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PAPER

Recursive Multi-Scale Channel-Spatial Attention for Fine-Grained
Image Classification

Dichao LIU†, Yu WANG††a), Nonmembers, Kenji MASE†, and Jien KATO††, Members

SUMMARY Fine-grained image classification is a difficult problem,
and previous studies mainly overcome this problem by locating multiple
discriminative regions in different scales and then aggregating complemen-
tary information explored from the located regions. However, locating
discriminative regions introduces heavy overhead and is not suitable for
real-world application. In this paper, we propose the recursive multi-scale
channel-spatial attention module (RMCSAM) for addressing this problem.
Following the experience of previous research on fine-grained image classi-
fication, RMCSAM explores multi-scale attentional information. However,
the attentional information is explored by recursively refining the deep fea-
ture maps of a convolutional neural network (CNN) to better correspond to
multi-scale channel-wise and spatial-wise attention, instead of localizing
attention regions. In this way, RMCSAM provides a lightweight module
that can be inserted into standard CNNs. Experimental results show that
RMCSAM can improve the classification accuracy and attention capturing
ability over baselines. Also, RMCSAM performs better than other state-of-
the-art attention modules in fine-grained image classification, and is com-
plementary to some state-of-the-art approaches for fine-grained image clas-
sification. Code is available at https://github.com/Dichao-Liu/Recursive-
Multi-Scale-Channel-Spatial-Attention-Module.
key words: attention module, gated convolution, attention mechanism, im-
age classification, fine-grained image recognition

1. Introduction

Image classification, which refers to the labeling of images
into a fixed set of categories, is a core problem in computer
vision. As a fundamental, meaningful, and challenging sub-
field of image classification, fine-grained image classifica-
tion (FGIC) has attracted much attention in recent years.
FGIC aims to distinguish images belonging to different sub-
categories within the same basic-level category, e.g., dif-
ferent species of birds or different models of cars. In the
real world, FGIC is the fundamental technology for a broad
range of applications, such as automatic biodiversity moni-
toring, road vehicle monitoring, and so on. However, FGIC
is a very challenging task, and the challenges are principally
related to two characteristics of its own: inter-class similar-
ity and intra-class variance.

Many previous studies have shown that accurately
identifying visual attention (i.e., discriminative visual in-
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formation) is the key to mitigate the adverse effect caused
by inter-class similarity and intra-class variance [1]–[16].
Some of those studies utilize extra manual bounding boxes
or part annotations to localize attentional regions, which im-
proves the classification accuracy but is labor-intensive and
limits the practicality of real-world applications [12]–[16].
Some other studies localize attentional regions with weakly
supervised localization schemes [1]–[7], [17], [18]. By do-
ing so, those studies have achieved promising results while
avoiding the human effort for labeling bounding boxes or
part annotations.

However, the approaches using weakly supervised lo-
calization schemes are facing the problem of the high over-
head of computation time, memory, etc. Prior studies pre-
dominately utilize convolutional neural networks (CNNs)
for localizing and recognizing the attentional regions. Typ-
ically in previous work, a localization network is used to
learn the regions of the object shared among the same cate-
gories, and a classification network is used to learn discrim-
inative features from the localized objects [17]–[19]. Com-
pared with classifying the raw input images with a single
classification network (i.e., without attention locating), the
introduction of the localization network brings performance
improvement as well as much extra overhead. For exam-
ple, if the localization and classification networks have the
same backbone, the overhead is at least doubled while us-
ing one localization network together with one classification
network [17].

Moreover, for FGIC tasks, a single-scale attentional re-
gion cannot cover all the discriminative visual information
of each image (as shown in Fig. 1). Consequently, many
approaches localize multi-scale attentional regions, which
provide complementary visual information [1]–[11]. Such a
strategy improves the classification performance but causes
huge overhead, which is needed for localizing multiple re-
gions and classifying the multiple localized regions. For ex-
ample, Zhang et al. [1] firstly roughly localize an initial at-
tentional region containing important objects by weakly su-
pervised object detection and segmentation using Mask R-
CNN [20] and CRF-based segmentation [21]. Then they es-
timate and search multiple attentional regions, which can be
of various scales, to provide complementary information to
the initial attentional region obtained in the former step. The
aggregation of the features extracted from the multi-scale at-
tentional regions is proved to have better classification per-
formance than the features extracted with single-scale atten-
tion regions. However, while improving classification accu-
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Fig. 1 Examples of multi-scale attentional regions for the images of dif-
ferent woodpeckers. Different scales of attentional regions can capture dif-
ferent objects, such as nape, head, and body. All the information is im-
portant for distinguishing different woodpeckers. For example, Downy
Woodpecker has a red nape. Red-headed Woodpecker has a bright-red
head. American Three-toed Woodpecker has a black and white barred back
and white breast. For capturing multi-scale attentional information, many
previous fine-grained image classification approaches focus on additional
mechanisms acting as the output component of the backbone CNNs to crop
multiple attentional regions [1]–[11]. Then, the outputted attentional re-
gions are categorized by other backbone CNNs specifically for classifica-
tion use. Differently, our proposed module can be embedded inside the
backbone CNNs, and it refines the deep feature maps by exploring and uti-
lizing multi-scale attentional information.

racy, this approach requires multiple steps including roughly
localizing an initial region, proposing multiple complemen-
tary regions, extracting features from attentional regions,
and aggregating the features. Each step requires different
network models such as Mask R-CNN [20], standard CNNs,
LSTM [22], etc. Thus this approach is not only complicated
but also requires a huge overhead.

To overcome the above-mentioned challenges, we pro-
pose a novel recursive multi-scale channel-spatial attention
module (RMCSAM) for FGIC. Our approach follows the
experience that multi-scale attention information is effec-
tive for FGIC tasks. However, note that RMCSAM ex-
ploits multi-scale attention information by the the fully-
connected (FC) layers with multiple channel sizes and con-
volutional operations with multiple kernel sizes. This makes
our approach different from the previous multi-scale atten-
tion learning strategies, which captures multi-scale atten-
tion information by cropping multi-size regions on the input
image [5], [7], [8], [10], [11] or learning multi-size feature
maps [3].

The proposed RMCSAM follows the success of the
previous research on attention modules [23]–[27]. Attention
modules refer to a set of insertable modules that enhance
the feature representations generated by standard convolu-
tional layers by giving weights among the channels or spa-
tial locations of the feature. For example, the squeeze-and-
excitation module (SE module) [24], which is one of the
most prominent attention mechanisms, performs channel-
wise attention by extracting global information from each
channel and then generating a set of weights for each chan-
nel. By doing so, the SE module provides a boost of classi-
fication accuracy with a low additional overhead. The point-

Fig. 2 Illustration of the main ideas of our work. The proposed attention
module has six sub-modules: three-scale channel-wise sub-modules and
three-scale spatial-wise sub-modules. The input feature map is recursively
refined through the six sub-modules for a predetermined number of times
to output the finally refined feature map.

wise spatial attention module (PSA module) [23] is another
typical example. The PSA module uses self-adaptively pre-
dicted attention maps to aggregate long-range contextual in-
formation within images, which boosts the performance for
the scene parsing task. These attention modules are gener-
ally insertable into different network architectures and able
to improve the networks’ focus on important information.

The RMCSAM is designed as an attention module that
explores multi-scale attention information and uses the ex-
plored information to enhance the deep features learned in
the FGIC task. As an attention module, RMCSAM can
be easily placed inside various backbone CNNs, such as
ResNet [28] or VGG models [29]. Trained together with the
backbone CNNs, RMCSAM improves the correspondence
to attentional information for better classification accuracy.
Clearly, our approach is different from previous FGIC ap-
proaches, which mainly design mechanisms placed as the
output parts of the backbone CNNs yielding attentional in-
formation (e.g., attentional regions) [1]–[11].

Specifically, as shown in Fig. 2, the main ideas of the
proposed RMCSAM are summarized as follows:

- Rather than localization and categorization of atten-
tional regions, which is commonly used in previous
FGIC approaches [1]–[16], we focus on developing an
insertable attention module for the FGIC task.

- We design the proposed attention module to explore
both channel-wise and spatial-wise attention. For the
channel-wise attention, we firstly spatially pool the
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given features and then use the pooled features to com-
pute channel-wise weights with a set of fully connected
(FC) layers. For the spatial-wise attention, we firstly
pool the given features along the channel axis and
then use the pooled features to compute spatial-wise
weights with a set of convolutional layers. The features
learned with the channel-wise and spatial-wise atten-
tion sub-module are aggregated by average.

- Following the prior experience that multi-scale atten-
tion is very important and effective for FGIC, we de-
sign the proposed attention module to perform three-
scale channel-wise and spatial-wise attention. The dif-
ferent scales of the channel-wise sub-modules are de-
fined with different numbers of the neurons in the FC
layers within the sub-modules. The different scales
of the spatial-wise sub-modules are defined with dif-
ferent kernel sizes in the convolutional layers within
the sub-modules. The features refined by different
scales of sub-modules are aggregated by average. Even
though the proposed module is designed to perform
three-scale channel-wise and spatial-wise attention, the
whole module is still very lightweight because each
sub-module only requires a small number of parame-
ters.

- We design the proposed attention module to progres-
sively refine the learned attention. Starting from the
feature map outputted by a standard convolutional
layer, we design a cyclically learning scheduler to gen-
erate more effective features by iteratively treating the
output of the former learned attention module as the in-
put of the current attention module. The attention mod-
ules in the different stages share the same parameters.

Our contributions can be summarized as follows:

- We propose a simple yet effective attention module that
can explore multi-scale attention with negligible over-
head for FGIC tasks.

- The proposed module can be easily inserted into stan-
dard CNNs and improve the classification accuracy for
FGIC.

- We evaluate the proposed module on two benchmarks:
CUB-200-2011 [30] and Stanford Cars [31]. We have
validated the effectiveness of the design of the pro-
posed attention module through extensive ablation
studies. Experimental results show that RMCSAM can
improve the classification accuracy and attention cap-
turing ability over baselines. Also, RMCSAM out-
performs other state-of-the-art attention modules [24]–
[27] in FGIC tasks.

- As an insertable attention module, our approach can
be combined with some previous approaches achieving
state-of-the-art accuracy in the FGIC task [32], [33].
By combining our approach with the PMG frame-
work [32], we achieve the best accuracy on the Stan-
ford Cars and surpass the previous best accuracy ob-
tained with the Resnet50 backbone on the CUB-200-
2011.

2. Related Studies

2.1 Multi-Scale Attentional Region Learning for Fine-
grained Image Classification

Effectively exploring attention is extremely crucial in FGIC
tasks, and many previous studies propose to localize and
classify multi-scale attentional regions that provide com-
plementary and comprehensive information [1]–[11]. Early
studies mainly rely on manual object bounding boxes or
part annotations. For example, Xie et al. [11] propose to
utilize the manual object bounding boxes to obtain image
segmentation and give a descriptive image representation
by building mid-level structures on the segmented regions.
However, collecting manual annotations is time-consuming,
labor-intensive and not feasible for real-world applications.

To the best of our knowledge, Xiao et al. [10] pro-
pose the first work using a multi-scale attention strategy for
FGIC without using any manual object bounding boxes or
part annotations (also mentioned in [5], [8]). In [10], the
researchers propose a two-level attention model: object-
level attention is to localize regions containing target ob-
jects for classification, and part-level attention is to local-
ize small parts of the objects that are helpful for classifica-
tion. The attention is localized by using a CNN to select
patches relevant to the basic-level category, thus the depen-
dence on manual object bounding boxes or part annotations
is avoided.

Recently, the strategy of localizing and classifying
multi-scale attentional regions plays a more and more cru-
cial role in FGIC tasks. Fu et al. [7] recursively localize at-
tentional regions from coarse to fine with the CNNs adapted
for region proposal. The prediction of fine-scale attentional
regions is given by taking the prediction of coarse-scale at-
tentional regions as a reference.

Ding et al. [2] propose to localize pyramidal regions
of interest (ROIs) in a weakly supervised manner by build-
ing a dual pathway hierarchy on the basic CNN following a
bottom-up attention pathway and a top-down feature path-
way. Then the localized regions are used to refine low-level
features by erasing the most discriminative region to encour-
age the network to find more discriminative regions and gen-
erating major regions by merging all the ROIs.

Rao et al. [3] propose to localize multi-scale attentional
regions and remove excessive unimportant regions by using
the deep features learned with a Feature Pyramid Network
(FPN). Zhang et al. [1] propose to estimate and search mul-
tiple attentional regions providing complementary informa-
tion to an initial region localized by using Mask R-CNN and
CRF-based segmentation. Then they use standard CNNs to
extract features from those regions and lastly use an LSTM
to aggregate the features.

The latest success of transformer in some other
fields [34], [35] has influenced the attention-based research
in the FGIC field. A transformer is a deep learning model
giving attention weights to each element of the input data.
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It was originally proposed for the natural language pro-
cessing task [36] and has been adapted for computer vision
tasks [37], [38]. He et al. [38] proposed a transformer-based
multi-attention model specifically for FGIC use, which is
called TransFG. TransFG first splits the input images into
small regions, and the regions are projected into feature
space by the transformer encoder. Thereafter, TransFG com-
bines all raw attention weights of the transformer to be an
attention map and uses the attention map as guidance for
selecting discriminative regions. TransFG does not output
the selected regions and then explore information from the
selected regions. On the contrary, TransFG intuitively con-
siders the attention link of the transformer as an indicator
of attention. Specifically, before the last Transformer Layer,
TransFG utilizes a part selection module (PSM) to select
the tokens that correspond to the discriminative regions and
only feed the selected tokens to the last transformer layer.

Though bringing a boost in terms of classification ac-
curacy, these approaches have the problem of high over-
head for memory, computation cost, etc., because the lo-
calization of multi-scale regions inevitably requires a high
cost. TransFG does not require directly localizing the atten-
tion regions by outputting the regions and achieves state-of-
the-art accuracy among the studies mentioned in this sub-
section. However, the backbone transformer, which itself
has a extremely heavy computation overhead, together with
the complicated part selection module, makes TransFG re-
quire much more parameters, GFLOPs, and time cost than
the proposed approach. Different from these studies, our
work provides an insertable, lightweight, and general mod-
ule, which can be inserted into standard CNNs and only re-
quires a little extra overhead.

2.2 Other Fine-Grained Image Classification Approaches

Besides exploring attentional regions, there are some state-
of-the-art FGIC approaches focusing on other strategies.

Decision tree. Decision tree refers to a process that
selects the appropriate directions based on the characteris-
tic of features [39]. The inherent interpretability of decision
tree has attracted much interest in adapting it for the FGIC
task. Nauta et al. [40] proposed the Neural Prototype Tree
(ProtoTree) that consists of a CNN backbone followed by a
binary tree structure. ProtoTree can be trained end-to-end
and locally explain each prediction by describing a decision
path. Ji et al. [41] proposed to combine convolutional oper-
ations along edges of the tree structure and determines the
decision path using the routing functions in each node. The
convolutional operations generate the representations of ob-
jects, and the tree structure provides a feature learning pro-
cess to exploit the representations.

Exploring the relation between deep feature ele-
ments. The intrinsic interrelationship between feature el-
ements contains useful semantic information. Xu et al. [42]
proposed a discrimination-aware mechanism (DAM) that
improves the deep features conditioned to the analysis on
the relation between deep feature elements. DAM can find

the feature elements that are not well-learned and refine such
elements for better FGIC performance. Zhao et al. [43] pro-
posed a graph-based relation discovery (GaRD) approach
to explore the high-order relationships among deep feature
elements in the FGIC task. Given an input image, GaRD
first generates a high-dimensional feature bank that is reg-
ularized with high-order constraints. Then GaRD utilizes a
graph-based aggregating procedure to explore the relation
between high-order elements of the feature bank and pro-
duce a low-dimensional feature representation.

Progressive learning. In the FGIC field, progres-
sive learning approaches generally first divide a backbone
CNN into several segments, and each segment progressively
learns features and gives the prediction. Thereafter, the fea-
tures learned by each segment are concatenated to give an
overall prediction. Du et al. [32] proposed the Progressive
Multi-Granularity (PMG), which uses a jigsaw puzzle gen-
erator to produce the images with different levels of granu-
larity and then learns cross-granularity information by pro-
gressive learning. Zhang et al. [33] proposed to explore the
similarity between the images of the same category and the
difference between the images of different categories.

These approaches achieve state-of-the-art accuracy but
suffer from huge computational expenses caused by their
sophisticated architecture [40]–[43] or multi-stage frame-
work [32], [33]. Moreover, as an insertable module, our
approach is complementary to some state-of-the-art frame-
works, such as [32], [33], and our approach can improve the
accuracy of them.

2.3 Insertable Attention Modules

Attention modules are designed to make CNNs learn to fo-
cus on the important information and ignore unuseful in-
formation by imitating the human visual attention mech-
anism [24], [25], [27]. Humans tend to process an image
by regarding it as a sequence of partial glimpses and selec-
tively concentrate on informative parts, instead of process-
ing a whole scene at once. Inspired by this fact, there have
been emerging efforts to incorporate attention modules into
CNNs for improving classification accuracy in large-scale
classification tasks, such as ImageNet [44].

These attention modules generally consist of some
pooling layers, 2D-convolutional layers, FC layers, and a
sigmoid function at the end to generate a mask of the in-
put feature map. For example, the SE module [24] squeezes
global spatial information with 2D-pooling and excites the
squeezed information into a set of channel weights to cap-
ture channel-wise dependencies. The success of the SE
module is succeeded by many studies. CBAM [27] uses a
similar idea to the SE module to capture channel-wise at-
tention and introduces spatial-wise attention encoding im-
plemented by 2D-convolutional layers with large-size ker-
nels. Dai et al. [25] propose channel-wise attention in multi-
ple scales by varying the spatial pooling size. The proposed
module can be used to fuse deep features.

Different from the above-mentioned attention mod-
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ules, our module can explore multi-scale attention of the
input feature maps in both channel-wise and spatial wise.
The multi-scale channel-wise attention in our work is im-
plemented by using different numbers of the hidden units
within the channel-wise sub-modules, which makes it dif-
ferent from the multi-scale channel-wise attention proposed
in [25]. FC layers of different numbers of the hidden units
can compress the features into different scales [46], the com-
pressed features can then be used to generate multi-scale
channel-wise dependencies. In this way, our work requires
less overhead than [25] to explore multi-scale channel-wise
attention. Moreover, our module can recurrently refine the
features a predetermined number of times before outputting
the final refined features.

3. Proposed Approach

In this section, we introduce the proposed RMCSAM in de-
tail. As shown in Fig. 3, given an input feature map, RMC-
SAM first processes it via six sub-modules: three channel-
wise sub-modules in different scales and three spatial-wise
sub-modules in different scales. The processed feature maps
are aggregated to be an output feature map. Thereafter, the
output feature map is treated as the input feature map of
the six sub-modules and processed again by the six sub-
modules. This process is repeated a predetermined number
of times to obtain the final refined feature map.

Fig. 3 Illustration of the proposed recursive multi-scale channel-spatial attention module (RMC-
SAM). “GAP” and “GMP” respectively represent the global average and max pooling. “CAP” and
“CMP” respectively represent the channel-wise average and max pooling. “FC” and “Conv” respec-
tively represent fully-connected layer and convolutional layer. “BN” and “ReLU” respectively represent
batch normalization [45] layer and ReLU layer.“+©” represents element-wise sum. “⊗” denotes broad-
cast element-wise multiplication. The feature maps are denoted as feature dimensions, e.g. “H×W ×C”
denotes a feature map with height H, width W and channel number C.

3.1 Multi-Scale Channel-Wise Attention Sub-Modules

The multi-scale channel-wise attention sub-modules are
used to exploit inter-dependencies among the channels of
a given feature map. In CNNs, each channel of a feature
map acts as an object detector [47]. Consequently, channel-
wise attention tells what objects are discriminative or unim-
portant for distinguishing a given image [27]. For example,
bird head and bird claw are generally discriminative objects
for distinguishing different bird species, and some other ob-
jects, such as tree branches, are not important for classifica-
tion. We describe the detailed operation of the multi-scale
channel-wise attention sub-modules below.

Firstly, consider a single-scale channel-wise attention
sub-module, which is implemented similarly to the SE mod-
ule [24]. Let X ∈ RH×W×C be an input feature map generated
by the former layer within a CNN. H, W and C respectively
represents the spatial height, width and number of channels.
Let Ωchl

r (.) denote the function of the single-scale channel-
wise attention sub-module. Note that r is a manual hyper
parameter controlling the scale of the attention module, and
it will be introduced in detail later in this subsection. An
overview of the function of the single-scale channel-wise
attention sub-module can be summarized as: output a 1D
channel-wise weighted mask Mchl

r ∈ R1×1×C and then put
Mchl

r on X for emphasizing the discriminative channels and
de-emphasizing the unimportant channels. A mathematical
definition of Ωchl

r (.) can be given as:
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Xchl
r = Ω

chl
r (X) = X ⊗ Mchl

r , (1)

where Xchl
r denotes the refined feature map outputted by the

single-scale channel-wise sub-attention module, and ⊗ de-
notes element-wise production. During ⊗, the values of Mchl

r
are broadcasted along the spatial dimension to make Mchl

r
have the same size as X.

Mchl
r is obtained from X with a set of pooling, fully

connected (FC), and sigmoid operations. As average-pooled
and max-pooled features provide complementary informa-
tion [27], we first use both global average pooling and global
max pooling to spatially shrink X to generate 1D channel-
wise descriptors Davg ∈ R1×1×C and Dmax ∈ R1×1×C as:

davg
c =

1
H ×W

H∑

i=1

W∑

j=1

xi, j,c, (2)

dmax
c =

H
max

i=1

W
max

j=1
xi, j,c, (3)

where davg
c and dmax

c are respectively the values in the chan-
nel c (c ∈ {1, 2, 3, . . . ,C}) of Davg and Dmax. xi, j,c denotes
the value at the spatial location (i, j) in the channel c of X.
Then both Davg and Dmax are processed by two successive
FC layers as:

Davg′ = Φavg(Davg)

= f ReLU(φavg
C ( f ReLU(φavg

C
r

(Davg))))
(4)

Dmax′ = Φmax(Dmax)

= f ReLU(φmax
C ( f ReLU(φmax

C
r

(Dmax))))
(5)

where Φavg(.) denotes the layers processing Davg, and
Φmax(.) denotes the layers processing Dmax. f ReLU(.) denotes
ReLU operation. Φavg(.) and Φmax(.) share the same pa-
rameters in order to reduce overhead. For both Φavg(.) and
Φmax(.), the output size of the first FC layer (i.e., φavg

C
r

(.) or

φmax
C
r

(.)) is set as 1× 1× C
r , and this FC layer is used to com-

press the channel-wise information of Davg or Dmax into a
certain scale. The output size of the second FC layer (i.e.,
φ

avg
C (.) or φmax

C (.)) is set as C, and this FC layer makes the
output descriptor have the same size of channels of X (so
that the element-wise multiplication in Eq. (1) can be imple-
mented).

Thereafter, Mchl
r is obtained as:

Mchl
r = σ(Davg′) + σ(Dmax′) (6)

where σ represents the sigmoid operation, which makes
each value range from 0 to 1 and thus gives the importance
of each channel of X. The refined feature map Xchl

r can be
obtained by substituting the Mchl

r obatined in Eq. (6) into
Eq. (1).

The multi-scale channel-wise attention is obtained with
different r. r controls the output size of φavg

C
r

(.) and φmax
C
r

(.).

A smaller output size makes the output information more
compressed and gives a more abstract representation of the

input descriptor (i.e., Davg or Dmax). A larger output size
makes the output keep more information and gives a more
detailed and inclusive representation of Davg or Dmax. In or-
der to obtain all-sided channel-wise attention information,
we build up multi-scale channel-wise attention sub-modules
by using three different r: 8, 16 and 32. The refined fea-
ture map outputted by the multi-scale channel-wise attention
sub-modules is defined as:

Xchl
multi = Ω

chl(X)

= Ωchl
8 (X) + Ωchl

16 (X) + Ωchl
32 (X).

(7)

3.2 Multi-Scale Spatial-Wise Attention Sub-Modules

The multi-scale spatial-wise sub-attention module are used
to exploit inter-dependencies among the spatial locations of
a given feature map. Spatial-wise attention tells the spa-
tial location of the discriminative objects. As introduced in
Sect. 3.1, channel-wise attention tells what objects are dis-
criminative for classification. Thus, these two types of at-
tention are complementary to each other. We describe the
detailed operation of the multi-scale spatial-wise attention
sub-modules below.

Firstly, consider a single-scale spatial-wise attention
sub-module. Similar to the formulation in Sect. 3.1, X ∈
R

H×W×C denotes an input feature map, and Ωspat
k (.) denote

the function of the single-scale spatial-wise attention sub-
module. Note that k is a manual parameter controlling the
scale of the attention sub-module, and it will be introduced
in detail later in this subsection. An overview of the function
of the single-scale spatial-wise attention sub-module can be
summarized as: output a 2D spatial-wise weighted mask
Mspat

k ∈ RH×W×1 and then put Mspat
k on X for emphasizing

the discriminative spatial locations and de-emphasizing the
unimportant spatial locations. A mathematical definition of
Ω

spat
k (.) can be given as:

Xspat
k = Ω

spat
k (X) = X ⊗ Mspat

k , (8)

where Xspat
k denotes the refined feature map outputted by the

single-scale spatial-wise attention sub-module, and during
⊗, the values of Mspat

k are broadcasted along the channel
dimension to make Mspat

r have the same size as X.
Mspat

r is obtained from X with a set of operations in-
cluding channel-wise pooling, 2D convolution, and sigmoid.
The first step for obtaining Mspat

r is to shrink X along the
channel dimension to generate 2D spatial-wise score maps
S avg ∈ RH×W×1 and S max ∈ RH×W×1 as:

savg
i, j =

1
C

C∑

c=1

xi, j,c, (9)

smax
i. j =

C
max
c=1

xi, j,c, (10)

where savg
i, j and smax

i, j are respectively the values at the loca-
tion (i, j) of S avg and S max. xi, j,c denotes the value at the
spatial location (i, j) in the channel c of X. Then S avg and
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S max are processed as:

S
′
= ψk×k×2×1( f cat(S avg, S max)), (11)

where f cat denotes a channel-wise concatenation operation.
ψk×k×2×1(.) denotes a 2D convolutional layer whose kernal
size is k×k×2×1, and this layer is used to encode the spatial-
wise information of each k × k-size region inside S avg and
S max. The padding size of ψk×k×2×1(.) is set as k−1

2 and the
stride is set as 1. Consequently, ψk×k×2×1(.) does not change
the spatial size of the input feature map.

Thereafter, Mspat
k is obtained as:

Mspat
k = σ( f ReLU( f BN(S

′
)), (12)

where f BN(.) denotes batch normalization operation [45].
The refined feature map Xspat

k can be obtained by substitut-
ing the Mspat

k obatined in Eq. (12) into Eq. (8).
The multi-scale spatial-wise attention is obtained with

different k. k controls the kernel size of ψk×k×2×1(.). That is,
k decides each value of Mspat

k to be corresponding to how
large a region in S avg and S max. A 2D convolutional layer
of a smaller kernel size has smaller receptive fields and thus
can capture more local information and more detailed clues.
A 2D convolutional layer of a bigger kernel size has bigger
receptive fields and thus can “see” more information at once
and capture relatively more global information, such as the
dependencies among some local patterns. In order to obtain
comprehensive spatial-wise attention information, we build
up multi-scale spatial-wise attention sub-modules by using
three different k: 3, 5 and 7. The refined feature map out-
putted by the multi-scale spatial-wise attention sub-modules
is defined as:

Xspat
multi = Ω

spat(X)

= Ω
spat
3 (X) + Ωspat

5 (X) + Ωspat
7 (X).

(13)

3.3 Recursive Refinement

Our module recursively refines the given feature maps to
focus on the discriminative visual information more finely.
Let T denote how many times we refine the feature maps,
and let Xre f

t (t ∈ {0, 1, 2, 3, . . . ,T }) denote the feature map
outputted at time t. We recursively refine the feature map
by treating the output at time t − 1 as the input of time t. A
mathematical definition is given as:

Xre f
0 = X,

Xre f
t = Ωchl(Xre f

t−1) +Ωspat(Xre f
t−1).

(14)

4. Experiments

4.1 Experimental Settings

To evaluate the effectiveness of our approach, we carried
out experiments on two widely-used, competitive and stan-
dard benchmarks, namely CUB-200-2011 [30] and Stanford
Cars [31]. CUB-200-2011 is a benchmark of bird images

across 200 different species. There are totally 11,788 im-
ages, 5994 for training and 5794 for testing. Stanford Cars
is a benchmark of car images across 196 car models. There
are totally 16,185 images, 8,144 for training and 8,041 for
testing.

As our approach is actually a lightweight insertable
module, we compare the FGIC performance of the standard
networks without the proposed module, with the proposed
module, with other state-of-the-art attention modules. Be-
sides, we also compare our approach with the latest state-
of-the-art FGIC approaches [32], [33], [38], [40]–[43]. Fol-
lowing the experience in previous studies [25], [27], we in-
sert the proposed module after the final convolutional block
of each network. In order to perform apple-to-apple com-
parisons, we reproduced all the evaluated networks with the
same training and testing configuration.

For the training procedure, we resize the images to
make the shorter side be 512, while keeping the aspect ra-
tio being unchanged. Then we randomly crop a 448×448
part augmented with random flipping as the input. Conse-
quently, the GFLOPs in this paper are reported by comput-
ing with 448×448 input. For the testing procedure, we re-
size the images in the same way as the training procedure
but use center cropping to obtain the 448×448 input images.
For keeping the interference factors as few as possible and
obtaining a stable result, we evaluate the time cost of the
proposed approach as well as other approaches by handling
a group of eight input images (unless otherwise specified),
i.e., an 8 × 3 × 448 × 448 tensor, with a single Nvidia GTX
1080 Ti.

Regarding the parameter initialization, we use the net-
work backbones pre-trained on the ImageNet [44] (provided
by PyTorch [48]) and then fine-tune them on the fine-grained
image classification datasets. The inserted RMCSAM, as
well as other attention modules, are randomly initialized.
However, in Sect. 4.6, to further improve the accuracy, we
also implement the experiment of pre-training RMCSAM
with the Resnet50 backbone on the ImageNet once before
the fine-tuning (see more training details in Sect. 4.6). For
all the other experiments,we use same experimental config-
uration:

- We reproduce all the experiments 10 times and report
the average accuracy.

- We train all the networks using standard Stochastic
Gradient Descent (SGD) with the momentum of 0.9,
batch size of 32, weight decay of 5 × 10−4, learning
rate of 2 × 10−3.

- All the experiments are implemented in the PyTorch
framework [48] with 2×Nvidia GTX 1080 Ti (except
for evaluating the time cost).

4.2 Ablation Study

In this subsection, we analyze whether and how multiple
scales of the channel-wise, spatial-wise attention and recur-
sive refinement are beneficial for FGIC tasks. We use a
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Table 1 Results of the ablation study

Accuracy Parameters GFLOPs
CUB-200-2011 Stanford Cars

Baseline 75.9% 89.3% 9.327M 30.031
Ωchl

8 (.) 81.2% 90.5% 9.393M 30.031
Ωchl

16 (.) 81.4% 90.4% 9.360M 30.031
Ωchl

32 (.) 81.6% 90.7% 9.343M 30.031
Ωchl

8 (.)+Ωchl
16 (.)+Ωchl

32 (.) 81.8% 90.8% 9.443M 30.031
Ω

spat
3 (.) 81.7% 90.6% 9.327M 30.031
Ω

spat
5 (.) 82.2% 90.6% 9.327M 30.031
Ω

spat
7 (.) 81.6% 90.6% 9.327M 30.031
Ω

spat
3 (.)+Ωspat

5 (.)+Ωspat
7 (.) 81.6% 90.8% 9.327M 30.031

Ωspat+Ωchl, T = 1 81.9% 91.3% 9.443M 30.031
Ωspat+Ωchl, T = 2 81.9% 91.5% 9.443M 30.032
Ωspat+Ωchl, T = 3 82.4% 92.1% 9.443M 30.032
Ωspat+Ωchl, T = 4 81.4% 91.9% 9.443M 30.032
Ωspat+Ωchl, T = 5 80.9% 91.6% 9.443M 30.032

Table 2 Comparison results with baselines

Accuracy Parameters GFLOPs Time Cost
CUB-200-2011 Stanford Cars

VGG11 bn 75.9% 89.3% 9.327M 30.031 49.209ms
VGG11 bn+RMCSAM 82.4% 92.1% 9.443M 30.032 52.102ms
VGG16 bn 80.1% 91.9% 14.824M 61.549 97.108ms
VGG16 bn+RMCSAM 83.6% 93.0% 14.940M 61.550 98.173ms
Resnet18 79.9% 92.1% 11.277M 7.274 16.181ms
Resnet18+RMCSAM 80.5% 92.9% 11.394M 7.275 20.152ms
Resnet50 85.5% 93.2% 23.910M 16.438 48.000ms
Resnet50+RMCSAM 86.1% 94.2% 25.751M 16.449 54.100ms
Gluon resnet18 v1b 81.9% 92.6% 11.277M 7.274 15.938ms
Gluon resnet18 v1b+RMCSAM 82.7% 93.0% 11.394M 7.275 19.339ms
GoogLeNet 80.5% 93.4% 5.801M 6.016 25.126ms
GoogLeNet+RMCSAM 80.9% 93.8% 6.263M 6.018 29.023ms

VGG11 network [29] with batch normalization [45] as the
baseline, and evaluate the performance of: the baseline,
the baseline + different single-scale channel-wise attention
modules, the baseline + multi-scale channel-wise attention
module, the baseline + different single-scale spatial-wise at-
tention modules, the baseline + multi-scale spatial-wise at-
tention module, the baseline + RMCSAM respectively re-
fined 1∼5 times.

The ablation study is conducted on both datasets, and
the results are shown in Table 1.

Single-scale attention vs. multi-scale attention. On
both datasets, the multi-scale channel-wise attention module
performs better than all the single-scale channel-wise atten-
tion modules. Compared with the baseline, the multi-scale
channel-wise attention module improves the accuracy by
5.9% on CUB-200-2011 and 1.5% on Stanford Cars. Multi-
scale spatial-wise attention module performs better than
all the single-scale spatial-wise attention modules. Com-
pared with the baseline, the multi-scale spatial-wise atten-
tion module improves the accuracy by 5.7% on CUB-200-
2011 and 1.5% on Stanford Cars.

The influence of refining times. Simply Aggregat-
ing both multi-scale channel-wise and spatial-wise attention
(i.e.,Ωspat(.)+Ωchl(.) with T = 1) performs better than only
using one of them, which suggests multi-scale channel-wise
and spatial-wise attention are complementary to each other.
Moreover, increasing refining times can further affect the

accuracy. On both two datasets, the most suitable T is 3,
because the accuracy tends to decrease with a T larger than
3. Compared with the baseline, by setting T as 3, RMC-
SAM improves the classification accuracy by 6.5% on CUB-
200-2011 and 2.8% on Stanford Cars, while increasing only
0.116M parameters and 0.001 GFLOPs.

For all the rest experiments, the T for RMCSAM is set
as 3.

4.3 Comparison with the Baselines

In this subsection, we empirically show how RMCSAM
helps improve the classification accuracy over different
baseline networks. We use as baselines six network models,
namely VGG11 [29] with batch normalization, VGG16 [29]
with batch normalization, Resnet18 [28], Resnet50 [28],
Gluon resnet18 v1b [49], and GoogLeNet [50]. We com-
pare the networks with and without the proposed mod-
ule, and the results are shown in Table 2. RMCSAM fa-
vorably improves the classification of all the baselines by
0.4%∼6.5% on CUB-200-2011 and 0.4%∼2.8% on Stan-
ford Cars. In terms of the extra overhead, RMCSAM in-
creases only 0.116M∼1.841M parameters and 0.001∼0.003
GFLOPs. In view of the negligible additional parameters
and GFLOPs, our approach provides a good improvement in
classification accuracy. Regarding the additional time cost,
RMCSAM increases 1.065ms∼6.100ms over different back-
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Fig. 4 Visualization of Grad-CAM. In each pair of images, the left one is the visualization results
using the baseline network. The right one is the visualization results using the network inserted with
RMCSAM.

bones for processing a group of eight input images, which is
also a small overhead.

4.4 Analysis of Attention Capturing

In this subsection, we evaluate whether the proposed RM-

CSAM actually helps a network focus on discriminative vi-
sual information by two methods, namely visualization and
quantitative analysis. The experiments in this subsection are
implemented with the VGG11 model with batch normaliza-
tion.

First, we use Grad-CAM [51] to visualize the focus of
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Fig. 5 Attention precision with different thresholds

the networks. Grad-CAM uses the gradients of the predicted
category, flowing into the final convolutional layer to gener-
ate a heatmap highlighting the important regions in the im-
age for predicting the category. That is, the heatmap gener-
ated by Grad-CAM visualizes the “reason” why the network
“thinks” a given image belongs to a certain category. The vi-
sualization results are shown in Fig. 4. Compared with the
baseline network, the network inserted with RMCSAM fo-
cuses more on discriminative regions and objects.

Second, we quantitatively analyze the attention cap-
turing ability by attention precision. We first introduce the
definition of attention precision. The computation of atten-
tion precision starts from generating a heatmap Y ∈ RH′×W′

by Grad-CAM, which has the same spatial size as the in-
put image (RH′×W′×3). Regard Y as a set of pixels, namely
Y = {y(1,1), y(1,2), . . . , y(α,β), . . . y(H′,W′)}. Then Y is normal-
ized as:

y′(α,β) =
y(α,β) − min(Y)

max(Y) − min(Y)
(15)

After the normalization, each value of the heat map
ranges from 0 to 1. Then given a threshold λ (0 < λ < 1),
all the values larger than λ are set as 1, and all the values no
larger than λ are set as 0 as:

y′′(α,β) =

⎧⎪⎪⎨⎪⎪⎩
1, i f y′(α,β) − λ > 0

0, i f y′(α,β) − λ <= 0.
(16)

Thereafter, the attention precision AP is given as:

AP =
Nin

Nin + Nout
, (17)

where Nin denotes the total number of pixels locating inside
the manually labeled bounding box and having a value of 1.
Nout denotes the total number of pixels locating outside the
manually labeled bounding box and having a value of 1. The
manually labeled bounding boxes are officially provided by
the authors of the two datasets [30], [31]. The bounding

boxes are widely used as the ground truth in fine-grained
object detection or segmentation tasks [16], [52], [53].

The attention precision expresses the proportion of the
pixels the networks “consider” to be discriminative actually
are discriminative. We evaluate the attention precision with
different thresholds of 0.1∼0.9. The results are shown in
Fig. 5. Overall, the network inserted with RMCSAM has
much higher attention precision than the baseline. With the
increase of λ, the gap of attention precision between them
is getting wider and wider. A higher threshold selects the
pixels that have more contribution to the final prediction.
That is, the network inserted with RMCSAM tends to “con-
sider” a higher proportion of pixels inside the bounding box
as high-contribution pixels than the baseline.

4.5 Comparison with the State-of-the-Art Attention Mod-
ules in Fine-Grained Image Classification Task

In this subsection, we compare our proposed module with
other state-of-the-art attention modules in FGIC tasks. We
adopt Resnet50 as the backbone because it is the most
commonly used network backbone for analyzing the per-
formance of attention modules [24]–[27]. The results are
shown in Table 3. The best accuracy and lowest overhead
are highlighted in bold. Basically, the proposed attention
module outperforms the other ones in terms of classification
accuracy. The SE module [24], CBAM [27], and BAM [26]
require lower overhead than our proposed module, but the
accuracy of our proposed module is clearly higher than
theirs on both datasets. AFF [25] has the closest classifi-
cation accuracy to ours on both datasets but requires a little
more time cost and much more GFLOPs and parameters.

4.6 Comparison with the Previous Approaches in Fine-
grained Image Classification Task

In this subsection, we compare our proposed approach with
the approaches achieving state-of-the-art accuracy in FGIC
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Table 3 Comparison results with state-of-the-art attention modules in FGIC task

Accuracy Parameters GFLOPs Time Cost
CUB-200-2011 Stanford Cars

Resnet50+SE [24] 85.2% 93.9% 24.434M 16.439 52.487ms
Resnet50+AFF [25] 86.1% 94.1% 32.318M 17.676 54.294ms
Resnet50+iAFF [25] 85.6% 93.8% 34.423M 18.091 58.423ms
Resnet50+DAF [25] 85.8% 93.9% 28.108M 17.261 53.701ms
Resnet50+BAM [26] 85.7% 93.8% 24.998M 16.549 53.457ms
Resnet50+CBAM [27] 85.5% 93.4% 24.436M 16.440 53.322ms
Resnet50+RMCSAM (ours) 86.2% 94.2% 25.751M 16.449 54.100ms

Table 4 Comparison results with state-of-the-art approaches in FGIC task

Backbone Accuracy Parameters GFLOPs Time Cost
CUB-200-2011 Stanford Cars

GaRD [43] Resnet50 89.6% 94.3% 23.871M 18.589 17.848ms
DAM [42] Resnet50 87.5% 94.4% 23.508M 49.314 64.285ms
PCA-Net [33] Resnet50 88.3% 94.3% 21.270M 184.317 61.202ms
TransFG [38] ViT-B 16 [37] 91.7% 94.8% 85.762M 107.564 259.633ms
ACNet [41] Resnet50 88.1% 94.6% 197.264M 155.497 184.287ms
ProtoTree [40] Resnet50 87.2% 91.5% 24.032M 8.270 160.731ms
PMG [32] Resnet50 89.6% 95.1% 45.132M 37.316 20.913ms

RMCSAM Resnet50 86.2% 94.2% 25.751M 16.449 13.694ms
RMCSAM� Resnet50 87.2% 94.7% 25.751M 16.449 13.694ms
RMCSAM�+PCA-Net Resnet50 88.9% 95.0% 23.112M 184.384 72.143ms
RMCSAM�+PMG Resnet50 89.9% 95.3% 46.973M 37.328 25.904ms

* � illustrates the RMCSAM that is pre-trained on the ImageNet.
** In this table, the time cost is evaluated with a single image (i.e., a 1 × 3×448×448 tensor).

tasks. We use Resnet50 as the backbone because it is most
widely used in those studies [32], [33], [40]–[43]. As men-
tioned before, in previous subsections, we use the CNN
backbones pre-trained on the ImageNet, but the parameters
of the RMCSAM are initialized randomly. In this subsec-
tion, for better accuracy, we also present the experimental
results by using the RMCSAM parameters pre-trained to-
gether with the Resnet50 on the ImageNet, which is marked
as �.

The pretraining is trained from scratch and conducted
with the official Timm toolbox [54] on 2×Nvidia RTX 3080
Ti. We also train an original Resnet50 under the exact same
configuration as a baseline. We turn on automatic mixed
precision [55] and label smoothing [56]. We set the batch
size as 256 and train the networks using standard Stochastic
Gradient Descent (SGD) with the momentum of 0.9. We to-
tally train the networks on the ImageNet for 180 epochs. Re-
garding the learning rate schedule, we divide the 180 epochs
into 6 × 30 epochs. For the first 30 epochs, we train the
Resnet50 with/without the RMCSAM by the constant learn-
ing rate of 0.1 for the quick decrease of training loss. From
the second 30 epochs, we train the networks using cosine
annealing [57], and the starting learning rate for the second
30 epochs is 0.05. Then, for every 30 epochs, we restart the
cosine annealing schedule and decrease the starting learning
rate by 0.7. The training of the baseline Resnet50 and the
Resnet50 inserted with RMCSAM is conducted once. With
RMCSAM, the average accuracy of the last 10 epochs on
the validation set of the ImageNet is improved from 77.7%
to 78.5%. The best accuracy of the whole 180 epochs on the
validation set of the ImageNet is improved from 78.1% to

78.9%.
All the other experiments in this subsection follow the

general configuration of this paper. Namely, all the other
experiments in this subsection are reproduced for 10 times,
and we report the average accuracy. After the pre-training,
we use the weights of the pre-trained RMCSAM to replace
the randomly initialized RMCSAM weights for fine-tuning
on the fine-grained image classification datasets.

Moreover, as an insertable module that can improve
the accuracy of the backbone CNNs, our approach intu-
itively looks complementary to some state-of-the-art FGIC
approaches. It is possible to combine our approach with
other approaches for better accuracy. Specifically, we in-
sert the RMCSAM pre-trained on the ImageNet into the
Resnet50 backbones of PMG [32] and PCA-net [33]. For a
fair comparison, all the other parameters (including the pa-
rameters of the Resnet50 backbones) are initialized in the
same way as the original PMG or PCA-net.

The comparison in this subsection is conducted in
terms of both accuracy and computational costs. As many
state-of-the-art FGIC approaches require extremely huge
memory, such as [38], we test the time cost by process-
ing one 448 × 448 image (i.e., a 1 × 3 × 448 × 448 tensor)
to prevent the out-of-memory exception in this subsection.
The comparison results are shown in Table 4. The best ac-
curacy and lowest overhead are highlighted in bold. With
the RMCSAM pre-trained on the ImageNet and Resnet50
backbone, the accuracy of our approach is very close to
the state-of-the-art accuracy on the Stanford Cars and a lit-
tle behind the state-of-the-art accuracy on the CUB-200-
2011. TransFG achieves the best accuracy on the CUB-200-
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2011 but requires huge computational overhead regarding
the parameters, GFLOPs, and time cost. In contrast, our
approach requires much less overhead. Especially, our ap-
proach requires 13.694ms for processing a single image at
once, which is the least time cost among the approaches and
around 5.3% of the time cost of TransFG. Besides, our ap-
proach has the similar accuracy as TransFG on the Stanford
Cars.

Among the approaches, PCA-Net [33] has the fewest
parameters, and ProtoTree [40] has the fewest GFLOPs.
However, they require much more time cost than the pro-
posed approach, which is caused by the complex feature ex-
tracting and aggregating framework (PCA-Net) or the tree
architecture hardly parallelizable (ProtoTree). Besides, on
the Stanford Cars, our approach has better accuracy than
both PCA-Net and ProtoTree.

By combining with our approach, the accuracy is im-
proved by on both datasets. Especially, RMCSAM�+PMG
achieves 95.3% accuracy on Stanford Cars, which surpasses
the previous best accuracy on this dataset. It achieves 89.9%
accuracy on the CUB-200-2011, which surpasses the previ-
ous best accuracy obtained with Resnet50 backbone on this
dataset. Among the 10 times of repeated experiments of
RMCSAM�+PMG, the lowest accuracies are 89.7% (CUB-
200-2011) and 95.3% (Stanford Cars), while the highest ac-
curacies are 90.0% (CUB-200-2011) and 95.5% (Stanford
Cars). On both datasets, the highest, lowest and average ac-
curacies of RMCSAM�+PMG are better than the best ac-
curacies reported in [32], which shows our approach can
bring stable improvement over the original PMG. Consider-
ing that the accuracy of PMG, the state-of-the-art approach,
is already very high, it is interesting to see there is still room
for improvement by our proposed module.

5. Conclusion

We propose the recursive multi-scale channel-spatial atten-
tion module (RMCSAM), a new approach for capturing
attentional information in fine-grained image classification
(FGIC) tasks. RMCSAM is designed by following the pre-
vious experience that localizing multi-scale attention re-
gions is very effective for FGIC. However, instead of re-
gion localizing strategy, RMCSAM is designed as an in-
sertable attention module, which can capture channel-wise
and spatial-wise attention of multiple scales and accordingly
refine the deep feature maps to better correspond to the vi-
sual attention. The feature maps are recursively refined a
predetermined number of times to obtain the finer feature
map. In this way, RMCSAM requires a very small addi-
tional overhead. The experimental results show that the
multi-scale channel-wise and spatial-wise attention are com-
plementary, and aggregation of them brings better perfor-
mance. Besides, the recursive refinement can further im-
prove the accuracy. The experimental results also show
that RMCSAM can improve the classification accuracy of
widely used network backbones and is able to improve the
attention capturing ability. RMCSAM also outperforms

other attention modules in FGIC tasks. Moreover, our ap-
proach can be combined with PMG and PCA-Net frame-
work, which are state-of-the-art approaches in the FGIC
task, to further improve the accuracy.
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