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PAPER

Locally Differentially Private Minimum Finding

Kazuto FUKUCHI†,††a), Chia-Mu YU†††, Nonmembers, and Jun SAKUMA†,††, Member

SUMMARY We investigate a problem of finding the minimum, in
which each user has a real value, and we want to estimate the minimum
of these values under the local differential privacy constraint. We reveal
that this problem is fundamentally difficult, and we cannot construct a con-
sistent mechanism in the worst case. Instead of considering the worst case,
we aim to construct a private mechanism whose error rate is adaptive to
the easiness of estimation of the minimum. As a measure of easiness, we
introduce a parameter α that characterizes the fatness of the minimum-side
tail of the user data distribution. As a result, we reveal that the mechanism
can achieve O((ln6 N/ϵ2N)1/2α) error without knowledge of α and the error
rate is near-optimal in the sense that any mechanism incurs Ω((1/ϵ2N)1/2α)
error. Furthermore, we demonstrate that our mechanism outperforms a
naive mechanism by empirical evaluations on synthetic datasets. Also,
we conducted experiments on the MovieLens dataset and a purchase his-
tory dataset and demonstrate that our algorithm achieves Õ((1/N)1/2α) error
adaptively to α.
key words: privacy, local differential privacy, minimum finding, estimation
error analysis, heavy-tailed distributions

1. Introduction

Statistical analyses with individuals’ data have a significant
benefit to our social lives. However, using individuals’ data
raises a serious concern about privacy, and privacy preserva-
tion is increasingly demanding by social communities. For
example, the European Commission (EC) approved a new
regulation regarding data protection and privacy, the Gen-
eral Data Protection Regulation (GDPR), which has been
in effect since May 2018. With this regulation, any service
provider in the world must follow GDPR when providing
services to any individuals in the EU.

Motivated by the privacy concern, many researchers
developed statistical analysis methods with a guarantee of
Differential privacy [1]. The differential privacy prevents
privacy leakage in the central model in which a trusted cen-
tral server∗ gathers the individuals’ data and then publishes
some statistical information about the gathered data to an
untrusted analysist. One limitation of this model is that it re-
quires a trusted central server that processes a differentially
private algorithm.
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A notion of local differential privacy (LDP) was in-
troduced by Evfimievski et al. [2] for preventing privacy
leakage to the untrusted central server. Many researchers
proposed some statistical analysis methods with a guaran-
tee of the local differential privacy. For example, mean and
median estimation methods [3], distribution estimation [4]–
[7], and heavy hitter estimation [8] under the LDP guarantee
have been investigated so far.

In this paper, we deal with the minimum finding prob-
lem under the local differential privacy constraint. Sup-
pose there are N users who have private real-valued data
xi ∈ [−1, 1] drawn i.i.d. from the distribution whose cu-
mulative distribution is F. An aggregator wants to find the
minimum of the users’ data xmin = inf{x : F(x) > 0} by
collecting the information about the users’ private data in
the locally differentially private manner. The goal is to con-
struct a locally differentially private estimator of xmin that
minimizes the mean absolute error defined as

Err = E[|x̃ − xmin|], (1)

where x̃ denotes the estimated minimum. The minimum
finding problem is a primitive but fundamental component
for statistical analysis. Even under the privacy constraint,
the minimum finding is a necessary first step of statistical
analyses.

As we describe later, our mechanism employs binary
search to find the interval that contains the minimum. Bi-
nary search with local differential privacy has been em-
ployed in Gaboardi et al. [9] as a locally differentially private
algorithm for estimating the p-quantile of the users’ data.
They show the minimax optimality of their algorithm in
terms of their utility measure, (τ, λ, β)-approximation, up to
logarithmic factors, where an estimation algorithm (τ, λ, β)-
approximates the p-quantile xp = inf{x : F(x) > p} if it
satisfies either |x̂ − xp| ≤ τ or |F(x̂) − p| ≤ λ with probabil-
ity at least 1 − β. However, upper and lower bounds for the
(τ, λ, β)-approximation does not lead bounds on the estima-
tion error in Eq. (1) because we cannot derive any non-trivial
bound on Eq. (1) on the event that only the second condition
|F(x̂)−p| ≤ λ is satisfied. Further analysis with an additional
assumption is necessary to derive the minimax optimal algo-
rithm for minimizing Eq. (1) under the locally differentially
private constraint.

Our contributions are listed as follows:

∗The terms server and aggregator are used interchangeably
throughout the paper.
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Hardness in the worst case We reveal that the minimum
finding problem under the local differential privacy con-
straint is fundamentally difficult in the worst case. We
will prove that no locally differentially private mechanism
consistently estimates the minimum under the worst-case
users’ data distribution.

LDP mechanism with adaptiveness to α-fatness Instead
of considering the worst case, we construct a locally dif-
ferentially private mechanism that is adaptive to the eas-
iness of estimation of the minimum, which is determined
by the underlying user data distribution. As a measure of
easiness, we introduce α-fatness, which characterizes the
fatness of the minimum-side tail of the user data distri-
bution. Here, a smaller α indicates that the tail is fatter.
The minimum finding problem becomes apparently easier
when the underlying distribution is fat because we can ex-
pect that a greater portion of data is concentrated around
the minimum if the distribution is fatter. Hence, we can
expect that the decreasing rate of the estimation error be-
comes smaller as α decreases. The definition of α-fatness
is given as follows:

Definition 1 (α-fatness). For a positive real α, the dis-
tribution of F is α-fat if there exist universal constants
C > 0 and x̄ ∈ [−1, 1] such that for all xmin < x < x̄,
F(x) ≥ C(x − xmin)α.

For example, any truncated distribution, such as the trun-
cated normal distribution, satisfies Definition 1 with α = 1.
The beta distribution with parameters α and β is α-fat. For
simplicity, we say F is α-fat if the F’s distribution is α-fat.

Utility analyses We derive adaptive upper bounds on the
mean absolute error of the present mechanism as utility
analyses and reveal that these bounds are nearly tight. Un-
der the assumption that the server knows a lower bound on
α, we show that the mean absolute error is O((ln3 N/ϵ2N)1/2α),
where ϵ is the privacy parameter. If α is unknown
to the server, we show that the mean absolute error is
O((ln6 N/ϵ2N)1/2α). Also, we prove that these upper bounds
are nearly tight in the sense that any locally differentially
private mechanism incurs Ω((1/ϵ2N)1/2α) error under the α-
fatness assumption. The error rates of our mechanism be-
come slower as α increases; this reflects the intuition about
the easiness of estimation mentioned before. Note that this
decreasing rate can be achieved even though the algorithm
can use only imperfect knowledge on α (e.g., lower bound
on α) or no information about α.

Empirical evaluation We conducted some experiments on
real and synthetic datasets for evaluating the performance
of the proposed mechanism. In the synthetic datasets ex-
periment, we first confirm the tightness of the theoretical
bounds regarding N and ϵ. Furthermore, we demonstrate
by the experiment that the present mechanism outperforms
a baseline method based on the Laplace mechanism. In
the experiment on the real datasets, we evaluate the per-
formance of the proposed mechanism on the MovieLens
dataset and a customers’ purchase history dataset. As a re-
sult, we present that the proposed mechanism succeeds to

achieve Õ(1/N1/2α) rate adaptively to α, where the notation
Õ ignores the logarithmic factor.

All the missing proofs can be found in the appendix.
Notations. We denote the indicator function as 1x for

an predicate x. Let sign(x) = 1 if x ≥ 0, and sign(x) = −1
if x < 0. For an event E, we denote its complement as Ec.
Let x(1) ≤ x(2) ≤ ... ≤ x(N) be ordered data. We use F̃(x) =
1
N

∑N
i=1 1xi≤x. We define the quantile function of F and F̃ as

F∗(γ) = inf{τ : F(τ) ≥ γ} and F̃∗(γ) = inf{τ : F̃(τ) ≥ γ},
respectively.

2. Preliminaries

We introduce the fully interactive local differential pri-
vacy [10] as a privacy definition; we simply call it the lo-
cal differential privacy. Suppose that an individual has a
data xi on a domain X. The aggregator conducts an iter-
ative algorithm. For each round t, the aggregator decides
whether the algorithm is stopped; if not, they choose a user
it and then obtains the privatized information Zt by querying
to the itth user. Here, the selection of the user it can de-
pend on the history Ht = (i1,Z1, ..., it−1,Zt−1), and the user
calculates the privatized information Zt from Ht, it, and xit .
The process Z = (Z1,Z2, ..., ZT ), where T denotes the round
the aggregator says ”stop”, is dependent on the users’ data
X = (x1, ..., xN); hence, we introduce Z(X) to denote the pro-
cess of the privatized data when the users’ data are X. Then,
privacy is defined as follows:

Definition 2 (Local differential privacy [10]). A process of
the privatized information Z(X) is ϵ-locally differentially
private if for all X, X′ ∈ XN differing at most one eleme-
ment and all S ∈ σ({Z(X) : X ∈ XN}),

P{Z(X) ∈ S } ≤ eϵP
{
Z(X′) ∈ S

}
, (2)

where S ∈ σ({Z(X) : X ∈ XN}) denotes an appropriate σ-
field generated from the set of the random variables Z(X).

The parameter ϵ determines a level of privacy; that is,
smaller ϵ indicates stronger privacy protection. Roughly
speaking, the local differential privacy guarantees that the
individual’s data cannot be certainly inferred from the pri-
vatized data even if an adversary has unbounded computa-
tional resources and any prior knowledge.

The mechanism that generates the process Z is more
useful if it can carry out under lower interactions between
the individuals and aggregator. Hence, we introduce a re-
striction for the interactions, sequential interactivity [3].

Definition 3 ((Sequentially interactive) local differential pri-
vacy [3]). A process Z(X) is ϵ-locally sequential interactive
differentially private if Z(X) satisfies Definition 2, and it = t
for t = 1, ...,N and T = N almost surely.

In Definition 3, each user i sequentially calculates her
privatized information Zi at once. A user i can utilize the
privatized information of the privious users Z1, ..., Zi−1 when
she calculates Zi.



1420
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.8 AUGUST 2022

As a simple implementation of the locally differentially
private mechanism, the randomized response proposed by
Warner [11] is known. This is a mechanism for binary data
and outputs a binary value. Let X = Z = {−1, 1}, and let
x and z be the individual’s data and privatized data by the
randomized response, respectively. Then, the randomized
response flips the individual’s data x with probability 1/1+eϵ ,
and thus we have z = x with probability eϵ/1+eϵ and z = −x
with probability 1/1+eϵ . This mechanism ensures ϵ-local dif-
ferential privacy.

Fixed and i.i.d. data settings. While the problem
setup described in the introduction employs the i.i.d. data
setting, we can extend the parts of our results to the differ-
ent data generation setting, the fixed data setting.
(Fixed data) The users’ data are fixed by some unknown

rule.
(i.i.d. data) The users’ data are drawn i.i.d. from some un-

known distribution.
The aggregator in the fixed data setting aims to obtain the
minimum among the users’ data, whereas they in the i.i.d.
data setting aims to obtain the minimum within the support
of the underlying users’ data distribution.

The unknown rule or distribution is described by a non-
decreasing function F : [0, 1] → [−1, 1]. In the fixed data
setting, the function F determines the empirical cumulative
distribution of the users’ data. More precisely, the users’
data are determined such that F(x(i)) = (i−1)/(N −1) for all
i = 1, ...,N. In the i.i.d. data setting, F is the cumulative dis-
tribution function of the unknown user data distribution. In
the both settings, the minimum of the users’ data is defined
as xmin = inf{x : F(x) > 0}.

3. Algorithm

In this section, we derive an algorithm for the locally pri-
vate finding minimum problem. To this end, we firstly in-
troduce the non-private version of our minimum finding al-
gorithm (Algorithm 1). Then, we derive our main algo-
rithm (Algorithm 2), which is obtained by privatizing the
non-private one.

Algorithm 1 shows the non-private version of the pro-
posed algorithm. It employs the binary search algorithm
to find the interval containing the minimum from 2L dis-
tinct intervals obtained by evenly dividing the data domain
[−1, 1], where L is some positive integer. More precisely,
Algorithm 1 iteratively updates the interval [ℓt, rt], where
the left-endpoint, midpoint, and right-endpoint of the inter-
val are denoted as ℓt, τt, and rt, respectively. In Line 1,
Algorithm 1 initializes the first interval [ℓ1, r1] as the data
domain. Then, for each round t, the algorithm halves the in-
terval into [ℓt, τt) and [τt, rt] and then chooses either of them
that contains the minimum x(1) (in Lines 3-10). After L iter-
ations, the interval becomes the desired one. The algorithm
outputs the middle of the interval as the estimated value (in
Line 11). Because the length of the last interval is 2−L+1 by
construction, the error of the estimated value is up to 2−L.

To identify which [ℓt, τt) and [τt, rt] contains the mini-

mum, Algorithm 1 first asks each user whether or not his/her
data is smaller than τt (in Line 4). After that, Algorithm 1
calculates the empirical cumulative distribution at τt, F̃(τt),
based on their responses. In Algorithm 1, it is denoted
as Φ(z) in Line 6. Then, [ℓt, τt) contains the minimum if
F̃(τt) > 0, and [τt, rt] does otherwise.

Algorithm 2 shows the privatized version of Algorithm
1. Algorithm 1 accesses the users’ data only through a query
that asks whether or not his/her data is smaller than τt. We
sanitize the query using the randomized response described
in Sect. 2 in Line 4 of Algorithm 2. Since the randomized re-
sponse introduces noise into the query’s response, we mod-
ify Lines 6 and 7 of Algorithm 1. In Line 6, instead of cal-
culatingΦ(z), Algorithm 2 calculates the unbiased estimated
value of F̃(τt), which is denoted as Φ′(z′). An elementary
calculation can confirm the unbiasedness of the estimated
value. In Line 7, because Φ′(z′) involves error due to saniti-
zation, we introduce a threshold γ instead of 0.

In Algorithm 2, there are two free parameters; L and γ.
We investigate an appropriate choice of L and γ by analyz-
ing the absolute mean error of this algorithm. The results
of the analyses are demonstrated in the next section. We re-
mark that due to the binary search strategy in our proposed
method, one can easily see that our proposed method can be
easily adapted to maximum finding.

4. Analyses

Hardness in the worst case. We first show that the pri-
vate finding minimum problem is fundamentally difficult.
Indeed, we cannot construct a locally differentially private
algorithm that consistently estimates the minimum in the
worst-case users’ data:

Theorem 1. Suppose ϵ is fixed. In the both setting, for
any ϵ-locally differentially private mechanism, there exists
F such that Err = Ω(1) with respect to N.

From the theorem, we can see that we cannot solve the
finding minimum problem with a reasonable utility. In The-
orem 1, we consider a situation where the minimum point is
isolated to all the other points; that is, x1 = −1 and xi = 1
for i = 2, ...,N. The worst-case distribution is not α-fat for
any finite α.

Adaptive upper bounds and privacy of Algorithm
2. Next, assuming α-fatness of the user’s distribution, we
reveal the privacy guarantee and the dependency of the error
on ϵ and N regarding Algorithm 2.

Theorem 2. For any choice of ϵ, L, and γ, Algorithm
2 is ϵ-locally differentially private. Moreover, for some
α > 0, suppose F is α-fat. For a sequence hN , let γ =√

4eϵ/L(1+eϵ/L)hN/(eϵ/L−1)2N. Then, in both of the fixed and i.i.d.
data settings, if L2hN/ϵ2N = o(1), Algorithm 2 incurs an error
as

Err = O
((

L2hN/ϵ2N
)1/2α

+ e−hN + 2−L
)
. (3)

In Theorem 2, there are two free parameters, hN
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Algorithm 1: Non-private finding minimum
Input: Depth L

1 Initialize ℓ1 = −1 and r1 = 1;
2 for t = 1 to L do
3 τt =

ℓt+rt
2 ;

4 Each user reports zi = sign(τt − xi) ;

5 The aggregator obtains z = (z1, ..., zN ) ;
6 Calculate Φ(z) = 1

2N

∑N
i=1 zi +

1
2 ;

7 if Φ(z) > 0 then
8 ℓt+1 = ℓt and rt+1 = τt

9 else
10 ℓt+1 = τt and rt+1 = rt

11 return x̃ = ℓL+1+rL+1
2

Algorithm 2: Locally private finding minimum
Input: Depth L and a threshold γ

1 Initialize ℓ1 = −1 and r1 = 1 ;
2 for t = 1 to L do
3 τt =

ℓt+rt
2 ;

4 Each user reports z′i obtained by sanitizing sign(τt − xi) via
randomized response with the privacy parameter ϵ/L ;

5 The aggregator obtains z′ = (z′1, ..., z
′
N ) ;

6 Calculate Φ′(z′)= 1
2N

eϵ/L+1
eϵ/L−1

∑N
i=1 z′i +

1
2 ;

7 if Φ′(z′) ≥ γ then
8 ℓt+1 = ℓt and rt+1 = τt

9 else
10 ℓt+1 = τt and rt+1 = rt

11 return x̃ = ℓL+1+rL+1
2

and L, which the aggregator should select. We obtain
O((L2hN/ϵ

2N)1/2α) error rate by choosing hN and L so that
the second and third terms in Theorem 2 are lower than the
first term.

Let us consider the case where the aggregator has prior
knowledge regarding a lower bound on α. In this case, an
appropriate choice of hN and L is shown in the following
corollary.

Corollary 1. For some α > 0, suppose F is α-fat. Let hN ≥
ln(N)/2α and L = Θ(log2 N) such that L ≥ log2(N)/2α. Then,
Algorithm 2 incurs an error as

Err = O
((

ln3(N)/ϵ2N
)1/2α

)
. (4)

The next corollary is useful if the aggregator does not
have any prior information about α. In this case, the de-
creasing rate of the error is slightly worse than Corollary 1.

Corollary 2. For some α > 0, suppose F is α-fat. Let hN =

Θ(log2(N)) and L = Θ(log2(N)). Then, Algorithm 2 incurs
an error as

Err = O
((

ln6(N)/ϵ2N
)1/2α

)
. (5)

As well as the intuition, the decreasing rate becomes
faster as α decreases in both settings.

Lower bound for the locally private minimum find-
ing. For confirming tightness of Corollaries 1 and 2, we de-
rive minimax lower bound for the locally private minimum
finding.

Theorem 3. Fix ϵ ∈ [0, 22/35], α, and C. In the i.i.d. data
setting, for any ϵ-locally sequentially interactive differen-
tially private mechanism, there exists F satisfies Definition
1 with α and C such that for a increasing sequence of N and
a decreasing sequence of ϵ,

Err = Ω
(
(1/ϵ2N)1/2α

)
. (6)

Remark 1. Since we prove the privacy of Algorithm 2 by the
sequential composition of L times the randomized response,
Algorithm 2 satisfies 1-composability introduced by Joseph

et al. [10]. Thanks to the result of Joseph et al. [10], we can
convert Algorithm 2 to a sequentially interactive ϵ-locally
differentially private mechanism without sacrificing the util-
ity. Hence, we can use Theorem 3 as the lower bound for the
Algorithm 2.

As proved in Theorem 3, any locally private mecha-
nism incurs Ω((1/ϵ2N)1/2α) error which matches the upper
bounds shown in Corollaries 1 and 2 up to log factors. Note
that we derive the lower bound in Theorem 3 in a situation
where the aggregator knows the fatness parameter α. If the
aggregator does not know α, the minimax error might be
greater than the one shown in Theorem 3.

5. Experiment

Here, we present experimental results on synthetic, the
MovieLens, and purchase history datasets to show the ac-
curacy advantage of our proposed method and confirm the
correctness of our theoretical analysis.

5.1 Synthetic Data

We investigated the error between the real and estimated
minimum with synthetic data. The data were generated from
a cumulative distribution F according to either of the fixed
or i.i.d. data setting. We used the beta distribution to con-
struct F. More precisely, let [xmin, xmin + ∆] be the support
of the data, and let X be a random variable that follows the
beta distribution with parameter α and β. Then, F is the cu-
mulative distribution of xmin + ∆X. ∆, a, and b are varied
as combination of ∆ ∈ {0.3, 0.6, 0.9}, α ∈ {0.5, 0.9, 1, 2, 4},
and β ∈ {1, 2}. For stabilizing an error caused by discriti-
zation, we report the worst case mean absolute error among
xmin ∈ {0× (2−∆)− 1, 0.2× (2−∆)− 1, ..., 1× (2−∆)− 1}.
The mean absolute errors were calculated from average of
1000 runs. We also report the 0.05 and 0.95 quantiles of the
errors.

We evaluated two different choices of L and hN corre-
sponding to Corollaries 1 and 2:
(Lower α) L =

⌈
log2(N)/2

⌉
and hN = ln(N)/2,

(Unknown α) L =
⌈
log2

2(N)/2 log2(1000)
⌉

and hN =
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Fig. 1 Err v.s. N (left and middle) and Err v.s. ϵ (right) on the synthetic data. The left figure depicts
the result with Known α, and the middle figure depicts the result with Unknown α.

Fig. 2 Comparison between our methods and the baseline method with ϵ = 1 (left) and ϵ = 4 (right).

ln2(N)/2 ln(1000).
The lower α case is a suitable parameter choice when the
aggregator knows α ≥ 1, whereas the unknown α case is a
suitable parameter choice when the aggregator has no infor-
mation about α.

Here, we only show partial results in the fixed data set-
ting such that α = 1, β = 1, and ∆ = 0.3. Note that the beta
distribution with α = β = 1 is in fact the uniform distribu-
tion.

Error v.s. N) We first demonstrate that Corollaries
1 and 2 are tight with respect to both N. To this end,
we evaluated the error of our mechanism corresponding to
N ∈ {210, 211, ..., 220}.

The left and middle figures in Fig. 1 show the errors of
our proposed mechanism with varied N and ϵ = 1, 4. We
choose L and hN according to Lower α in the left and Un-
known α in the middle, respectively. The blue lines denote
the theoretical guidelines from Corollaries 1 and 2. We can
see from Fig. 1 that the slopes of the errors are almost the
same as the slope of the theoretical guideline regardless of
choice of ϵ in both Lower α and Unknown α. This indi-
cates that the decreasing rates with respect to N shown in
Corollaries 1 and 2 are tight.

Error v.s. ϵ) Next, we show tightness of Corollaries 1
and 2 regarding ϵ. To this end, we evaluated the error of our
mechanism corresponding to ϵ ∈ {2−3, 2−2, ..., 26}.

The right figure in Fig. 1 shows the errors of our pro-
posed mechanism with varying ϵ and N = 215, 220. The

yellow line represents the theoretical guideline from Corol-
laries 1 and 2. If ϵ is not large, slopes of the error are
almost the same as the slope of the theoretical guideline,
where the error is saturated up to 2 for small ϵ since the data
are supported on [−1, 1]. We therefore can conclude that
the rates in Corollaries 1 and 2 with respect to ϵ are tight
in the range of small ϵ. Looseness in large ϵ comes from
Theorem 2. When deriving Theorem 2, we use a bound
(eϵ/L(1+eϵ/L)/(eϵ/L−1)2)1/2α ≤ (2L2/ϵ2)1/2α, which is valid only if
ϵ is sufficiently small. The experimental results reflect this
behavior.

In both experiments of error v.s. N and ϵ, the rate looks
faster than the theoretical guideline when both N and ϵ are
small. This is acceptable because the big-O notation in The-
orem 2 indicates that the rate is satisfied only if L2hN/ϵ2N is
sufficiently small.

Comparison with Naive Mechanism) We also carried
out empirical comparison between our proposed method
and a baseline solution. Since there is no existing locally
private method for finding the minimum, we consider the
straightforward Laplace method as a baseline. In particular,
each user with xi reports x̂i = xi + δi with δi ∼ L(0, 2/ϵ),
where L(µ, b) is the Laplace distribution with mean µ and
scale parameter b. The server simply considers the mini x̂i

as the estimated minimum. In this experiment, we use
N ∈ {210, 211, ..., 220} and ϵ ∈ {1, 4}.

The comparison between our method and the baseline
method is shown in Fig. 2. We can see from Fig. 2 that
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Fig. 3 Histogram of the MovieLens dataset for each tasks. Note that the horizontal axis of the right
figure is log-scale.

Fig. 4 Err v.s. N on the MovieLens dataset. The yellow line denotes a function N → C logB N/NA

where A and B are obtained by the least square method. We show the value of α = 1/2A in the
subcaptions.

the baseline mechanism suffers from an error larger than
1 for all N. Since the data are supported on [−1, 1], the
baseline mechanism fails in reasonable estimation. On the
other hand, our proposed mechanism achieves significantly
smaller error than the baseline method and successes in de-
creasing its error as N increases.

5.2 MovieLens Data

We conducted experiments on the MovieLens dataset†. We
used the full dataset consisting of 27,753,444 ratings for

†Available at https://grouplens.org/datasets/movielens/latest/



1424
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.8 AUGUST 2022

Fig. 5 Err v.s. N on the purchase history dataset. The dotted line represents a function N →
C logB N/NA where A and B are obtained by the least square method. We show the concrete value
of α = 1/2A in the subcaptions.

53,889 movies obtained by 283,228 users. We carried out
the following tasks. (Taks1) the server estimates the min-
imum and maximum of the users’ average rating. The do-
main of the rating is [0, 5]. (Task2) the server estimates
the minimum and maximum numbers of the rated movies
per user. We can naturally assume that no user exists that
evaluate all the movies. We here assumed that the num-
ber of the movies rated by a single user was within [0,
53,889/2]. We evaluated the error of our mechanism with
varying N ∈ {214, ..., 218} by subsampling the dataset, where
we use ϵ ∈ {1, 4}. Since α, the fatness of the distributions, is
unknown, we used the Unknown α parameter setting shown
in Sect. 5.1. The reported value is an average of 1000 runs.
We also report the 0.05 and 0.95 quantiles of the errors.

Results) The histograms of the dataset for each task are
depicted in Fig. 3. As shown in Fig. 3, the left-side tail of the
average review distribution is longer than the right-side tail.
Regarding the distribution of the number of reviews per user,
the right-side tail is extremely long compared to the left-side
tail. We, therefore, can expect that in Taks 1, α of the left-
side tail is larger than that of the right-side tail, and in Task
2, α of the right-side tail is extremely larger than that of the
right-side tail.

Figure 4 shows the experimental results. We can see
from Fig. 4 that the decreasing rates of the estimation error
are changed adaptively to α, and the obtained α shown in
the subcaptions corresponds to the fatness of the tail.

5.3 Purchase History Dataset

We also conducted experiments on a purchase history
dataset collected in the shopping service provided by Yahoo
Japan Corporation. This dataset consists of user attribute in-
formation, such as gender and birthday. Also, the dataset
contains histories of purchase orders of users in Dec. 2015.
Each order consists of a multiset of items purchased. We
carried out the following tasks with this dataset:
• Task1: The server estimates the minimum age of users

whose total amount of purchase on this month was in
some range. The ranges are varied as [=Y0, =Y10,000],
[=Y10,000,=Y20,000],[=Y20,000,=Y30,000],[=Y30,000,=Y40,000],
[=Y40,000,=Y50,000], and [=Y50,000,=Y60,000].
• Task2: The server estimates the minimum age of the

users who purchased items in a specific product category.
Here, the age is rescaled from [0, 150] to [−1, 1]. The items
are categorized into 23 types of products (e.g., fashion, food,
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sports), whereas only 19 categories were used so that the
number of users who purchased an item in a category is
larger than 215. We evaluated the error of our mechanism
with varying N ∈ {211, ..., 215} by subsampling the dataset,
where we use ϵ ∈ {1, 4}. Since alpha, the fatness of the dis-
tributions, is unknown, we used the Unknown α parameter
setting shown in Sect. 5.1. The reported value is an average
of 1000 runs. We also report the 0.05 and 0.95 quantiles of
the errors.

Results) Figure 5 shows the experimental results with
the real datasets. The figure only consists of the re-
sults for Task 1 with the ranges [=Y0, =Y10,000] (left) and
[=Y40,000, =Y50,000] (right), Task 2 with the categories
music-software (left) and baby-kids-maternity (right).

We can see from Fig. 5 that for these tasks, the esti-
mation error of our proposed mechanism decreases as N
increases. Thus, we can expect that our mechanism can
consistently estimate the minimum in the real data. Fur-
thermore, the decreasing rates of the estimation error are
changed adaptively to the ranges (in Task 1) and cate-
gories (in Task 2).

6. Related Work

LDP gains the first real-world application in Google
Chrome’s extension, RAPPOR [4] and thereafter also finds
applications on the other problems such as distribu-
tion estimation [4]–[7] and heavy hitter estimation [8] for
categorical-valued data. Different from existing works,
our proposed method addresses finding the minimum over
numeric-valued data. Simply bucketizing numeric-valued
data as categorical data introduces the estimation error.
Thus, to handle numeric-valued data, more elaborate pro-
tocol design and analysis are needed. There are also local
differential privacy methods for numeric-valued problems.
For example, Ding et al. [12], Duchi et al. [3], and Nguyen
et al. [13] estimate the mean of numeric-valued data under
LDP. Ding et al. [14] studied hypothesis testing to com-
pare population means while preserving privacy. Kairouz
et al. [15] studied the optimal trade-off between privacy and
utility. However, these techniques deal with fundamentally
different problems from ours and cannot be extended to the
minimum finding problem easily.

Essentially, our proposed method adopts a binary
search-based strategy, together with randomized response,
to find the minimum. Cyphers et al. [16] developed AnonML
to estimate the median over real-valued data under LDP.
This method shares the same spirit with ours, i.e., binary
search-based strategy with the randomized response. How-
ever, the estimation error of their mechanism was not an-
alyzed, for which we cannot set the number of rounds for
binary search reasonably.

Our minimum finding mechanism (which can be easily
adapted to maximum finding) can be employed as a pre-
processing for various types of locally differentially private
data analysis. For example, we can use our method for
locally differentially private itemset mining [17], [18] over

set-valued data. The crucial assumption employed for these
methods is that the server knows the maximum number of
data items owned by users. Our mechanism can estimate the
maximum number in a local differential privacy manner.

7. Conclusion

We investigate the problem of finding the minimum over in-
dividuals’ data values under local differential privacy. We
firstly reveal that this problem is fundamentally hard with-
out any assumption. Hence, we introduce α-fatness for the
individuals’ data distribution and propose a locally private
method for finding minimum under the α-fatness assump-
tion. We reveal that the absolute error of the proposed
mechanism is O((ln3 N/ϵ2N)1/2α) under the α-fatness assump-
tion, as long as the learner knows the value of α. Also,
we demonstrate that our mechanism can extend to the case
where the learner does not know α, and show that our mech-
anism achieves O((ln6 N/ϵ2N)1/2α) adaptively to α. Further-
more, we prove the minimax lower bound of Ω((1/ϵ2N)1/2α),
which matches our mechanism’s error bounds up to log-
factor. The theoretical results imply that a fatter individual’s
distribution makes the minimum finding problem more dif-
ficult. The experimental results demonstrate the tightness
of our analyses and applicability of our mechanism to the
real-world data.
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Appendix A: Examples of α-Fat Distributions

For giving a better understanding of α-fatness, we introduce
some concrete values of α, C, and x̄ for some F.

Example 1 (Beta distribution). Let X be a random vari-
able following the beta distribution with parameters α and
β. Suppose F is the cumulative distribution of xmin + (xmax −
xmin)X. Then, Definition 1 is satisfied with the same α, and
with C = max{1, (αB(α, β))−1}/(xmax − xmin)α and x̄ = xmax,
where B(α, β) denotes the beta function.

Example 2 (Truncated (normal) distributions). Suppose F

Fig. A· 1 The density function of the beta distribution with α ∈
{0.5, 1, 1.5, 2, 4, 6, 10, 14} and β = 3.

is the cumulative distribution of the truncated normal distri-
bution supported on [xmin, xmax] with parameters µ ∈ [−1, 1]
and σ2 > 0. Then, Definition 1 is satisfied with α = 1
and C = min{ϕ((xmin−µ)/σ), ϕ((xmax−µ)/σ)}/σ(Φ((xmax−
µ)/σ)−Φ((xmin −µ)/σ), where ϕ(x) and Φ(x) denote a den-
sity function and cumulative function of the standard normal
distribution, respectively. More generally, any truncated
distribution satisfies Definition 1 with α = 1.

Figure A· 1 shows the probability density function of
the beta distribution with different parameter settings. In
Fig. A· 1, we set β = 3, and α are varied as shown in the
legend. We can see from Fig. A· 1 that density around the
minimum becomes larger as α decreases.

Appendix B: Analyses of Algorithm 2

B.1 Utility Analysis

Here, we will prove the following two theorems correspond-
ing to the fixed and i.i.d. data settings.

Theorem 4. Suppose F is α-fat, and γ satisfies

2γ < C(x̄ − xmin)α.

In the fixed data setting, for any N, we have

Err ≤ 2

(
2γ
C

)1/α

+ exp

(
− (eϵ/L − 1)2γ2N

4(eϵ/L + 1)eϵ/L

)
+ 2−L. (A· 1)

Theorem 5. Suppose F is α-fat, and γ satisfies

2γ < C(x̄ − xmin)α.

In the i.i.d. data setting, for any N, we have

Err ≤ 2

(
1
C

)1/α (⌈2γN⌉)1/α

(N + 1)1/α

+ exp

(
− (eϵ/L − 1)2γ2N

4(eϵ/L + 1)eϵ/L

)
+ 2−L, (A· 2)

where (x)α denotes the rising factorial. That is, letting Γ be
the gamma function, (x)α = Γ(x + α)/Γ(x).

With proved Theorems 4 and 5, we can prove Theorem
2.
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Proof of Theorem 2. First, we will show that γ =

O((L2hN/ϵ2N)1/2). Because a function φ(x) = ex(1+ex)/(ex−1)2

is decreasing and is greather than 1 for x > 0, φ(x) = O(1) if
x is a increasing sequence. If x is a decreasing sequence, we
have φ(x) = O(x−2) because φ(x) ≤ e(1+e)/x2 for x ∈ (0, 1).
Since γ =

√
4φ(ϵ/L)hN/N, we have γ = O((L2hN/ϵ2N)1/2).

By the assumption, γ = O((L2hN/ϵ2N)1/2) = o(1). Hence,
γ eventually satisfy the condition 2γ < C(x̃ − xmin)α.

The third terms in Eqs. (A· 1) and (A· 2) match the
third term of the bound in Theorem 2. With the choice
of γ shown in Theorem 2, we can confirm that the second
terms in Eqs. (A· 1) and (A· 2) are O(e−hN ), which match
the second term of the bound in Theorem 2. Also, since
γ = O((L2hN/ϵ2N)1/2), the first term in Eq. (A· 1) matches the
first term of the bound in Theorem 2. Hence, it suffices to
prove that the upper bounds on the first term in Eq. (A· 2)
matches the first term of the bound in Theorem 2.

We will show that (⌈2γN⌉)1/α

(N+1)1/α
= O(γ), by which we can

confirm that the upper bounds on the first term in Eq. (A· 2)
matches the first term of the bound in Theorem 2. If γ =
ω(1/N), we have

lim
N→∞

(⌈2γN⌉)1/α

(N + 1)1/α

(
N + 1
2γN

)1/α

= 1.

Hence, we have

(⌈2γN⌉)1/α

(N + 1)1/α
= O

( 2γN
N + 1

)1/α
 = O(γ).

□

Here, we give the proof sketch of Theorems 4 and 5.
Algorithm 2 can be seen as an algorithm that estimates γ-
quantile of the users’ data because the algorithm finds x ∈
[−1, 1] such that F̃(x) = γ. Hence, the mean absolute error
of Algorithm 2 can be decomposed as

Err ≤ E
[∣∣∣F̃∗(γ) − xmin

∣∣∣] + E
[∣∣∣x̃ − F̃∗(γ)

∣∣∣]. (A· 3)

The first term in Eq. (A· 3) denotes the error between the
minimum and γ-quantile, and the second term denotes the
estimation error of the γ-quantile.

To analyze the second term in Eq. (A· 3), we define
events of mistake. For each round t, define an event

Mt =
{
τt < F̃∗(γ) =⇒ Φ(z) ≥ γ

}
∩{

τt > F̃∗(γ) =⇒ Φ(z) < γ
}
.

Then,Mt represents an event that, at round t, the algorithm
chooses an interval that is far from the γ-quantile, and hence
we say the algorithm mistakes at round t ifMt occurs. Then,
we obtain the following lemma regarding the estimation er-
ror of the γ-quantile:

Lemma 1. Let τt be determined by Algorithm 2. Then, for
any random variable δ > 0 that can depend on x1, ..., xN , we
have

E
[∣∣∣x̃ − F̃∗(γ)

∣∣∣] =
δ + E

[
max

t=1,...,L
P{Mt}1|F̃∗(γ)−τt|>δ

]
+ 2−L.

The concentration inequality gives a bound on the sec-
ond term in Lemma 1.

Lemma 2. Let z = (z1, ..., zN) be the sanitized version of
(sign(τ−x1), ..., sign(τ−xN)) using the randomized response
with the privacy parameter ϵ. If γ > F̃(τ),

P{Φ(z) > γ} ≤ exp

(
− (eϵ − 1)2(F̃(τ) − γ)2N

4(eϵ + 1)eϵ

)
.

Moreover, if γ < F̃(τ),

P{Φ(z) < γ} ≤ exp

(
− (eϵ − 1)2(F̃(τ) − γ)2N

4(eϵ + 1)eϵ

)
.

Choose δ such that F̃∗(2γ) − F̃∗(γ) ≥ δ or F̃∗(γ) −
F̃∗(0) ≥ δ. Then, for any t,

∣∣∣F̃(τt) − γ
∣∣∣ ≥ γ. Thus, we obtain

a bound on the second term in Lemma 1 from Lemma 2.
We can prove Theorems 4 and 5 by deriving bounds on the
first term in Eq. (A· 3) and the first term in Lemma 1, where
bounds on these terms can be obtained from Definition 1.

B.2 Privacy Analysis

We can prove the privacy of Algorithm 2 easily with the
application of the sequential composition theorem. We con-
firm that Algorithm 2 ensures ϵ-local differential privacy.

Theorem 6. Algorithm 2 is ϵ-locally differentially private.

Proof. Algorithm 2 uses the randomized response L times
with privacy parameter ϵ/L. By the sequential composition
theorem of the local differential privacy, the total privacy
loss is at most ϵ. □

Note that Algorithm 2 is ϵ-locally differentially private
for any choice of L and γ.

Appendix C: Proofs

C.1 Proof for Hardness

We introduce the definition of differential privacy for prov-
ing Theorem 1. The differential privacy is weaker than the
local differential privacy because any analysis satisfying the
local differential privacy ensures differential privacy. Thus,
if the minimum finding problem is difficult under the differ-
ential privacy, the problem is also difficult under the local
differential privacy. The formal definition of differential pri-
vacy is given as follows:

Definition 4 (Differential privacy [1]). A stochastic mech-
anismM mapping from XN to Z is ϵ-differentially private
if for all X, X′ ∈ XN differing at most one record, and all
S ∈ σ(M(X)),
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P{M(X) ∈ S } ≤ eϵP
{M(X′) ∈ S

}
,

where σ(Z) denotes an appropriate σ-field generated from
the random variableM(X).

Then, we prove Theorem 1.

Proof of Theorem 1. Fixed data case. Let F0 be a cumula-
tive distribution such that F0(x) = 0 for x ∈ [−1, 1). Let F1

be another cumulative distribution such that F1(x) > 0 for
any x ∈ (−1, 1]. Let X0 and X1 be the users’ data generated
from F0 and F1, respectively. Then, X0 and X1 have different
minimum, whereas the other records are equivalent.

LetM be a ϵ-differentially private mechanism. Then,
its mean absolute errors for X0 and X1 are obtained as

E[|M(X0) − xmin|] =E[|M(X0) − 1|]
E[|M(X1) − xmin|] =E[|M(X1) + 1|].

Assume

E[|M(X0) − 1|] = o(1).

Then, by the Markov inequality, we have

E[|M(X0) − 1|] ≥ P{|M(X0) − 1| > 1} = o(1).

Because of the differential privacy assumption, we have

P{|M(X0) − 1| > 1}
≥ e−ϵP{|M(X1) − 1| > 1} = o(1).

We obtain a lower bound on the error for X1 as

E[|M(X1) + 1|]
≥P{|M(X1) + 1| > 1}
=1 − P{|M(X1) − 1| > 1} = 1 − o(1).

This discussion is true even if we exchange X0 and X1. Thus,
we obtain the claim.

i.i.d. data case. Let F0 be the same cumulative dis-
tribution above. Let F1 be a cumulative distribution such
that F1(x) = δ for any x ∈ (−1, 1). Note that the distribu-
tions of F0 and F1 are supported only on {−1, 1} such that
P{X = −1} = 0 under F0 and P{X = −1} = δ under F1. In
the similar manner in the fixed data case, assume

o(1) = E[|M(X1) + 1|] ≥ P{|M(X1) + 1| > 1},

where the inequality is obtained by the Markov inequality.
Since under F0, all the users’ data are 1, the number of the
different records between X0 and X1 follows the binomial
distribution with a parameter N and δ. Let H(X0, X1) be the
number of the different records between X0 and X1. Then,
from the differential privacy assumption, we have

P{|M(X1) + 1| > 1}
≥E

[
e−ϵH(X0,X1)P{|M(X0) + 1| > 1|X0}

]

=E
[
e−ϵH(X0,X1)

]
P{|M(X0) + 1| > 1}

≥(1 − δ)NP{|M(X0) + 1| > 1}.

For δ = o(1/N), we have

P{|M(X1) + 1| > 1}
≥ (1 − o(1))P{|M(X0) + 1| > 1}.

In the same manner as the fixed data case, we get the claim.
□

C.2 Proof for Upper Bounds

We first provide the proofs of Lemmas 1 and 2 and then give
the proofs of Theorems 4 and 5.

Proof of Lemma 1. Let t1 < t2 < ... < tM be the rounds that
the algorithm mistakes. By the definition ofMt, we have

F̃∗(γ) ≤ τt1 ≤ τt2 ≤ ... ≤ τtM ,

or

F̃∗(γ) ≥ τt1 ≥ τt2 ≥ ... ≥ τtM ,

Since the algorithm does not mistake after tM round, we
have |tM − x̃| ≤ 2−L. Let tδ be the maximum round t such
that

∣∣∣F̃∗(γ) − τt

∣∣∣ ≤ δ. We remark that tδ is the random vari-
able over [L]. Then, we have

E
[∣∣∣x̃ − F̃∗(γ)

∣∣∣] =
E
[∣∣∣F̃∗(γ) − τtδ

∣∣∣] + E
[∣∣∣τtδ − τtM

∣∣∣] + 2−L.

Since the difference between τt and τt+1 is 2−t, we have

∣∣∣τtδ − τtM

∣∣∣ ≤ L∑
t=tδ+1

1Mt 2
−t ≤

L∑
t=1

1Mt ,|F̃∗(γ)−τt|>δ2
−t.

Hence,

E
[∣∣∣τtm − τtM

∣∣∣]
≤E

 L∑
t=1

P{Mt}1|F̃∗(γ)−τt|>δ2
−t


≤E

 max
t=1,...,L

P{Mt}1|F̃∗(γ)−τt|>δ
L∑

t=1

2−t


≤E

[
max

t=1,...,L
P{Mt}1|F̃∗(γ)−τt|>δ

]
.

□

Proof of Lemma 2. We use the concentration inequality
from [19]. Let Z = f (z1, ..., zN) = eϵ+1

eϵ−1

∑N
i=1 zi. Let Z(i) =

f (z1, ..., zi−1, z′i , zi+1..., zN), where z′i be the independent copy
of zi. Define

V+ =E

 N∑
i=1

(
Z − Z(i)

)2
1Z>Z(i) |z1, ..., zN
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=
4(eϵ + 1)2

(eϵ − 1)2

N∑
i=1

P
{
z′i = −1

}
1zi=1.

Moreover, we have

V− =E

 N∑
i=1

(
Z − Z(i)

)2
1Z<Z(i) |z1, ..., zN


=

4(eϵ + 1)2

(eϵ − 1)2

N∑
i=1

P
{
z′i = 1

}
1zi=−1.

From Theorem 2 in [19], for θ > 0 and λ ∈ (0, 1/θ), we have

ln E
[
eλ(Z−E[Z])

]
≤ λθ

1 − λθ ln E
[
e
λV+
θ

]
,

and

ln E
[
e−λ(Z−E[Z])

]
≤ λθ

1 − λθ ln E
[
e
λV−
θ

]
.

By definition, we have

λθ

1 − λθ ln E
[
e
λV+
θ

]
=
λθ

1 − λθ

N∑
i=1

ln

(
P{zi = 1}e

4λ
θ

(eϵ+1)2

(eϵ−1)2
P{zi=−1}

)

=
4λ2

1 − λθ

N∑
i=1

(eϵ + 1)2

(eϵ − 1)2
P{zi = −1}

+
λθ

1 − λθ

N∑
i=1

lnP{zi = 1}.

As θ → 0, we obtain

lim
θ→0

λθ

1 − λθ ln E
[
e
λV+
θ

]
=4λ2 (eϵ + 1)2

(eϵ − 1)2

N∑
i=1

P{zi = −1}

≤4λ2 (eϵ + 1)eϵN
(eϵ − 1)2

.

Similarly, we obtain

lim
θ→0

λθ

1 − λθ ln E
[
e
λV−
θ

]
=4λ2 (eϵ + 1)2

(eϵ − 1)2

N∑
i=1

P{zi = 1}

≤4λ2 (eϵ + 1)eϵN
(eϵ − 1)2

.

From the Markov inequality, we have

P{Z > E[Z] + t} ≤ eλ(Z−E[Z])

eλt
,

and

P{Z < E[Z] − t} ≤ e−λ(Z−E[Z])

eλt
.

Optimizing λ gives that

P{Z > E[Z] + t} ≤ exp

(
− (eϵ − 1)2t2

16(eϵ + 1)eϵN

)
,

and

P{Z < E[Z] − t} ≤ exp

(
− (eϵ − 1)2t2

16(eϵ + 1)eϵN

)
.

Noting that

P{Z > E[Z] + t}

=P

eϵ + 1
eϵ − 1

N∑
i=1

zi > 2NF̃(τ) + t

.
Thus, setting t = 2N(γ − F̃(τ)) yields the desired claim. □

Proof of Theorem 4. From Eq. (A· 3) and Lemmas 1 and 2,
with an appropriate δ, we have

Err ≤ E
[∣∣∣F̃∗(γ) − xmin

∣∣∣]
+max

{
E
[∣∣∣F̃∗(γ) − F̃∗(0)

∣∣∣],E[∣∣∣F̃∗(γ) − F̃∗(2γ)
∣∣∣]}

+ exp

(
− (eϵ/L − 1)2γ2N

4(eϵ/L + 1)eϵ/L

)
+ 2−L, (A· 4)

where we use the fact that F̃∗ is non-decreasing. The sum of
the first two terms is bounded above by

2E
[∣∣∣F̃∗(2γ) − x(1)

∣∣∣]. (A· 5)

If 2γ < C1(C2 − x(1))α, we have F̃∗(2γ) ∈ (x(1),C2). Hence,

under α-fatness, we have
∣∣∣F̃∗(2γ) − x(1)

∣∣∣ ≤ (
2γ
C1

)1/α
. Substi-

tuting this into Eq. (A· 4) yields the desired result. □

Proof of Theorem 5. The proof follows the same manner
of that of Theorem 4 except a bound on Eq. (A· 5). Let
U(1), ...,U(N) be the order statistics of the uniform distribu-
tion on [0, 1]. Then, we have

x(k) = F∗(U(k)).

Hence,

E
[∣∣∣F̃∗(2γ) − xmin

∣∣∣]
=E

[∣∣∣F∗(U(⌈2γN⌉) − F∗(0)
∣∣∣]

≤ 1

C1/α
1

E
[
U1/α

(⌈2γN⌉)

]
.

Since U(k) follows the beta distribution with parameters k
and N − k + 1, we have

E
[
U1/α

(k)

]
=

B(k + 1
α
,N − k + 1)

B(k,N − k + 1)

=
Γ(k + 1

α
)Γ(N + 1)

Γ(N + 1 + 1
α

)Γ(k)
=

(k)1/α

(N + 1)1/α
.

□
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C.3 Proof for Lower Bound

Proof of Theorem 3. i.i.d. data case. We use the lower
bound from Duchi et al. [20] for the i.i.d. case.

Theorem 7 ([20]). Given δ > 0, let F and F′ be the cumula-
tive functions such that these minimums, denoted as xmin and
x′min, respectively, differs at least 2δ, i.e.,

∣∣∣xmin − x′min

∣∣∣ ≥ 2δ.
For ϵ ∈ [0, 22/35], for any ϵ-locally differentially private
mechanism, there exists a cumulative function F0 such that
the error under F0 is lower bounded as

Err ≥ |δ|
(

1
2
−

√
Nϵ2TV(F, F′)2

)
,

where TV denotes the total variation distance.

From Theorem 7, we can obtain a lower bound by de-
signing F and F′ so that TV(F, F′) is minimized while sati-
fying

∣∣∣xmin − x′min

∣∣∣ ≥ 2δ simultaneously. We select different
choices of F and F′ for α ∈ (0, 1) and α ≥ 1.

Case α ∈ (0, 1). Set

F(x) =

{
(x + 1)α if x ∈ [−1, 0]

1 otherwise ,

F′(x) =


0 if x ∈ [−1,−1 + 2δ)

(x + 1 − 2δ)α if x ∈ [−1 + 2δ, 2δ]

1 otherwise .

Then, the total variation distance between F and F′ is ob-
tained as

TV(F, F′)

=1 − α
∫ 0

−1+2δ
min

{
(x + 1)α−1, (x + 1 − 2δ)α−1

}
dx

=1 − α
∫ 1

2δ
xα−1dx

=1 − (1 − (2δ)α) = (2δ)α.

Hence, setting δ = (16ϵ2N)−1/2α/2 yields that

Err ≥ 1
8

(
1

16ϵ2N

)1/2α

.

Case α ≥ 1. Set

F(x) =

{
(x + 1)α if x ∈ [−1, 0]

1 otherwise ,

F′(x) =


0 if x ∈ [−1,−1 + 2δ)

(x + 1)α − (2δ)α if x ∈ [−1 + 2δ, 0]

1 otherwise .

Then, the total variation distance between F and F′ is ob-
tained as

TV(F, F′) =
∫ 2δ

0
αxα−1dx

=(2δ)α.

Hence, with the same setting of δ for α ∈ (0, 1) case yields
the same lower bound. □
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