1000 maximum number of idle iterations in DLALS
β 0.5 weighting coefficient
D 8% to 10% of the total node size flucture threshold for the optimum cluster size

HL 5 historical length of fitness array in DLALS

graphs, our contraction mechanism plays an equally impor-
tant role in decreasing the number of neighbourhood ex-
changes, so as to speed up the search process. However,
in face of the datasets of Watts-Strogatz (WS) and Hamilton
graphs, we notice that this contraction mechanism lose ef-
ficacy due to the strong connection between nodes, as well
as the existence of a large number of loops. Fortunately,
our follow-up cluster expansion method can well solve the
dilemma, which can be proven next. Apart from that, the
notation Pd gives the average sub-tree depths rooted at each
node, whereas the symbol Bn expresses the average splitting
ability of nodes, both of two joined together well explain the
positive effects brought by the contraction mechanism.

4.2 Experimental Settings

The proposed heuristic was implemented in the C++ pro-
gramming language and compiled using Microsoft Visual
Studio 2010 (10.0.30319.1 RTMRel). It was tested on a PC
equipped with a 3.2 GHz Intel CoreTM i7−8700 Processor
and 8.0 gigabytes of RAM operating under the Microsoft
Windows 10 environment. In the following experiments, we
test our CEMCNP algorithm, together with its variants over
the well known benchmark instances discussed above with
the parameters setting shown in Table 3.

In principle, The parameters tmax, MaxIters and HL are
initialized as 3600 seconds, 1000 and 5 respectively, which
are derived from the literatures [34], [35], [43]. Besides that,
the weighting coefficient β is set to 0.5 so as to hold the bal-
ance among the path depth, branch number, as well as the
dominated node set. As a basis of comparison, we con-
ducted multiple testing for the correction of parameter D,
and finally found that the optimum value for D lies within
the range of 8% to 10% of the total node size.

4.3 Comparisons with State-of-the-Art Algorithms

As soon as we make a comprehensive survey over the exist-
ing solves for Critical Node Problems, a comparative study
with respect to two of the recent state of art CNP algo-
rithms, named MANCNP [35] and VPMS [34] are reported.
To the best of our knowledge, the above-mentioned two
methods basically cover most of the current optimal solu-
tions. Without loss of generality, we also bring in the best-
known results (denoted by KBV: Known Best Value) avail-
able in the literature which have been achieved by com-
bining the optimums of some other excellent algorithms in
[5], [13], [18], [19], [23], [37], [39].

Since the source code of MANCNP and VPMS is not
available, we hold their best results appeared in the corre-
sponding papers instead. Detailed comparative performance

1146
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Table 4 Comparisons of CEMCNP algorithm with state of the art algorithms

Graph K KBV MANCNP VPMS CEMCNP tMANCNP
avg #exchMANCNP tCEMCNP

avg #exchCEMCNP

BA500 50 195 195 195 195 < 0.1 5.8 × 102 < 0.1 3.6 × 102

BA1000 75 558 558 558 558 0.3 6.4 × 103 0.2 4.3 × 103

BA2500 100 3704 3704 3704 3704 0.7 8.6 × 103 0.2 5.4 × 103

BA5000 150 10196 10196 10196 10196 6.5 3.5 × 104 1.8 9.7 × 103

ER235 50 295 295 295 295 7.1 2.0 × 105 19.8 2.4 × 105

ER466 80 1524 1524 1524 1524 28.5 9.5 × 105 98.4 1.2 × 106

ER941 140 5012 5012 5012 5012 458.5 1.2 × 107 694.6 1.9 × 108

ER2344 200 959500 902498 904113 912346 2284.8 1.5 × 107 3069.0 2.9 × 107

FF250 50 194 194 194 194 < 0.1 2.3 × 103 0.3 4.7 × 103

FF500 110 257 257 257 257 0.4 8.7 × 103 0.2 1.2 × 104

FF1000 150 1260 1260 1260 1260 84.9 2.6 × 105 120.6 3.9 × 105

FF2000 200 4545 4545 4545 4545 107.6 3.3 × 105 486.4 4.2 × 105

WS250 70 3101 3083 3083 3083 1140.5 6.1 × 107 623.1 4.8 × 105

WS500 125 2078 2072 2072 2072 179.3 2.4 × 106 105.8 6.9 × 105

WS1000 200 113638 109807 119444 109935 2675.0 1.8 × 107 1256.2 5.9 × 106

WS1500 265 13167 13098 13098 13098 1012.2 7.3 × 106 658.2 6.2 × 106

Bovine 3 268 268 268 268 < 0.1 6.8 × 101 < 0.1 1.7 × 102

Circuit 25 2099 2099 2099 2099 0.2 1.7 × 104 0.1 4.6 × 103

E.Coli 15 806 806 806 806 < 0.1 6.2 × 102 < 0.1 3.4 × 102

USAir97 33 4336 4336 4336 4336 756.5 2.5 × 106 856.4 3.2 × 106

HumanDis 52 1115 1115 1115 1115 0.6 1.7 × 104 0.5 8.5 × 103

TrainsRome 26 920 918 918 918 0.3 2.2 × 104 0.2 9.2 × 103

EU flights 119 349927 348268 348268 348325 232.6 1.1 × 105 431.6 2.6 × 105

Openflights 186 28671 26842 26785 26796 2093.7 2.9 × 106 3165.8 5.7 × 106

Yeast 202 1414 1412 1412 1412 21.7 1.0 × 105 9.8 6.2 × 104

Ham1000 100 328817 306349 307117 307113 2137.5 2.5 × 107 1068.4 7.8 × 106

Ham2000 200 1309063 1243859 1247652 1245637 2861.9 1.2 × 107 1527.2 5.4 × 106

Ham3000a 300 3005183 2844393 2840941 2842695 3280.7 1.1 × 107 1204.3 3.8 × 106

Ham3000b 300 2993393 2841270 2839893 2840867 3252.9 1.2 × 107 2040.0 5.1 × 106

Ham3000c 300 2975213 2838429 2832073 2831643 3307.5 1.1 × 107 2159.3 6.5 × 106

Ham3000d 300 2988605 2831311 2830291 2830284 3250.9 1.1 × 107 3895.2 4.1 × 107

Ham3000e 300 3001078 2847909 2846731 2846536 3437.4 1.2 × 107 4035.6 6.7 × 107

Ham4000 400 5403572 5044357 5082521 5096437 2907.0 6.6 × 106 1563.7 1.8 × 106

Ham5000 500 8411789 7972525 8011565 8007638 3226.6 6.3 × 106 2024.1 3.4 × 106

Powergrid 494 16099 15862 15873 15906 1286.4 1.8 × 106 856.7 9.7 × 105

OClinks 190 614504 612303 611254 615467 584.6 4.5 × 105 267.8 3.2 × 105

facebook 404 420334 643162 691232 589763 2978.5 2.2 × 106 3526.9 4.4 × 107

Grqc 524 13736 13596 13603 13743 871.8 9.2 × 105 1025.0 2.5 × 106

Hepth 988 114382 106397 107939 115309 3442.0 3.1 × 106 4521.4 6.3 × 107

Hepph 1201 7336826 8628687 7883063 7556094 3376.3 1.4 × 106 4025.1 2.6 × 107

Astroph 1877 54517114 62068966 58322396 57895042 1911.4 3.9 × 105 3105.2 7.5 × 106

condmat 2313 2298596 9454361 6843993 7658643 1779.5 4.9 × 105 4203.5 3.1 × 107

between our method and the reference algorithms are shown
in Table 4.

With resorting to the statistical magnitude defined in
MANCNP [35], we also take advantage of the “#exch” met-
ric to identify the average number of node exchanges to
achieve the corresponding objection, as well as “tavg” indi-
cating the average time in seconds. From the macroscopic
point of view, the following are some of our more notable
findings:

• Firstly, to our delight, our CEMCNP algorithm run-
ning on the three benchmark instances Ham3000c,
Ham3000d, and Ham3000e improved the best solu-
tions throughout all the existing reference algorithms
in the literatures. Notice that the time-consuming of
the corresponding algorithm still remains competitive.

• Secondly, our CEMCNP algorithm holds the best re-
sults (equal to the performance of existing MANCNP
and VPMS algorithms) over 24 out of total 42 graph
models. Moreover, CEMCNP takes fewer number of
node exchange operations (as well as less expendi-
ture of time) to pursuit the optimal solutions in half
of these 24 examples. This can be seen in both areas

of “#exch” and “tavg” in BA500, BA1000, BA2500,
BA5000, WS250, WS500, WS1500, Circuit, E.Coli,
HumanDis, TrainsRome and Yeast graphs.

• Finally, this CEMCNP algorithm running on 35 out
of 42 graphs are superior to the outcomes of KBV.
And on the other hand, the proposed CEMCNP method
achieves highly competitive performance compared
with the famous MANCNP and VPMS algorithms over
seven instances (listed by facebook, hepph, astroph,
condmat, Ham3000c, Ham3000d and Ham3000e).

4.4 Effectiveness of the Cluster Expansion-Based Con-
struction

In order to study the benefit of the cluster expansion-based
construction mechanism, we first conduct a comparison be-
tween CEMCNP with an alternative version CEMCNP*
where the way to broaden the cluster is replaced by ran-
domly picking up a candidate into the cluster. In other
words, without considering the three correlative reference
quantities (the incremental cardinality of dominated node
set, the sum of branch number in dominated node set and

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1147

Table 5 Average time comparison between initial solution and final solution of CEMCNP algorithm

Graph Tinit
avg(Tavg) Graph Tinit

avg(Tavg) Graph Tinit
avg(Tavg) Graph Tinit

avg(Tavg) Graph Tinit
avg(Tavg)

BA500 0.049(<0.1) FF250 0.049(0.3) Bovine 0.014(<0.1) Ham1000 0.918(1068.4) powergrid 3.564(856.7)
BA1000 0.036(0.2) FF500 0.027(0.2) Circuit 0.018(0.1) Ham2000 3.306(1527.2) Oclinks 1.513(267.8)
BA2500 0.029(0.2) FF1000 0.660(120.6) E.coli 0.012(<0.1) Ham3000a 7.228(1204.3) facebook 10.487(3526.9)
BA5000 0.257(1.8) FF2000 2.237(486.4) USAir97 0.093(856.4) Ham3000b 9.111(2040.0) grqc 8.474(1025.0)
ER235 0.084(19.8) WS250 0.075(623.1) humanDisea 0.075(0.5) Ham3000c 7.277(2159.3) hepth 21.644(4521.4)
ER466 0.264(98.4) WS500 0.367(105.8) Treni Roma 0.028(0.2) Ham3000d 9.030(3895.2) hepph 29.877(4025.1)
ER941 1.135(694.6) WS1000 0.701(1256.2) EU flights 0.711(431.6) Ham3000e 9.145(4035.6) astroph 8.974(3105.2)
ER2344 5.130(3069.0) WS1500 2.726(658.2) openflights 1.451(3165.8) Ham4000 11.992(1563.7) condmat 7.640(4203.5)

yeast1 0.428(9.8) Ham5000 24.648(2024.1)

Fig. 8 Comparison between CEMCNP with an alternative version
CEMCNP*.

the sum of mean difference of path depth in dominated
node set), this CEMCNP* method just chooses the candi-
date node in a randomly way in terms of fewer cardinality
of new-formed dominated node set.

Comparative results of CENCNP and CENCNP*, to-
gether with MANCNP in term of the best objective value
are described in Fig. 8. Note that the X-axis represents the
instance of datasets, for the sake of convenience, we hold
the notation of “GAP to KBV (the gap of results to the
known best values in percentage)” for the Y-axis, which is
defined as (fbest−KBV)×100

KBV
†, where fbest indicates the best ob-

jective obtained by MANCNP, CEMCNP and CENCNP*
respectively.

When viewed from the curves between the perfor-
mance of MANCNP and CENCNP, the two are quite closely
to each other, which is also in-keeping with the findings
in Table 4. What is noteworthy is that CEMCNP keeps
the superior performance in comparison with the best so-
lutions of MANCNP over 11 of total 42 models. For ob-
vious understanding, a negative gap indicates an improved
upper bound for the KBV , and a positive gap denotes a lower

†This statistic has been discussed in [34]–[36], a value of less
than 14% or 15% is usually an acceptable range suggested in [35]
and [36]. Whereas in [34], it didn’t give the upper limit.

bound for the corresponding instance. Of all the 42 in-
stances, CEMCNP gives better solution compared with that
of CEMCNP*. While focused on the 31 test cases in front,
as described from Fig. 8 (a) to 8 (c), there exists an average
gap of 4% between the best solutions achieved by CEMCNP
and CEMCNP*, the reason behind this is that the strategy to
broaden the cluster in CEMCNP can take full advantage of
the joint deduced statistics so as to dig deep into the po-
tential characteristics of the residual graph, which has been
ignored in the implementation of CEMCNP*.

In addition, another more fascinating benefit in our
CEMCNP algorithm belongs to the accuracy of initial so-
lution brought by the cluster expansion based construction.
Distinguishing from traditional approaches who are inclined
to establish the initial solution in a random way, this pro-
posed CEMCNP walks along the direction towards the opti-
mal solution at the start point. As a result, the original basic
feasible solution usually stands much closed to the global
optimum, even though the construction process may be a bit
of time-consuming. Table 5 presents the average time cost
spending on the construction of initial solutions. It is clear
that this initial phase only takes up to 17% of the overall al-
gorithm running time. In most cases, especially for the large
instances, the ratio has been reduced to less than 0.5%.

As similar with the pattern of manifestation in Fig. 8,
we display the 42 instances on the X axis, ranging from
Fig. 9 (a) to 9 (d). For each test case, we conduct two exper-
iments: one is to evaluate the performance between KBV
and Initial Solution of CEMCNP, and the other concentrates
upon the comparison between MANCNP and Initial Solu-
tion of CEMCNP. Without loss of generality, we adopt a
relative quantification named “GAP to X” (X means KBV
and MANCNP) to measure the gap between “X” and Ini-
tial Solution of CEMCNP for Y axis. It is observed that
for the 42 benchmark instances, CEMCNP finds the feasi-
ble initial solutions which maintain a gap under the upper
limit of 15% with KBV or Best Value of MANCNP over
33 test cases. Especially for the Hamilton and Barabasi-
Albert (BA) graphs, cluster expansion based construction
well holds the initial value much closer to the optimal solu-
tion. For example, under an upper bound of 5% in Fig. 9 (a)
to 9 (c). In this way, high-quality initial solution helps to
pursuit the global optimum and accelerates the convergence
of local search. These observations further demonstrate
the relevance of the cluster expansion based construction
mechanism for enhancing CEMCNP algorithm.

1148
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

Fig. 9 High-quality initial solution by means of cluster expansion-based
construction.

5. Conclusion

In this work, we proposed a new cluster expansion method
for solving the critical node problem, our CEMCNP algo-
rithm combines a leaves contraction mechanism, an incre-
mental cluster expansion operation, a multi-start based di-
versified late acceptance local search, as well as an iterative
dynamic evaluation strategy. Extensive evaluations show
that CEMCNP running on 35 of total 42 benchmark in-
stances are superior to the outcome of KBV, while holding
the equivalent performance in comparison with the existing
MANCNP and VPMS algorithms over 22 of total 42 graph
models with fewer number of node exchange operations. In
addition, this CEMCNP algorithm well improved the 3 pre-
vious best results out of the challenging instances. Analy-
sis between CEMCNP and CEMCNP* reveals that our dis-
tinctive score weighting scheme can well speed up the local
search process, so as to obtain better initial solutions.

Acknowledgments

This work is partially supported by the Key projects of sci-
ence and technology research plan of Hubei Provincial De-
partment of Education D20212201, Philosophy and social
science research project of Hubei Provincial Department of
Education 21Q213, and Hubei Provincial Natural Science
Foundation of China No. 2020CFB306.

References

[1] S.P. Borgatti, “Identifying sets of key players in a network,” IEMC
’03 Proc. Managing Technologically Driven Organizations: The Hu-
man Side of Innovation and Change, pp.127–131, 2003.

[2] R. Cohen, S. Havlin, and D. ben-Avraham, “Efficient Immunization
Strategies for Computer Networks and Populations,” Physical Re-
view Letters, vol.91, no.24, p.247901, 2003.

[3] A. Arulselvan, et al., “Managing network risk via critical node
identification,” Risk Management in Telecommunication Networks,
2007.

[4] A. Kumar, P.K. Gupta, and A. Srivastava, “A review of modern tech-
nologies for tackling COVID-19 pandemic,” Diabetes & Metabolic
Syndrome: Clinical Research & Reviews, vol.91, no.4, pp.569–573,
2020.

[5] A. Arulselvan, C.W. Commander, and L. Elefteriadou, “Detecting
critical nodes in sparse graphs,” Computers & Operations Research,
vol.36, no.7, pp.2193–2200, 2008.

[6] M. Di Summa, A. Grosso, and M. Locatelli, “Complexity of the crit-
ical node problem over trees,” Computers & Operations Research,
vol.38, no.12, pp.1766–1774, 2011.

[7] Y. Atay, I. Koc, I. Babaoglu, and H. Kodaz, “Community detec-
tion from biological and social networks: A comparative analy-
sis of metaheuristic algorithms,” Applied Soft Computing, vol.50,
pp.194–211, 2017.

[8] M. Lalou, M.A. Tahraoui, and H. Kheddouci, “The Critical Node
Detection Problem in networks: A survey,” Computer Science Re-
view, vol.28, pp.92–117, 2018.

[9] B. Addis, M. Di Summa, and A. Grosso, “Identifying critical nodes
in undirected graphs: Complexity results and polynomial algorithms
for the case of bounded treewidth,” Discrete Appl. Math., vol.161,
no.16–17, pp.2349–2360, 2013.

[10] M. Lalou and H. Kheddouci, “A polynomial-time algorithm for
finding critical nodes in bipartite permutation graphs,” Optim Lett,
vol.13, pp.1345–1364, 2019.

[11] A. Aliabdi, A. Mohades, and M. Davoodi, “Constrained short-
est path problems in bi-colored graphs: a label-setting approach,”
GeoInformatica, pp.1–19, 2019.

[12] B. Addis, M. Di Summa, and A. Grosso, “Identifying critical nodes
in undirected graphs: Complexity results and polynomial algorithms
for the case of bounded treewidth,” Discrete Appl. Math., vol.161,
no.16, pp.2349–2360, 2013.

[13] J.L. Walteros, A. Veremyev, P.M. Pardalos, and E.L. Pasiliao, “De-
tecting critical node structures on graphs: A mathematical program-
ming approach,” Networks, vol.73, pp.48–88, 2013.

[14] D. Granata, G. Steeger, and S. Rebennack, “Network interdiction via
a Critical Disruption Path: Branch-and-Price algorithms,” Comput-
ers & Operations Research, vol.40, no.11, pp.2689–2702, 2013.

[15] T.N. Dinh, M.T. Thai, and H.T. Nguyen, “Bound and exact meth-
ods for assessing link vulnerability in complex network,” Journal of
Combinatorial Optimization, vol.28, no.1, pp.3–24, 2014.

[16] C. Areas, “An exact algorithm for the two-echelon capacitated ve-
hicle routing problem,” Operations Research, vol.61, no.2, pp.298–
314, 2013.

[17] S.H. Yakhchali, “A path enumeration approach for the analysis of
critical activities in fuzzy networks,” Information Sciences, vol.204,
no.20, pp.23–35, 2012.

[18] B. Addis, R. Aringhieri, A. Grosso, and P. Hosteins, “Hybrid con-
structive heuristics for the critical node problem,” Annals of Opera-
tions Research, vol.238, no.1-2, pp.637–649, 2016.

[19] M. Ventresca and D. Aleman, “A Fast Greedy Algorithm for the Crit-
ical Node Detection Problem,” Lecture Notes in Computer Science,
pp.603–612, 2014.

[20] T. Ren, Z. Li, Y. Qi, Y. Zhang, S. Liu, Y. Xu, and T. Zhou, “Identify-
ing vital nodes based on reverse greedy method,” Scientific Reports,
vol.10, no.1, 2020.

[21] D. Purevsuren and G. Cui, “Efficient heuristic algorithm for identi-
fying critical nodes in planar networks,” Computers & Operations
Research, vol.106, pp.143–153, 2019.

[22] D. Purevsuren, et al., “Hybridization of GRASP with exterior path
relinking for identifying critical nodes in graphs,” IAENG Interna-
tional Journal of Computer Science, vol.44, no.2, pp.157–165, 2017.

[23] D. Purevsuren, G. Cui, and N.N.H. Win, “Heuristic algorithm for
identifying critical nodes in graphs,” Advances in Computer Sci-
ence: an International Journal, vol.5, no.3, pp.1–4, 2016.

http://dx.doi.org/10.1109/kimas.2003.1245034
http://dx.doi.org/10.1103/physrevlett.91.247901
http://dx.doi.org/10.1016/j.dsx.2020.05.008
http://dx.doi.org/10.1016/j.cor.2011.02.016
http://dx.doi.org/10.1016/j.asoc.2016.11.025
http://dx.doi.org/10.1016/j.cosrev.2018.02.002
http://dx.doi.org/10.1016/j.dam.2013.03.021
http://dx.doi.org/10.1007/s11590-018-1371-6
http://dx.doi.org/10.1016/j.dam.2013.03.021
http://dx.doi.org/10.1002/net.21834
http://dx.doi.org/10.1016/j.cor.2013.04.016
http://dx.doi.org/10.1007/s10878-014-9742-0
http://dx.doi.org/10.1016/j.ins.2012.01.025
http://dx.doi.org/10.1007/s10479-016-2110-y
http://dx.doi.org/10.1007/978-3-319-12691-3_45
http://dx.doi.org/10.1038/s41598-020-61722-8
http://dx.doi.org/10.1016/j.cor.2019.02.006

WANG and DI: CLUSTER EXPANSION METHOD FOR CRITICAL NODE PROBLEM BASED ON CONTRACTION MECHANISM IN SPARSE GRAPHS
1149

[24] H. Jhuge and J. Zhang, “Topological centrality and its e-science ap-
plications,” Journal of the American Society for Information Science
and Technology, vol.61, pp.1824–1841, 2010.

[25] Z. Wenping, W. Zhikang, and Y. Gui, “A novel algorithm for identi-
fying critical nodes in networks based on local centrality,” Journal of
Computer Research and Development, vol.56, no.9, pp.1872–1880,
2019.

[26] W.E. Hart, J.E. Smith, and N. Krasnogor, “Recent Advances in
Memetic Algorithms,” Springer Berlin Heidelberg, 2005.

[27] C. Cotta, Handbook of Memetic Algorithms, Springer Berlin
Heidelberg, 2012.

[28] Y.-H. Kim, Y. Yoon, and Z.W. Geem, “A comparison study of
harmony search and genetic algorithm for the max-cut problem,”
Swarm and Evolutionary Computation, vol.44, 2018.

[29] P.R. De Oliveira Da Costa, S. Mauceri, P. Carroll, and F. Pallonetto,
“A Genetic Algorithm for a Green Vehicle Routing Problem,” Elec-
tronic Notes in Discrete Mathematics, vol.64, pp.65–74, 2017.

[30] O. Alp and E. Erkut, “An efficient genetic algorithm for the p-median
problem,” Annals of Operations Research, vol.122, pp.21–42, Sept.
2003.

[31] C. Moon, J. Kim, and G. Choi, “An efficient genetic algorithm for the
traveling salesman problem with precedence constraints,” European
Journal of Operational Research, vol.140, no.3, pp.606–617, 2002.

[32] R. Aringhieri, A. Grosso, and P. Hosteins, “A Genetic Algorithm
for a class of Critical Node Problems,” Electronic Notes in Discrete
Mathematics, vol.52, pp.359–366, 2016.

[33] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “A
general Evolutionary Framework for different classes of Critical
Node Problems,” Engineering Applications of Artificial Intelli-
gence, vol.55, pp.128–145, 2016.

[34] Y. Zhou, J.-K. Hao, Z.-H. Fu, Z. Wang, and X. Lai, “Variable Pop-
ulation Memetic Search: A Case Study on the Critical Node Prob-
lem,” IEEE Trans. Evol. Comput., vol.25, no.1, pp.187–200, 2021.

[35] Y. Zhou, H. Jin-Kao, and G. Fred, “Memetic search for identify-
ing critical nodes in sparse graphs,” IEEE Trans. Cybern., pp.1–14,
2017.

[36] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “Lo-
cal search metaheuristics for the critical node problem,” Networks,
vol.67, no.3, pp.209–221, 2016.

[37] Y. Zhou and J.-K. Hao, “A fast heuristic algorithm for the criti-
cal node problem,” In Proc. Genetic and Evolutionary Computation
Conference Companion (GECCO ’17), Association for Computing
Machinery, New York, NY, USA, pp.121–122, 2017.

[38] M. Ventresca, “Global search algorithms using a combinatorial un-
ranking-based problem representation for the critical node detec-
tion problem,” Computers & Operations Research, vol.39, no.11,
pp.2763–2775, 2012.

[39] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “VNS
solutions for the Critical Node Problem,” Electronic Notes in Dis-
crete Mathematics, vol.47, pp.37–44, 2015.

[40] M. Ventresca and D. Aleman, “Efficiently identifying critical
nodes in large complex networks,” Computational Social Networks,
vol.2.1, no.6, 2015.

[41] L. Chang, W. Li, and W. Zhang, “Computing a near-maximum inde-
pendent set in linear time by reducing-peeling,” In: Proc. SIGMOD
2017, pp.1181–1196, 2017.

[42] M. Namazi, C. Sanderson, M.A.H. Newton, M.M.A. Polash, and A.
Sattar, “Diversified late acceptance search,” in AI 2018: Advances
in Artificial Intelligence - 31st Australasian Joint Conference,
Wellington, New Zealand, Dec. 11-14, 2018, pp.299–311, 2018.

[43] Y. Zhou, Z. Wang, and Y. Jin, “Late acceptance-based heuris-
tic algorithms for identifying critical nodes of weighted graphs,”
Knowledge-Based Systems, vol.211, 106562, 2021.

Zheng Wang received the Ph.D. degree
in computer software theory from Huazhong
University of Science and Technology in 2012.
From 2012 to 2019, he was a senior engineer
in Wuhan Maritime Communication Research
Institute. Since 2019, he has been a lecturer
with the school of Information and Communi-
cation Engineering, Hubei University of Eco-
nomics. His research interests focused on the
data gathering in wireless sensor networks, net-
work optimization and intelligent optimization

algorithms.

Yi Di received his Ph.D. degree in ar-
mament science and technology from Nanjing
University of Science and Technology, China in
2018. From 2018 to 2019, he was a lecturer
in Wuchang University of Technology. Since
2019, he has been a lecturer with the school
of Information and Communication Engineer-
ing, Hubei University of Economics. His re-
search interests include intelligent information
processing and applications, Target recognition
and tracking, intelligent system.

http://dx.doi.org/10.1007/3-540-32363-5
http://dx.doi.org/10.1016/j.swevo.2018.01.004
http://dx.doi.org/10.1016/j.endm.2018.01.008
http://dx.doi.org/10.1016/j.endm.2016.03.047
http://dx.doi.org/10.1016/j.engappai.2016.06.010
http://dx.doi.org/10.1109/tevc.2020.3011959
http://dx.doi.org/10.1002/net.21671
http://dx.doi.org/10.1145/3067695.3075993
http://dx.doi.org/10.1016/j.cor.2012.02.008
http://dx.doi.org/10.1016/j.endm.2014.11.006
http://dx.doi.org/10.1186/s40649-015-0010-y
http://dx.doi.org/10.1145/3035918.3035939
http://dx.doi.org/10.1007/978-3-030-03991-2_29

