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PAPER

Gene Fingerprinting: Cracking Encrypted Tunnel with Zero-Shot
Learning

Ding LI†a), Nonmember, Chunxiang GU†, Member, and Yuefei ZHU†b), Nonmember

SUMMARY Website Fingerprinting (WF) enables a passive attacker to
identify which website a user is visiting over an encrypted tunnel. Current
WF attacks have two strong assumptions: (i) specific tunnel, i.e., the at-
tacker can train on traffic samples collected in a simulated tunnel with the
same tunnel settings as the user, and (ii) pseudo-open-world, where the at-
tacker has access to training samples of unmonitored sites and treats them
as a separate class. These assumptions, while experimentally feasible, ren-
der WF attacks less usable in practice. In this paper, we present Gene Fin-
gerprinting (GF), a new WF attack that achieves cross-tunnel transferabil-
ity by generating fingerprints that reflect the intrinsic profile of a website.
The attack leverages Zero-shot Learning—a machine learning technique
not requiring training samples to identify a given class—to reduce the ef-
fort to collect data from different tunnels and achieve a real open-world.
We demonstrate the attack performance using three popular tunneling tools:
OpenSSH, Shadowsocks, and OpenVPN. The GF attack attains over 94%
accuracy on each tunnel, far better than existing CUMUL, DF, and DDTW
attacks. In the more realistic open-world scenario, the attack still obtains
88% TPR and 9% FPR, outperforming the state-of-the-art attacks. These
results highlight the danger of our attack in various scenarios where gath-
ering and training on a tunnel-specific dataset would be impractical.
key words: encrypted tunnel, website fingerprinting, user privacy, zero-
shot learning

1. Introduction

Website Fingerprinting (WF) is a traffic analysis attack with
the potential to breach the anonymity provided by encrypted
tunnels. WF exploits the unique patterns presented by each
website on network traffic, i.e., packet timings and sizes,
which can be learned by a classifier. The attack is per-
formed by a local eavesdropper who monitors the user’s en-
crypted traffic, e.g., a compromised wireless router or the
user’s ISP. The attacker trains a classifier with prerecorded
website traces and uses the classifier to identify visited web-
sites from observed traffic flows. Recent WF attacks utilize
neural networks to automatically extract features of com-
munication patterns, achieving more efficient and reliable
classification than traditional machine learning methods.

Despite the powerful capabilities of WF attacks, ap-
plying them in practice faces two major challenges. First,
the classifier should be able to identify traffic in encrypted
tunnels other than the one in which the training data is
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collected. This is important because collecting sufficient
training data in a tunnel setting is resource-consuming and
prolongs the time required to produce off-the-shelf classi-
fiers. Moreover, website traces may change over time due
to content updates, so attackers need to collect new datasets
frequently to avoid significant concept drift [1], [2]. The sec-
ond challenge is that the classifier identifying sites of inter-
est (monitored sites) in the open world should not require
training samples of other sites that the user might visit (un-
monitored sites). Such open-world attacks are not trivial,
as the classifier must be able to identify classes it has never
seen before.

In this paper, we consider a more realistic scenario as
depicted in Fig. 1. The attacker does not need to replicate
all possible encrypted tunnels in advance to collect training
data, nor does he crawl unmonitored sites to build an ap-
proximate open world. To achieve WF across encrypted tun-
nels, the attacker only needs to train the classifier with mon-
itored site traces collected in plain Ethernet. This scenario
requires the classifier to be capable of Zero-shot Learning
(ZSL), thus avoids the use of tunnel-specific samples from
both monitored and unmonitored sites. In particular, our in-
terest in ZSL is two-fold. Firstly, existing WF attacks have
poor transferability between tunnels. The size, number, and
timing of packets can be affected by the tunneling protocol
and algorithm, causing a classifier that is effective on one en-
crypted tunnel not to work on another [1], [3]. The user can
thus effectively mitigate the attack by regularly updating the
tunnel properties. Secondly, to determine a monitored site,
WF attacks require training on unmonitored traces. This
setting causes the attack performance to be sensitive to the
number and selection of unmonitored sites [4], [5]. Given
the actual size of the world of websites, these data-sensitive
attacks are virtually unusable in practice.

Fig. 1 Clients use various encrypted tunnels to enhance privacy, and a
passive attacker tries to identify the website the user is visiting.
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To the best of our knowledge, this paper presents the
first WF attack that leverages ZSL to reduce the labor of
time-consuming data gathering and model retraining tasks.
The Gene Fingerprinting (GF) attack involves a fingerprint
distance measure to enable cross-tunnel identification and
an adaptive thresholding function that exempts the reliance
on unmonitored traces. The attacker only needs to collect
monitored traces in a typical Ethernet channel to achieve
open-world classification across tunnels. By design, the at-
tack is robust to tunneling and network distortion. The main
contributions of this paper are as follows:

1. Using real-world traffic, we analyze the website fetch-
ing process, which inspires the idea of gene fingerprints
and explains why existing WF attacks become less ef-
fective when using trained models to classify traces
collected from different tunnels.

2. We propose Gene Fingerprinting (GF), a more practi-
cal WF attack that enables cross-tunnel classification in
a more realistic open-world. The attack makes full use
of packet timing and size information to create website
fingerprints. Based on our distance measure and adap-
tive thresholds, the intrinsic features are shared among
different tunnels to identify the monitored sites.

3. We build seven real-world traffic datasets, including
website traces collected over three well-known en-
crypted tunnels. Based on these datasets, we demon-
strate the ZSL capability of our GF attack by com-
paring it with three state-of-the-art methods in both
closed- and open-world evaluations.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the motivation of our work, including
previous studies, website gene fingerprints, and zero-shot
learning techniques. In Sect. 3, we introduce our Gene Fin-
gerprinting attack, while in Sect. 4, we describe our exper-
imental setup and report our evaluation results. Section 5
discusses countermeasures and possible future directions of
our attack, and finally, in Sect. 6, we conclude the paper.

2. Motivation

In this section, we first briefly introduce related research in
traffic analysis and especially website fingerprinting. Then,
we anatomize the website fetching process in both typical
Ethernet channels and encrypted tunnels, which motivates
us to establish the intrinsic representation of websites as
well as our Gene Fingerprinting (GF) attack. We present
the detailed design of GF in Sect. 3.

2.1 Prior Work

Traffic analysis is the process of deducing sensitive infor-
mation from communication patterns, which can be per-
formed on encrypted network traffic. An attacker trains a
machine learning classifier by feeding traffic traces of in-
terest and then utilizes the classifier to deduce informa-
tion from observed traffic, including applications [6]–[9],

malware [10]–[12], keyboard input [13]–[15], and even spo-
ken phrases [16]–[18]. Unlike research in computer vi-
sion, traffic analysis suffers from the difficulty of acquir-
ing large amounts of labeled data. To address the problem,
many studies have proposed methods based on unsuper-
vised learning [19]–[21] or semi-supervised learning [22]–
[25]. However, these methods, especially unsupervised
clustering techniques, do not provide precise and clear in-
sights into the produced output. Essentially, a (small)
amount of labeled data is still required to achieve accurate
classification. This paper focuses on supervised learning al-
gorithms and addresses the data-dependent problem through
zero-shot learning.

Particularly, Website Fingerprinting (WF) attack is a
traffic analysis technique that enables a local passive eaves-
dropper to recognize the patterns of visited websites. WF
was first identified as a threat in 2002 when Hintz success-
fully broke the privacy provided by an outdated encrypt-
ing proxy [26]. Later, more studies have applied WF at-
tacks against specific tunneling proxies like OpenSSH [27],
Shadowsocks [3], OpenVPN [28], and Tor [5], [29], [30].
For each tunnel, WF attacks have employed various fea-
tures as the website representations. Early studies extract
a group of fine-grained statistical features from network
traces [29], [30]. However, these features provide rela-
tively low accuracy and are susceptible to tunneling and
network distortions. Subsequent work instead adopts se-
quence features derived from packet size [4], timing [31],
or direction [5]. Based on the features, WF attacks recog-
nize website traces by training a classifier, such as Naive
Bayes [27], [28], Support Vector Machine (SVM) [4], [29],
k-Nearest Neighbor (k-NN) [30], [31], etc. Recent ad-
vances in WF leverage convolutional neural network (CNN)
to design classifiers that have achieved up to 98% accu-
racy [2], [5].

Although existing WF attacks have achieved fairly high
accuracy, it remains a challenge to (i) improve the transfer-
ability of classifiers under different tunnel settings and to
(ii) identify monitored sites without the training of unmoni-
tored traces. In 2019, Sirinam et al. [32] took a step forward
on the first issue. Based on the DF model from their previ-
ous work [5], they effectively reduced the attack preparation
time through N-shot Learning. Nonetheless, this method
still requires training data collected from a specific tunnel.
Rimmer et al. [2] tackled the second issue by introducing
a confidence threshold. Specifically, they used a simplified
version of the DF model to identify unmonitored sites based
on the output cross-entropy and a preset threshold. How-
ever, this single threshold neglects the inherent differences
between monitored sites. In this paper, we address these is-
sues by proposing GF, a novel WF attack that extracts more
intrinsic features of websites and achieves zero-shot learn-
ing in a more realistic setting. As we will show, our scheme
outperforms existing WF attacks in terms of cross-tunnel
classification accuracy and open-world error rates. A sum-
mary of the prior work and a comparison with our proposed
GF attack is shown in Table 1.
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Table 1 Summary of prior work on website fingerprinting attacks and comparison with our proposed
attack. CW and OW refer to closed-world and open-world, respectively.

Author
Tunnel Type

Features Classifier Sites
CW Cross Real

Training Testing Acc. Tunnel OW
Liberatore [27] SSH SSH packet size count Naive Bayes 1000 75.0%
Herrmann [28] SSH, VPN SSH, VPN packet size frequency Multinomial Bayes 100 94.9%

Wang [30] Tor Tor
packet size statistics,

k-NN 100 91.0%
packet ordering

Panchenko [4] Tor Tor
cumulative packet size,

SVM 100 91.4%
packet size statistics

Feghhi [31] Ethernet Ethernet packet timing sequence DTW+k-NN 100 95.0%

Zhao [3] Shadowsocks Shadowsocks
packet size/timing statistics,

Random Forest 100 98.1%
packet ordering

Rimmer [2] Tor Tor packet direction sequence CNN (3 Conv, 1 Dense) 900 94.3%
Sirinam [5], [32] Tor Tor packet direction sequence CNN (8 Conv, 3 Dense) 95 98.3%

This work Ethernet
SSH, VPN, packet timing sequence,

DTW+k-NN 100 97.1%
Shadowsocks cumulative packet size

Fig. 2 Client-server interactions for fetching Baidu in an Ethernet channel (top) or through an en-
crypted tunnel (bottom).

2.2 Anatomy of a Website

When a user visits a website, the browser needs to request
various resources, such as stylesheets, scripts, images, etc.
Due to the diversity of website content, the number, size and
order of resources loaded varies from site to site. We divide
the fetching process into three stages based on the resource
level. Taking Baidu as an example, the process is illustrated
schematically in Fig. 2.

1. Index Page. The first stage is to request the index page
of the website. To do this, the client first establishes
a TLS connection with the primary server and then
fetches the page file by sending an HTTP request.

2. Index Resources. The second stage is to request re-
sources referenced in the index page. To improve
page load speed, web developers usually place these
resources on different servers and implements the
HTTP/2 protocol to support multiplexing requests.
As a result, the client establishes TLS connections
with multiple servers and requests index resources in
parallel.

3. Second-level Resources. The last stage is to request
resources referenced in the index resources. These re-
sources are not requested until the browser has parsed
the index resources, so there is a temporal pause be-

fore this stage begins. Since there is no time conflict
with the previous stage, web developers tend to put
second-level resources on the same servers as the in-
dex resources.

When traffic passes directly through a typical Ethernet
channel, the TLS ClientHello message exposes the plain-
text Server Name Indication (SNI). A passive attacker can
accurately identify the website by analyzing the name and
number of servers connected by the client. However, when
traffic is carried over an encrypted tunnel, all plaintext infor-
mation, including the server name, is protected. In addition,
because data transfers are multiplexed over a single connec-
tion, the address and number of servers are also hidden. An
attacker sniffing traffic on the encrypted tunnel can therefore
only observe the timing, direction, and size of packets, i.e.,
a sequence of triples {(ti, di, si)} for i ∈ [1 : n] where ti is
the timestamp when the ith packet is observed, di ∈ {in, out}
indicates whether it is an incoming or outgoing packet, and
si is the byte size of the packet, which can be the payload
size of any visible packet layer.

2.3 Gene Fingerprint

To gain insight into the website fetching process, we record
the HTTP Archive† while capturing the packet traces. Fig-

†A JSON file logging the browser’s interaction with a website.
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Fig. 3 Visualized correlation between website resources and traffic fin-
gerprints extracted from packet traces.

ure 3 plots the correlation between website resources and
incoming traffic. The x-axis indicates the relative timestamp
of resource load completion or packet arrival, and the y-axis
the cumulative size of requested resources or packet pay-
load. It can be seen that the curves of packet cumulative size
coincide with the website resources, and the growth trend of
the curves highly corresponds to the three stages of the web-
site fetching process. This observation motivates our inter-
est in whether these curves, which we call gene fingerprints,
can de-anonymize website traffic in encrypted tunnels.

Prior research [4] has made use of both outgoing and
incoming traffic to extract cumulative representations of
traces. However, our experiments on the use of outgoing, in-
coming and bidirectional traffic suggest that outgoing traffic
provides no performance boost regarding trace patterns over
incoming traffic. The reason is that most HTTP requests
contain no payload data (HTTP message body), resulting in
extremely similar sizes between websites. Moreover, client
diversity factors, such as browsers, operating systems, and
devices, have been shown to have significant impacts on
the performance of WF attacks [33]. We therefore zero the
outgoing packet size to eliminate the client-side differences
while preserving the timing information.

The question now is which packet layer is most suit-
able for extracting gene fingerprints. As shown in Fig. 3,
the profile of TLS record best matches the loaded resources,
with the subtle difference being the 5-byte header; the pro-
file of TCP payload is higher because the payload contains
additional handshake data for establishing a TLS connec-
tion; the profile of IP data differs from the inner layer by the
extra TCP header. In an encrypted tunnel, an attacker cannot
obtain the size of the TLS record because the TLS header
containing the length field is protected. On the other hand,
proxies working at the session layer do not encapsulate TCP
headers. Considering the above constraints, we finally take
TCP payload as the source to derive fingerprints.

Based on the above analysis, the gene fingerprint of
a given website trace b = {(ti, di, si)}, i ∈ [1 : n] can be
described as G(b) = {g(ti)}, where

g(ti) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, for i = 0,
g(ti−1), for i > 0 and di = out,
g(ti−1) + si, for i > 0 and di = in.

(1)

Distinguishability Across Websites. In Fig. 4 (a), we visu-
alize the fingerprints of five popular websites. As we can
see, different websites can be well distinguished even by
the human eye, and the fingerprints of the same website are
consistent in terms of growth trend and pause position, with
slight differences in temporal progression. The loading be-
havior of Dangdang, a shopping site that exhibits various
recommended products, shows a more significant variation
due to several resources of dynamic images.

Uniformity Across Tunnels. In Fig. 4 (b), we visualize
the fingerprints of the same site generated with three well-
known tunneling tools. The fingerprints remain highly con-
sistent in each respective tunnel. The cross-tunnel variations
stem from the data encapsulation format and the request
method: OpenSSH and Shadowsocks work at the session
layer (Layer 5 of the OSI model), but SSH pads packets
to an eight-byte boundary [34], which hides the exact size
of the encapsulated data; Shadowsocks prolongs the request
because it creates new TCP connections for every SOCKS5
address (including ports) [35]; OpenVPN works at the net-
work layer (Layer 3 of the OSI model) and encapsulates
the entire IP packet. The difference between tunnels varies
the amount of payload that a packet of the same size can
carry, resulting in a change in packet size and number. This
is the root reason why WF attacks that use statistical fea-
tures [4], [30] or sequence features [5], [31] fail to classify
websites across tunnels.

2.4 Zero-Shot Learning

WF attacks have proven to be effective in de-anonymizing
website traffic in encrypted tunnels [27]–[31]. However, tra-
ditional WF attacks require a large number of labeled sam-
ples used for training the classifier, and a model can only
make predictions for classes observed during training. This
form of learning contrasts with what we usually think of as
intelligence. For example, a human fingerprint can be iden-
tified among thousands of different fingerprints after learn-
ing a few instances, and this ability responds to all angles
and distortions. As we analyzed in Sect. 2, current WF at-
tacks are unable to do this. This is a key challenge for WF:
How can we build a model that does not rely on unmonitored
traces and remains effective under various tunnel settings?
This challenge has sparked our interest in implementing the
Zero-shot Learning (ZSL) technique [36], [37].

ZSL is an emerging ML procedure in which the classes
covered by training samples and the classes intended for
classification are disjoint. ZSL tries to recognize an un-
seen class by combining features of trained classes, which
requires intrinsic features that can be shared among similar
classes. In terms of WF, the gene fingerprints we designed
adequately meet this requirement. Based on ZSL, we aim to
achieve two improved attack goals, as shown in Fig. 5. We
summarize the key differences between ZSL and traditional
WF attacks as the following:

• Traditional WF attacks focus on traffic features in spe-
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Fig. 4 Visualized fingerprints of (a) Ethernet samples of five websites, and (b) Baidu samples in
Ethernet and three tunnels. Different groups are shifted to avoid overlap.

Fig. 5 Two improved attack goals based on zero-shot learning (ZSL).

cific tunnels. Although achieving high accuracy, such
a classifier is less portable under different tunnel con-
ditions. In contrast, our ZSL model is trained to learn
the traffic features of websites shared across tunnels.

• Traditional WF attacks aim to predict a class within
the set of training samples. This requires the training
set for an open-world classifier must include unmoni-
tored traces. By contrast, the model in ZSL is trained
to measure the similarity between objects and thus can
determine a monitored site by setting a threshold.

3. Methodology

In this section, we implement our Gene Fingerprinting (GF)
attack by exploiting the consistent nature of gene finger-
prints. The attack leverages ZSL to achieve the two im-
proved attack goals described in Sect. 2.4. Suppose we have
two sequences of fingerprints G(b) = (g(t1), g(t2), · · · , g(tn))
and G(b′) = (g(t′1), g(t′2), · · · , g(t′m)) (defined in Sect. 2.3) of
length n and m respectively. To achieve ZSL, we need to
measure the similarity between non-tunneled and tunneled
fingerprints effectively.

3.1 Tunneling and Network Distortion

As analyzed earlier, when loading a website through an en-
crypted tunnel, the network traffic is distorted by the tunnel
proxy. The size and number of tunnel packets are affected by
the data encapsulation format. There are primarily two types
of data encapsulation. The first is session-oriented encap-
sulation, where the proxy encapsulates objects of a session
request or response, such as messages in SSH channels [38]
and data streams in Shadowsocks [35]. Due to encryption,
we cannot determine the session boundaries from tunneled
traffic. However, the increased number of bytes is usually
negligible compared to the resource size, thus causing little
distortion to the fingerprint.

The second type is packet-oriented encapsulation: for
session-layer proxies, each data stream segment is packed
with a few bytes of metadata; for network-layer proxies, the
entire IP packet is wrapped into a new header. Regardless
of the proxy type, we can roughly determine the number of
extra bytes for encapsulation based on a priori knowledge of
the tunneling protocol. If packets are encapsulated with ran-
dom padding, such as SSH, we use the median of possible
padding sizes as an approximation. From this, we decapsu-
late each packet (minus the number of encapsulation bytes)
before extracting fingerprints.

The timing of tunneled packets is affected by net-
work conditions. Network jitter may cause packets to ex-
perience greater delays or be more crowded together [39].
The proxy’s tunneling behavior (e.g., multi-connections in
Shadowsocks) and bandwidth limitations can also affect
packet timing, tending to extend the time between packets.
We therefore need a measure of distance between finger-
print sequences that is insensitive to stretching/compression
in the time dimension and can be expected to accommodate
temporal differences across tunnels.

3.2 Dynamic Time Warping

Dynamic Time Warping (DTW) was initially used to com-
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Fig. 6 DTW alignment and warping path example of two Baidu fingerprints, with sampling interval
δ = 20 ms and window scale w = 0.2.

pare different speech patterns in automatic speech recogni-
tion [40]. It has the advantage of automatically coping with
time distortions of sequence data. Intuitively, DTW is well
suited to measure the similarity between gene fingerprints.
However, a practical obstacle is that the length of finger-
print sequences is related to the packet number (which can
be enormous for a content-rich website). Since DTW needs
to calculate the cost between each element pair in two se-
quences, a direct comparison of fingerprints can be very
time-consuming.

To address the issue, we borrow the idea of signal pro-
cessing and define a new representation of gene fingerprints
by sampling them at a fixed time interval. This significantly
improve the computational efficiency while preserving the
timing and size information. Let δ denotes the sampling
interval for the fingerprint G(b) = (g(t1), g(t2), · · · , g(tn)),
then the new representation can be described as the sequence
G(b) = {g(t)} of length �tn/δ� + 1, where

g(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, for t = 0,
max
ti≤t
g(ti), for t = δ, 2δ, · · · , �tn/δ�δ. (2)

Unless otherwise stated, we use G(b) to represent the gene
fingerprint of website trace b. The concrete process of gene
fingerprint generation is described in Algorithm 1.

We define a sequence alignment that maps points from
one fingerprint to another such that the start and end points
match and the points are monotonically increasing. Such
an alignment can be described as a warping path, which
is a sequence p = (p1, p2, · · · , pl) with pk = (xk, yk) ∈
[1 : n] × [1 : m] for k ∈ [1 : l] satisfying (i) bound-
ary condition: p1 = (1, 1), pl = (n,m), and (ii) step-wise
condition: (xk+1 − xk, yk+1 − yk) ∈ {(1, 0), (0, 1), (1, 1)} for
k ∈ [1 : l − 1]. Further, we use the Sakoe-Chiba Band [40]
with the window scale w to constraint the warping path. That
is, the warping path p must run along the main diagonal with
|xk − yk | ≤ wmin{n,m} for k ∈ [1 : l].

The degree of alignment is assessed by the cost of
a warping path, defined as C(p) =

∑l
k=1 c(xk, yk) where

c(xk, yk) is the element-wise cost for aligning points g(xk ·

Algorithm 1: Generating Gene Fingerprints
Input : b = {(t1, d1, s1), · · · , (tn, dn, sn)}– website trace

δ – sampling interval
Output : G(b) = {g(t)} – gene fingerprint of b

1 P← data encapsulation protocol of b
2 if P is tunneling protocol then
3 ΔP ← number of packet encapsulation bytes
4 for packet (ti, di, si) in trace b do
5 si ← si − ΔP

6 original fingerprint g(t0)← 0
7 for packet (ti, di, si) in trace b do
8 if di = out then
9 g(ti)← g(ti−1)

10 else if di = in then
11 g(ti)← g(ti−1) + si

12 sampled fingerprint g(0)← 0
13 for sample point j ∈ {1, 2, · · · , �tn/δ�} do
14 g( jδ)← max

ti≤ jδ
g(ti)

15 return {g(t)}

δ) and g(yk · δ). We follow the convention and use the
Euclidean distance as the element-wise cost. On this basis,
we define the distance between fingerprints as the cost of the
optimal warping path, i.e., D(b, b′) = minp∈P C(p), where P
is the set of all warping paths between fingerprints G(b) and
G(b′). As shown in Fig. 6, the optimal warping path runs
along a low-cost “valley” that corresponds to the optimal
alignment between two fingerprints. Note that we also tried
the F-distance [31], which is based on the estimated curve
derivatives. However, we found this distance unsuitable for
gene fingerprints because the download rate is susceptible
to network distortion, especially in encrypted tunnels.

3.3 Exemplar and Adaptive Thresholding

Based on the distance measure D(b, b′), we use the k-
Nearest Neighbors (k-NN) classifier to identify website
traces. Although we can use other classifiers such as
Naive Bayes, SVM, CNN, etc., a preliminary study indi-
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Fig. 7 GF training (top) and inference (bottom) phases.

cated that k-NN outperforms other classifiers for this pur-
pose. For each website w and its Ethernet trace set Bw, we
rank the training samples b ∈ Bw based on sum-distance
∑

b′∈Bw D(b, b′) and elect n exemplars with the lowest sum-
distance to represent this site. Given a testing sample, we
sort its distance to the exemplars of all websites in ascend-
ing order. The class of the sample is then determined by the
majority vote among the top k exemplars. If a tie occurs, the
class with the lowest total distance wins.

Note that the closed-world scenario assumes that the
user can only visit websites that the attacker has trained on,
i.e., monitored sites. In the more realistic open world, how-
ever, the user is allowed to visit any website that the attacker
has not been able to train on, i.e., an unmonitored site. This
leads to a high probability that the attacker will get incorrect
labels predicted by the k-NN classifier because he does not
have prior knowledge of the complete set of unmonitored
sites.

To achieve ZSL in the open world, we additionally de-
fine an adaptive threshold to distinguish between monitored
and unmonitored sites. For each website w, we calculate the
within-class min-distance Din(b) = minb′∈Bw D(b, b′) and
out-of-class min-distance Dout(b) = minb′�Bw D(b, b′) for
each training sample b ∈ Bw and take the average of the
ρ quantile of {Din(b)} and the (1 − ρ) quantile of {Dout(b)}
as the threshold for this site, where ρ ∈ [0, 1] is a hyper-
parameter. When the distance from a testing sample to the
nearest exemplar is less than the corresponding threshold,
we classify it as a monitored site; otherwise, it is an unmon-
itored site. The detailed GF training and inference processes
are described in Algorithm 2 and Algorithm 3, respectively.

3.4 Attack Implementation

We now explain the step-by-step implementation of our GF
attack. As shown in Fig. 7, this includes the ZSL training
and inference phases for both closed- and open-world sce-
narios. The workflow of the training phase is as follows:

1. The attacker collects traffic samples from each of the
monitored sites in a common Ethernet channel.

2. According to Algorithm 1, the collected samples are
processed by feature extraction and time sampling to

Algorithm 2: Gene Fingerprint Training
Input : B – set of Ethernet traces of monitored sites

W – set of monitored sites
n – number of exemplars
ρ – thresholding quantile for the open world
Q(·, ·) – quantile function

Output : E – set of elected exemplars
T – set of adaptive thresholds for the open world

1 E ← ∅, T ← ∅
2 for website w ∈ W do
3 for website trace b ∈ Bw do
4 Dsum(b)← ∑b′∈Bw D(b, b′)
5 Din(b)← minb′∈Bw D(b, b′)
6 Dout(b)← minb′�Bw D(b, b′)
7 Ew ← top n traces with the smallest Dsum

8 Tw ← (Q({Din}, ρ) + Q({Dout}, 1 − ρ))/2
9 E ← E ∪ Ew

10 T ← T ∪ {Tw}
11 return E, T

Algorithm 3: Gene Fingerprint Inference
Input : b′ – tunnel trace to be classified

E – set of elected exemplars
k – number of nearest neighbors
T – set of adaptive thresholds for the open world

Output : c – predicted class label of b′

1 for website trace b ∈ E do
2 Dmin(b)← D(b, b′)
3 if in the closed world then
4 E′ ← top k traces with the smallest Dmin

5 c← majority of trace labels in E′
6 if |c| > 1 then
7 c← label of traces in E′ with the smallest

∑
Dmin

8 else
9 b← trace with the smallest Dmin

10 w← trace label of b
11 if D(b, b′) < Tw then
12 c← monitored site

13 else
14 c← unmonitored site

15 return c

generate gene fingerprints.
3. According to Algorithm 2, the extracted fingerprints

are elected to generate n exemplars for each website,
and these exemplars are used to train a k-NN classifier.
In the open world where the victim can access any un-
monitored site, the attacker also computes the adaptive
threshold for each monitored site.

With the elected exemplars and the derived adaptive
thresholds, the inference phase proceeds as follows:

1. The passive attacker captures a traffic sample on the
link between the victim and the proxy.

2. According to Algorithm 1, the tunnel traffic sample
goes through packet decapsulation, feature extraction,
and time sampling to generate an unknown gene finger-
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Table 2 Evaluation datasets. Each traffic sample in CSV format consists of raw packet features of
timestamp, direction, and payload size. The number of features is taken from the sampled fingerprints.

Dataset Tunnel Site Type Sites Visits
File Size # of Features (p=20ms) Purpose Scenario

PCAP CSV Max. Min. Ave. Train Test CW OW
MS-ETH Ethernet Monitored 100 10 5.28 GB 151 MB 459 10 88.6
MS-SSH OpenSSH Monitored 100 10 5.38 GB 159 MB 462 10 93.8

UMS-SSH OpenSSH Unmonitored 100 10 7.28 GB 210 MB 471 6 151.6
MS-SS Shadowsocks Monitored 100 10 5.44 GB 174 MB 439 15 135.4

UMS-SS Shadowsocks Unmonitored 1709 1 7.45 GB 238 MB 461 13 181.2
MS-VPN OpenVPN Monitored r 1709 1 5.73 GB 184 MB 451 10 99.2

UMS-VPN OpenVPN Unmonitored 1709 1 8.04 GB 262 MB 471 1 151.5

print.
3. According to Algorithm 3, the attacker uses the trained

k-NN classifier to predict a label for the unknown fin-
gerprint. If the attacker is uncertain whether the target
is a monitored site, he first uses the open-world classi-
fier to predict a (un)monitored label.

4. Evaluation

In this section, we investigate the performance of the GF at-
tack with respect to the desired attack goals. To this end, we
create a series of traffic datasets and compare our approach
with the state-of-the-art WF attacks.

4.1 Data Collection

To the best of our knowledge, existing publicly available
datasets of web traffic are collected from specific tunnels, so
we need to re-collect data from different tunnels to verify
our attack goals. We select websites from the top 2000 sites
ranked by Alexa Top in May 2021 [44]. After pruning sites
that fail to load, there are 1809 valid websites, among which
952 use HTTPS by default. Prior works [1], [2], [45] have
proved that it is difficult for WF attacks to classify websites
that contain dynamic content, such as updating videos and
randomized recommendations. For this reason, we take the
top 100 sites without dynamic content as monitored sites
and the remaining 1709 as unmonitored sites. Note that un-
monitored sites in our setup are only used for testing, and
therefore are not required to reach the million level to sup-
port open-world training.

The data collection was performed in a setting where
the client is a Windows 10 20H2 desktop machine, and the
proxy is an Ubuntu 20.04 cloud server with kernel version
5.8.0 located in a different city. We created encrypted tun-
nels using three well-known tunneling tools, with the de-
fault settings as shown in Table 3. On the client, we used
SeleniumWebDriver to drive the Chrome browser (version
90.0) to visit websites. This allows for more realistic crawls
than using command-line tools because the WebDriver sim-
ulates the browsing behavior of a real user. We captured
traffic generated by each visit separately using tshark. The
tunnel packets in each traffic sample are represented as a se-
quence of triples (timestamp, direction, payload size) and
saved into a CSV file. Finally, we created seven traffic
datasets, the detailed descriptions of which are shown in Ta-

Table 3 Tunnel settings for collecting website traffic.

Tunnel Client Proxy Ciphersuite
OpenSSH [41] windows 8.1p1 8.2p1 chacha20-poly1305

Shadowsocks [42] windows 4.4.0 libev 3.3.4 chacha20-ietf-poly1305
OpenVPN [43] connect-3.2.3 as 2.8.7 AES-256-GCM

ble 2.
Note that our datasets differ from existing WF datasets

collected from specific tunnels [2], [5], [27], [30]. Classi-
fiers trained and tested on data with the same distribution
are susceptible to overfitting, a phenomenon in which a clas-
sifier performs well on the training data but has poor per-
formance when new data arrives. Current studies address
the problem by creating non-overlapping validation sets us-
ing stratified splitting [2], [5] or cross-validation [4], [31].
In contrast, our training and testing datasets are indepen-
dent, i.e., the training data come from the Ethernet channel,
and the testing data are from different visits in three non-
Ethernet tunnels. Such datasets inherently avoid overfitting
due to similar data distributions and are designed to evaluate
the ZSL capability between tunnels. Therefore, we do not
need to split the training set to obtain exclusive validation
sets.

4.2 Compared Methods

To comprehensively understand the performance of our GF
attack, we have selected three representative WF attacks for
comparison and re-evaluate these methods on our datasets.

• CUMUL [4]: CUMUL attack uses an SVM to classify
a set of 104 manually selected features. Specifically, a
sequence of the cumulative sum is computed by adding
the incoming packet sizes and subtracting the outgoing
packet sizes. The final feature set contains 100 points
interpolated from the sequence and four statistical fea-
tures of the total number of bidirectional packets and
bytes. Although the number of features is comparable
to our GF attack (as shown in Table 2), the features
selected by CUMUL tend to characterize the website
traffic in specific tunnels.

• DF [5]: Deep Fingerprinting (DF) is a recent attack us-
ing a deep CNN model. The model takes the sequence
features of the first 5000 packet directions as input and
utilizes convolutional layers to extract latent features
automatically. We follow the hyperparameter selection
process for DF to achieve its best performance. While
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Fig. 8 Closed-world. (a) Impact of sampling interval δ and the number of nearest neighbors k on
classification accuracy. (b) Comparison of classification accuracy.

the studies [2] and [32] take a step forward on the two
improved attack goals, they use a CNN model similar
to DF. Therefore, we compare these two works by eval-
uating the DF attack instead.

• DDTW [31]: This attack makes use only of packet tim-
ing information. The timestamp sequences of outgoing
packets are first aligned using the Derivative DTW al-
gorithm [46]. Based on the F-distance derived from
the optimal warping path, the attack uses a k-NN clas-
sifier to identify websites. On our MS-ETH dataset,
DDTW extracts an average of 2118 features from each
traffic sample, which makes inference time-consuming.
Nevertheless, since the attack discards packet size fea-
tures, it is impervious to various padding mechanisms
and has the potential to transfer between different
tunnels.

4.3 Closed-World Evaluation

We start by evaluating the attack performance in the closed-
world scenario, where the user can only visit the monitored
sites. We use classification accuracy as the performance
metric. The classifier for each attack is trained on the MS-
ETH dataset and tested on the MS-SSH/SS/VPN datasets.

We first conduct an extensive search for the hyperpa-
rameters in GF to achieve the best performance. The model
is less prone to overfitting during hyperparameter tuning be-
cause the training and testing data are independent, i.e., col-
lected from different tunnels and have varying data distribu-
tions. The impact of sampling interval δ and the number of
nearest neighbors k is presented in Fig. 8 (a), with window
scale w = 0.6 and exemplar number n = 6. The convexity
of the curves reflects the fact that a too-small δ can lead to
overfitting, while a large δ will lose fingerprint information.
We finally determine δ = 20 ms (50 samples per second)
and k = 1 to reach a balanced accuracy for each tunnel.

Figure 8 (b) shows the accuracy results. Our GF at-
tack attains at least 94.1% accuracy, which is better than
the other attacks and shows good cross-tunnel transferabil-
ity. These results expose the limitations of previously re-

ported attacks that achieved high accuracy in the same tun-
nel where they trained the classifier. Although CUMUL
uses similar features to GF and achieves comparable ac-
curacy in Shadowsocks, the statistical features degrade the
transferability across tunnels. As analyzed in Sects. 2.3 and
3.1, data encapsulation in OpenSSH and OpenVPN signif-
icantly changes network traffic statistical features such as
the total number of packets, resulting in WF attacks em-
ploying these features that fail to achieve ZSL in the corre-
sponding tunnels. The deep learning-based DF attack only
achieves an average accuracy of less than 60%, highlighting
that packet direction sequence features alone are insufficient
to support cross-tunnel identification. While DDTW that
uses packet timing sequence features achieves 66.7% accu-
racy in OpenVPN, it has even worse performance (<50%)
in other tunnels. This indicates that the timing information
of the tunneled packets is severely distorted and cannot cap-
ture the website’s inherent features. Overall, the experimen-
tal results demonstrate that the features exploited by existing
WF attacks are inconsistent across different tunnel settings;
our proposed GF attack utilizes the intrinsic website traffic
features to achieve cross-tunnel identification of monitored
sites.

4.4 Open-World Evaluation

We now evaluate the performance of the WF attacks in the
more realistic open-world scenario, where the user can visit
all websites on the Internet, and the attacker tries to deter-
mine whether the web trace is monitored or unmonitored.
Considering this is a binary classification task, we use true
positive rate (TPR), false positive rate (FPR), and precision
as performance metrics. Classifiers are trained on the MS-
ETH dataset and tested on a combination of monitored and
unmonitored datasets (e.g., MS-SSH+UMS-SSH). It is im-
portant to note that unmonitored site samples, in contrast to
the setup in previous studies [4], [5], [30], are not included
in the training set.

In the open world, our adaptive thresholds naturally
turn the model into a 1-NN classifier, i.e., prediction based
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Fig. 9 Open-world. (a) Impact of thresholding quantile ρ on FNR and FPR. (b) Impact of the number
of unmonitored testing websites on FPR.

Table 4 Open-world attack performance. WF attacks are tested on a combination of monitored (MS)
and unmonitored (UMS) datasets for each tunnel.

Attack
OpenSSH Shadowsocks OpenVPN

TPR FPR Pre. TPR FPR Pre. TPR FPR Pre.
GF 88.7% 9.3% 84.9% 80.9% 7.7% 86.1% 89.5% 10.5% 83.3%

CUMUL 40.6% 26.5% 47.3% 75.1% 32.7% 57.3% 51.1% 17.2% 63.5%
DF 51.5% 36.1% 45.5% 42.6% 34.0% 42.3% 45.5% 51.1% 34.3%

DDTW 29.9% 5.6% 75.9% 12.6% 4.9% 60.3% 51.2% 9.8% 75.4%

on the nearest neighbor. We have verified the good perfor-
mance of the classifier when k = 1. Like hyperparameter
tuning in the closed world, the training and testing datasets
are independent and thus avoid overfitting. Figure 9 (a)
demonstrates the impact of the optimal thresholding quan-
tile ρ on the error rates, indicating that thresholding with
ρ = 0.9 yields balanced false negatives and false positives,
where the FPR for each tunnel is kept at about 9%.

We examine the cases in which classification fails, i.e.,
false negatives and false positives. A false negative occurs
when a monitored site trace is missed, and a false positive
occurs when a traffic trace is incorrectly labeled as a mon-
itored site. We find that false negatives in OpenSSH and
Shadowsocks are due mainly to some high-volume web-
sites that generate a large number of short sessions, such
as 3dmgame and Zhibo8. Since session boundaries are in-
visible in tunnel traffic, the accumulated session header size
distorts the gene fingerprint in tunnels. There are also quite
a few failures in Shadowsocks due to retransmitted pack-
ets triggered by tunneling delays. Another part of false
negatives regardless of the tunnel is resulted from inconsis-
tent website content over multiple visits, such as Sina and
Kdslife. For false positives, we find that the incorrectly pre-
dicted sites are highly overlapping across tunnels, and these
failure cases are due to the fingerprint distance D(b, b′) be-
ing too close from the unmonitored site to the exemplar.
Although the DTW algorithm can handle fingerprint differ-
ences introduced by time distortions, it is difficult for GF to
distinguish unmonitored sites with similar fingerprints to a
particular monitored site.

To directly compare with the other attacks, we imple-
ment the same adaptive thresholding with ρ = 0.9 in each

attack using respective similarity measures, i.e., prediction
confidence in CUMUL and DF, and F-distance in DDTW.
We first investigate how the error rates can be affected by
the number of unmonitored testing websites. As shown in
Fig. 9 (b), the FPR tends to increase as the number of un-
monitored sites increases for all the WF attacks. DF and
DDTW have FPRs at the two extremes, indicating that the
packet direction and timing sequences have the worst and
best distinguishability in the feature space, respectively. In
comparison, GF exploits packet size and timing information
and holds a low FPR close to that of DDTW. In Table 4, we
report the attack performance in the open world. The results
show that GF consistently performs the best on both TPR
and precision, with at least 80.9 % TPR and 83.3 % preci-
sion for 1,709 unmonitored testing sites. Although GF has a
slightly higher FPR than DDTW, it maintains a reasonable
maximum of 10.5 % FPR. Overall, our GF attack employ-
ing integrated packet timing and size features achieves the
highest precision while maintaining a low error rate.

4.5 Time Complexity

Additionally, we examine the time complexity by recording
times for feature extraction, training, and testing. Besides
our datasets, the experiments also use the publicly avail-
able Liberatore et al.’s SSH dataset [27] and Juarez et al.’s
Tor dataset [47], which preserve the raw packet features of
timing, direction, and size. The Liberatore dataset contains
2000 websites visited for 200 rounds over a two-month pe-
riod. After removing corrupted traces with less than 20 in-
coming packets, we keep only the top 100 sites with 200
visits as monitored sites. The Juarez dataset consists of 40
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Table 5 Comparison of time complexity. The numbers of sites and
traces are indicated below the corresponding dataset. For trials using our
datasets, MS-ETH is used for extraction and training, and MS-SSH is used
for testing.

Dataset Attack Extraction Training Testing

MS-ETH
GF 257.5s 0.8s 16.0s

MS-SSH
CUMUL 671.8s 0.1s 0.3s

(100 × 10)
DF 7.7s 17.8s 2.1s

DDTW 5.4s 857.2s 4890.4s
GF 389.3s 3.8s 10.9s

Juarez CUMUL 825.5s 0.5s 0.1s
(100 × 40) DF 9.4s 62.9s 0.9s

DDTW 6.8s 1165.8s 1264.6s
GF 785.2s 10.5s 25.2s

Liberatore CUMUL 1213.7s 2.3s 0.5s
(100 × 200) DF 15.4s 307.0s 4.1s

DDTW 11.3s 1969.4s 2143.8s

traces, collected in ten batches of four visits, for each of the
top 100 Alexa sites. We set the sampling interval δ = 200 ms
for our GF attack to accommodate the low bandwidth and
high latency of the Tor network. Since these datasets are col-
lected from specific tunnels, we cannot utilize cross-tunnel
datasets for training and testing. Instead, we use stratified
splitting to create non-overlapping training and testing data
in a 9 : 1 ratio for time complexity trials only.

The corresponding time complexity results for WF at-
tacks are presented in Table 5. The code for each attack
runs on an Intel i7-6700 CPU with 32 GB memory. We ac-
celerate the training and testing of the DF attack using an
NVIDIA RTX 2060 with 6 GB of GPU memory and accel-
erate these tasks for other attacks by calling the underlying C
libraries through Cython. As can be seen from the table, our
GF attack has reasonable overall time complexity. While
DF requires the least preparation time (extraction+training),
GF has less complexity than CUMUL and DDTW. However,
GF takes longer for testing than CUMUL and DF because it
needs to compare the samples with each exemplar. Compar-
ing the results on all three datasets, we find that GF adapts
well to different scale datasets, indicating that it is scalable
for applying to real networks.

5. Discussion

5.1 Countermeasures

The GF attack requires network packet size and timing
information to construct distinguishable gene fingerprints.
Therefore, preventing the side-channel leakage in website
traces is sufficient to counter the attack. We consider the
tradeoffs of several countermeasures and how they affect the
identification of gene fingerprints.

Padding. Recall that our attack identifies websites across
tunnels based on the similarity between gene fingerprints.
This similarity can be weakened by padding the tunnel pack-
ets. One common padding method is to pad each packet by a
random amount, such as the SSH protocol that pads packets
to an eight-byte boundary [34]. Since the packet sizes before

and after padding are still highly correlated, we can obtain
an approximate amount of transmitted data. Another radical
way is padding to ensure that all packets are the same size,
such as the Tor network that fixes the cell to 512 bytes [45].
This approach pushes the gene fingerprint further away from
the elected exemplar and makes classification difficult, al-
though at the cost of increased bandwidth overhead.

Dummy Traffic. While padding aims to hide the finger-
print profile, generating dummy traffic aims to camouflage
the fingerprint to look like other websites. With each loading
request, the server could send several bursts of dummy pack-
ets that mimic a specific target site, similar to the generation
of decoy website traffic [29]. In this way, the fingerprints
collected by the attacker will be incorrectly labeled as the
spoofed site. This approach can defeat the attack but comes
at the cost of high bandwidth overhead, a dilemma between
strong anonymity and practical usability, and requires some
cooperation from the client to ignore the dummy traffic.

Shift Timing. Another way to counter the attack without in-
creasing the amount of data transmitted is to shift the packet
timings. Changing the timing of tunnel packets results in
varied fingerprint growth trends and pause positions. Since
our attack requires consistent fingerprint profiles, shifted
timings would affect the DTW alignment and increase the
fingerprint distance. This method requires caching packets
and dumping them onto the network according to a specific
schedule. The drawback of this approach is that the shifted
packets could adversely affect usability since website con-
tent is delayed to the user.

5.2 Limitations and Future Directions

First, while our GF attack performs well against most web-
sites, it is still challenging to identify those with dynamic
content. As demonstrated in the evaluation, some false neg-
atives in the open world are caused by inconsistent web-
site content on different visits, resulting in these websites
with multiform fingerprints. However, this does not exclude
the possibility of website inference through improved algo-
rithms. A straightforward approach is to map such a web-
site to multiple classes and select the respective exemplars
for each class in the training phase. We leave the further
investigation of this technique to future work.

Second, although the proposed gene fingerprint inte-
grates packet size and timing information, it remains a chal-
lenge to improve the efficiency of measuring the distance
between fingerprints. We utilize fixed-period sampling to re-
duce the computational complexity of the DTW algorithm.
However, this approach yields numerous feature points of
the same height, making the distance measurement less ef-
ficient. One possible direction is to simplify the fingerprint
representation by merging duplicate feature points, thus re-
ducing unnecessary comparisons while preserving timing
information. We leave the challenge of applying this idea
to network traffic traces to potential future work.

Finally, while we achieve accurate identification using
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the DTW and k-NN algorithms, this similarity-based ap-
proach cannot faithfully capture the fine-grained features
of gene fingerprints, which have been illustrated in Fig. 4
with good consistency. To this end, we can adopt well-
established neural networks in computer vision to automat-
ically extract more robust local features. Previously, it was
shown that the use of deep learning methods in the WF do-
main has the potential to defeat countermeasures [5]. Future
research could fruitfully employ these methods to identify
website gene fingerprints.

5.3 Reproducibility of our Results

To ensure scientific correctness and reproducibility of our
results, we publish the following at https://github.com/
gene-fingerprinting/gf:

• The source code for our GF attack. This includes fea-
ture extraction, model construction, and performance
evaluation.

• Our implementations of known CUMUL [4], DF [5],
and DDTW [31] attacks, which we compared and eval-
uated against ours.

• The datasets we used for evaluation. This includes the
list of monitored and unmonitored sites, and the packet
traces collected over different tunnels.

6. Conclusion

At present, WF attacks require that the adversary can deal
with ever-changing tunneling attributes and assume that he
can collect data and train for every unmonitored site. In this
paper, we propose gene fingerprinting (GF), a more practi-
cal attack that exploits the intrinsic profile of websites and
classifies websites based on the similarity between gene fin-
gerprints. Our attack allows training the classifier without
unmonitored site samples and enables a trained classifier to
work across tunnels.

Although we consider this work as the first attempt to
bring Zero-shot Learning to WF attacks, we are also aware
of a substantial amount of work to be addressed. For exam-
ple, packet padding techniques (e.g., Tor) will obfuscate the
boundaries between gene fingerprints, leading to degraded
attack performance. Moreover, it is still a challenge for
WF attacks to identify websites with dynamic content. In
the future, we hope to extend this work in the direction of
designing more robust feature representations and powerful
classifiers.
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