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Research on Dissections of a Net of a Cube into Nets of Cubes
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SUMMARY A rep-cube is a polyomino that is a net of a cube, and
it can be divided into some polyominoes such that each of them can be
folded into a cube. This notion was invented in 2017, which is inspired by
the notions of polyomino and rep-tile, which were introduced by Solomon
W. Golomb. A rep-cube is called regular if it can be divided into the nets
of the same area. A regular rep-cube is of order k if it is divided into k nets.
Moreover, it is called uniform if it can be divided into the congruent nets.
In this paper, we focus on these special rep-cubes and solve several open
problems.
key words: computational origami, polyomino, rep-cube, rep-tile

1. Introduction

A polyomino is a “simply connected” set of unit squares in-
troduced by Solomon W. Golomb in 1954 [7]. Since then,
sets of polyomino pieces have been playing an important
role in recreational mathematics (see, e.g., [5]). In 1962,
Golomb also proposed an interesting notion called rep-tile:
a polygon is a rep-tile of order k if it can be divided into k
replicas congruent to one another and similar to the original
(see [6, Chap 19] ). From these notions, Abel et al. intro-
duced a new notion [1]; a polyomino is said to be a rep-cube
of order k if it is a net of a cube (or, it can fold into a cube),
and it can be divided into k polyominoes of which each can
fold into a cube. If all k polyominoes have the same size, we
call the original polyomino a regular rep-cube of order k.
Moreover, a regular rep-cube is a uniform rep-cube of order
k when all k polyominoes are congruent. Simple examples
of a regular rep-cube and a uniform rep-cube are shown in
Fig. 1 (a) and (b), respectively. We note that crease lines are
not necessarily along the edges of the polyomino as shown
in the figure.

In [1], Abel et al. showed concrete regular rep-cubes
of order k for k = 2, 4, 5, 8, 9, 36, 50, 64. Later, in [16], Xu
et al. also gave regular rep-cubes of order k = 16, 18, 25.
In both papers, they showed some ways of construction of
regular rep-cubes of order k for infinitely many integers k.
In these papers, the following two sets play important roles;

S = {k | a2 + b2 = k for non-negative two integers a, b}
S̄ = Z \ S,
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where Z is the set of non-negative integers, namely,
S = {1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, . . .}
and S̄ = {3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30,
31, 33, . . .}. We can observe that all the integers where there
exists a regular rep-cube of order k are in S. We note that
both of S and S̄ are infinite sets by Dirichlet’s theorem on
arithmetic progressions.

On the other hand, in [16], they showed that there are
no regular rep-cube of order 3. They proved that if k ∈ S̄,
there does not exist a regular rep-cube of area 6k of order k.
Intuitively speaking, they showed that k copies of one net in
Fig. 2 cannot cover a cube of area 6k if k is in S̄. However,
they could not prove that it holds for general regular rep-
cubes of order k in S̄. We first solve this open problem.
That is, we prove that there does not exist a regular rep-
cube of order k if k is in S̄. In other words, any set of k
(refined) polyominoes of the same area cannot cover a cube
of area 6k if k is in S̄. (In [16], this claim was proved only for
k = 3.) Oppositely, we conjecture that there exists a regular
rep-cube of order k if k ∈ S; however, we have to construct

Fig. 1 (a) A regular rep-cube of order 5 and (b) a uniform rep-cube of
order 2.

Fig. 2 Eleven nets obtained by cutting along edges of a cube and their
minimum number of copies to cover a cube.
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one by one so far. In this paper, we give regular rep-cubes
of order k = 10, 13, 17, 20, which did not appear in [1], [16].

Next we focus on uniform rep-cubes of order k, which
consist of k copies of congruent nets. As a net of a cube, the
eleven nets shown in Fig. 2 are quite popular since they are
obtained by cutting along edges of a cube. (In the context
of unfolding, they are sometimes called edge-unfolding of
a cube.) Moreover, through the enumeration of regular rep-
cubes of order k = 2 and k = 4 in [16], we can observe that
nine of eleven nets form uniform rep-cubes. For example,
two copies of a net of T shape shown in Fig. 1 (b) cover a
cube. In this context, it is natural to ask how many copies we
need to cover a cube by each of eleven nets. Especially, can
the last remaining two nets, indicated (a) and (b) in Fig. 2,
form uniform rep-cubes? Our second results state that for
both of two nets, we can cover a cube by eight copies of
them, and we cannot cover by five copies as shown in Fig. 2.

Lastly, we consider a new notion of a universal rep-
cube that contains all of eleven nets in Fig. 2. This notion
itself first proposed in [1] as an example of a regular rep-
cube of order k = 50 with no special name. In [16], the
authors showed another one with k = 25. Trivially, k is
greater than or equal to eleven, and k should be in S. Thus
the minimum number of the universal rep-cube of order k
is k = 13, 16, 17, 18, 20, or 25. In this paper, we prove that
k = 13, which solves the open problem shown in [16]. In
this context, Maekawa proposed an interesting puzzle for
this problem [9]: We distinguish a polygon from its mirror
image if it is not a mirror symmetric shape. The set of eleven
nets of a unit cube contains two mirror symmetric shapes
(T-shape and +-shape, which appear in the right most two in
Fig. 2). Let S be the set of nets of a unit cube, where mirror
images are different with each other. Then S consists of 20
nets, and hence the nets in S are of area 120 in total. The
puzzle asks if you can make a rep-cube of area 120 or a cube
of size 2

√
5 × 2

√
5 × 2

√
5 from this set S without flipping

each net. We give an affirmative answer to this problem.
That is, there is a universal rep-cube that uses 20 different
nets exactly once for each. In order to find these large rep-
cubes, we use SCIP [17], which is one of the fastest non-
commercial solvers for mixed integer programming.

2. Nonexistence of Regular Rep-Cubes

The main theorem in this section is as follows.

Theorem 1: There does not exist a regular rep-cube of or-
der k for each k ∈ S̄.

In order to show it, we use the following theorem,
which is a folklore in puzzle society (see [16]):

Theorem 2: (1) Let p be a prime. Then p can be repre-
sented by p = a2 + b2 for some two nonnegative integers
a and b if and only if either p = 2 (with a = b = 1)
or p ≡ 1 (mod 4). (2) Let x be a composite number. Let
pd1

1 pd2
2 · · · pdm

m be the prime factorization of x. Then x is rep-
resented by x = a2 + b2 for some two integers a and b if and

only if di is even for every prime pi with pi ≡ 3 (mod 4).

Theorem 2(1) is known as “Fermat’s theorem on sums of
two squares,” which was proposed by Fermat, and first proof
was found by Euler.

Now we give the proof of Theorem 1:
Proof. We prove the claim by a contradiction. We assume
that P̂ is a regular rep-cube of order k ∈ S̄. Then P̂ can be
divided into k nets P1, . . . , Pk. Let Q̂ be a cube folded from
P̂ and Q a cube folded from Pi for each i = 1, . . . , k. Let �
be the length of an edge of Q. Then Pi is a 6�2-omino and P̂
is a 6k�2-omino. Here, we note that while 6�2 is an integer,
� is not necessarily an integer.

Now, using the same argument in [16], we can put Pi

on a square lattice of size � so that every vertex of Q is on a
grid point. In other words, there are some positive integers
a, b such that a2 + b2 = �2. Using the same argument for P̂
and Q̂, we obtain â2 + b̂2 = k�2 for some positive integers
â, b̂. Therefore, k�2 is an element in S, and we have

â2 + b̂2 = k�2 = k(a2 + b2).

That is, a composite number k(a2 + b2) is in S. On the other
hand, k is in S̄ by assumption. Thus, from Theorem 2, when
k is a prime, we have k ≡ 3 (mod 4). When k is a composite
number, its prime factorization contains a prime pi such that
pi ≡ 3 (mod 4) and its degree di is an odd number. We can
regard the first case (k is a prime) as the special case of the
second case with p1 = k and d1 = 1 with no other factors.
Thus we focus on the second case.

Now, a composite number k(a2 + b2) = â2 + b̂2 is in S.
Therefore, the factor (a2+b2) should contain pi odd times as
factors, which contradicts the fact that (a2+b2) is an element
in S.

Therefore, there exists no such k, and hence there exists
no regular rep-cube of order k.

3. Minimum Uniform Rep-Cubes

In the previous work, there exist uniform rep-cubes of order
k for each k = 2, 4, 9 in [1]. In [16], it is shown that how
to construct infinitely many uniform rep-cubes recursively.
Summarizing known uniform rep-cubes in Fig. 2, it is natu-
ral to ask if remaining two of eleven nets can form uniform
rep-cubes or not. Let name the nets Fig. 2 (a) and Fig. 2 (b)
Pw and Pz (from their shapes), respectively. For these two
nets, we show the following theorem.

Theorem 3: Using Pw and Pz, we can construct uniform
rep-cubes of order k for k = 8. Moreover, we cannot con-
struct uniform rep-cubes of order k with k = 2, 4, 5.

We have the following corollary.

Corollary 4: For each one of eleven nets in Fig. 2, k copies
of one can cover a cube for some k = 2, 4, or 8.

By enumerations in [16] for k = 2, 4, Theorem 3 and
Corollary 4 hold except Pw and Pz. Thus we focus on Pw
and Pz.
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Lemma 5: There exist uniform rep-cubes of order 8 by Pw
and Pz.

Proof. We prove the claim by construction. See Fig. 3.
Next we show the following lemma.

Lemma 6: There does not exist a uniform rep-cube of or-
der 5 by Pw or Pz.

Proof. The proof is done by case analysis. We first focus on
Pw. If five copies of Pw form a uniform rep-cube of order
5, the resulting cube Q with an edge of length

√
5 is de-

picted in Fig. 4 (or its mirror image), since we have 5 nets
each of which has 6 unit areas. Each face of Q is a square
of area 5. On a rep-cube, each vertex of Q should coincide
with a vertex of unit square of a net. (Otheriwise, a vertex
of Q will make a non-flat point inside of a net.) Therefore,
on a surface of Q, one unit square comes to the center, and
the other four squares are surrounding it as shown in gray
in Fig. 4. We call the square in the center of a face of Q a
central square. That is, the cube Q has six central squares
at each of six faces as shown in gray in Fig. 4. Then it is not
difficult to see that Pw can put on Q with respect to the cen-
tral squares in 5 different ways as shown in Fig. 5. To derive
contradictions, we assume that five copies of Pw can cover
on Q without any overlapping and any hole. We here note
that Q has six central squares, and five copies of Pw cover
them. Now each Pw can cover one or two central squares.

Fig. 3 Minimum uniform rep-cubes by Pw and Pz.

Fig. 4 A cube Q of size
√

5 × √5 × √5.

Fig. 5 Five possible ways for Pw.

Therefore, one copy of Pw covers two central squares, and
four copies of Pw cover one central squares. (We have no
other combination.) Then we have two cases. The first case
is that one copy of Pw is in the case Fig. 5 (b) and the other
four copies are in the cases Fig. 5 (a)(c)(d), and the second
case is that one copy of Pw is in the case Fig. 5 (e) and the
others are in the cases Fig. 5 (a)(c)(d).

We first consider the first case; that is, a copy P1 of Pw
is in the case Fig. 5 (b). Without loss of generality, we as-
sume that P1 covers the central squares A and B. Then, be-
side P1, we have two central squares C and C′ to be covered,
where C′ is the central square opposite with C in Fig. 4. We
now focus on C and consider how we can cover it by a copy
P2 of Pw. Then P2 is in the case Fig. 5 (a)(c) or (d). For each
of them, we have four orientations of P2 on Q to cover C.
Then, in most cases, (1) P1 and P2 surround a unit square
or a small rectangle of size 1 × 2 or (2) P2 overlaps with
P1. The only exception occurs one orientation in the case
Fig. 5 (a). Thus we have only one way of attaching P2 be-
side P1 as shown in Fig. 6. Now we consider the next copy
P3 of Pw which covers the other neighbor central square C′
opposite with C. Then we can use the same argument since
C′ is symmetric to C with respect to P1 and we have one
way of attaching P3 on Q by using one in Fig. 5 (a). Then,
we can find that P3 overlaps P2. Thus, in this case, we have
no way to cover Q by five copies of Pw.

Next, we consider the second case; that is, a copy P1

of Pw is in the case Fig. 5 (e). Then, beside P1, we have two
central squares C and C′ to be covered again. Moreover,
we can observe that Fig. 5 (b) and Fig. 5 (e) have almost the
same shape except one white square. Thus we can use al-
most the same argument of the first case. We consider all
ways of attaching of two neighbor central squares C and C′
of P1, and we have the same conclusion; we have an overlap
or a hole when we attach P1, P2, and P3 to cover them.

Thus, there does not exist a uniform rep-cube of order
5 by Pw.

For the Pz, we can have the similar case analysis, and
confirm that there does not exist a uniform rep-cube of order
5 by Pz. We note that the number of cases for Pz increases
comparing to Pw because Pz can attach on Q without cover-
ing any central square. In such a case, two or three copies of
Pz can cover two central squares simultaneously. These ad-
ditional cases are also easy to check and the arguments are

Fig. 6 The first two copies P1 and P2 of Pw.
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essentially the same: we always have an overlap or a hole
before completing the cover in every case.

By Lemmas 5 and 6 with known enumeration in [16],
Theorem 3 immediately follows.

4. Universal Rep-Cubes

We say that a regular rep-cube of order k is universal if it
can be divided into k polyominoes in Fig. 2 such that the set
contains all of eleven nets. This notion was introduced in [1]
without a name, and it was shown for k = 50. Later, it was
improved to k = 25 as shown in [16]. It is a natural question
for finding the minimum k such that a universal rep-cube
exists. By definition, it is clear that k ≥ 11. In this section,
we prove that k = 13 by construction.

Theorem 7: The minimum number k such that there exists
a universal rep-cube is k = 13.

Proof. By Theorem 1 and known result in [16], we can ob-
serve that k = 13, 16, 17, 18, 20, or 25. Since there is a uni-

Fig. 7 A minimum universal rep-cube of order k = 13.

Fig. 8 A solution of Maekawa’s puzzle.

versal rep-cube of order 13 as shown in Fig. 7, we have the
claim.

In this context, Maekawa proposed an interesting puz-
zle for this problem [9]: We consider two polygons are dif-
ferent if they are mirror images with each other. The set
of eleven nets of a unit cube contains two mirror symmetric
shapes (T-shape and +-shape, which are rightmost in Fig. 2).
Here, let S be the set of the nets of a unit cube, where mir-
ror images are regarded as different with each other. Then S
consists of 20 nets, and hence the nets in S are of area 120
in total. The Maekawa’s puzzle asks if you can make a rep-
cube of area 120 or a cube of size 2

√
5 × 2

√
5 × 2

√
5 from

this set S without flipping each net. We give an affirmative
answer to this problem by construction.

Theorem 8: There exists a universal rep-cube of order k =
20 such that every different net (with respect to flip) appears
exactly once.

Proof. A solution is shown in Fig. 8.
The reader may wonder how we can find them. In
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fact, one of the authors found the pattern of a universal
rep-cube of order k = 25 in [16] by hand and it was quite
tough. We found the patterns in Fig. 7 and Fig. 8 by us-
ing SCIP [17], which is one of the fastest non-commercial
solvers for mixed integer programming. We give the formu-
lation of our problem for solving by SCIP.

4.1 Integer Programming Formulation

We formulate the problem in terms of a 0-1 integer program-
ming problem. Although we found the patterns in Fig. 3 by
hand and proved Lemma 6 by case analysis, we use the case
k = 5 for explanation.

We first number all unit squares on the target cube Q
(see Fig. 9 for a cube of size

√
5× √5× √5; the ordering is

arbitrary). We name each square i for each i = 1, 2, . . . , 30
for reference. Then, for each placement of Pw, we use a 0-1
integer variable. In Fig. 9, a placement of Pw is indicated
in gray. For this position, we define a 0-1 integer variable
Pw(3, 5, 8, 13, 17, 21). For each possible placement, we pre-
pare one 0-1 integer variable Pw(i1, i2, i3, i4, i5, i6), where i j

indicates the name of the corresponding unit square. For
each unit square i, there are four copies of Pw that contain i
at the end of Pw. We have to consider the mirror image of Pw
in this case. We denote it by Pr

w(i1, i2, i3, i4, i5, i6). Therefore,
we have eight variables for each unit square i that consist
of four Pw(i1, i2, i3, i4, i5, i6)s and four Pr

w(i1, i2, i3, i4, i5, i6)s
such that each of them contains the square i at the end.
However, we have duplicates; for example, two variables
Pw(3, 5, 8, 13, 17, 21) and Pw(21, 17, 13, 8, 5, 3) are essen-
tially the same. Thus we define the standard form that i1 < i6
for Pw(i1, i2, i3, i4, i5, i6) and we only use the variables of the
standard form. Therefore, we have 30 × 4 × 2/2 = 120 0-1
integer variables for this case.

Now we consider the constraints. For each square

Fig. 9 Numbering the unit squares on a cube.

i, it should be covered by exactly once by a copy of
Pw. In order to represent it, we have the following con-
straint for each i:

∑
i∈Pw(i1,i2,i3,i4,i5,i6) Pw(i1, i2, i3, i4, i5, i6) +

∑
i∈Pr

w(i1,i2,i3,i4,i5,i6) Pr
w(i1, i2, i3, i4, i5, i6) = 1. In total, we have

30 constraints.
The objective function is simply given by minimize

∑
(Pw(i1, i2, i3, i4, i5, i6)+Pr

w(i1, i2, i3, i4, i5, i6)). The solution
should be 5 in this case since we use five copies of Pw or Pr

w

to cover the cube Q.
In fact, the proof of Lemma 6 was double-checked by

SCIP, and it confirmed that there is no solution for this case
in 0.00 second. (We use SCIP version 7.0.0 on a laptop PC
(AMD Ryzen 7, 2.30 GHz, 16 GB RAM, 64 bit Windows).)

For finding the pattern in Fig. 7, we prepare 4960 vari-
ables for representing positions and 78 constraints for unit
squares. We add eleven constraints so that each of eleven
net appears at least once. In this case, the pattern in Fig. 7
was found in 17.00 seconds.

For finding the pattern in Fig. 8, we prepare 7680 vari-
ables and 140 constraints. Among them, 120 constraints are
for unit squares and additional 20 constraints represent that
each of 20 nets appears exactly once. SCIP found the pattern
in Fig. 8 in 982.00 seconds.

5. Concluding Remarks

In this paper, we investigated uniform rep-cubes and univer-
sal rep-cubes. In general, we characterized the numbers that
a regular rep-cube of order k can exist if k is in S, where
S = {1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, . . .}
and S̄ = {3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30,
31, 33, . . .}. Precisely, we can say that if k is in S̄, we cannot
find a regular rep-cube of order k. Even if k is in S, we have
no idea whether it exists or not without explicit construction.
In [1], [16], they explicitly gave a regular rep-cube of order
k for k = (1), 2, 4, 5, 8, 9, 16, 18, 25, 36, 50, 64. In this paper,
we gave k = 13 (Fig. 7) and k = 20 (Fig. 8).

For k = 10, we found by hand as shown in Fig. 10. On
the other hand, for k = 17, we used the same way for finding
a universal rep-cube of order 13 in Fig. 7. In this case, we

Fig. 10 A regular rep-cube of order k = 10.
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Fig. 11 A universal rep-cube of order k = 17.

have 6528 0-1 integer variables with 124 constraints, and
SCIP found the solution shown in Fig. 11 in 11.00 seconds.
In summary, we found regular rep-cubes of order k with all
possible k ∈ S with k ≤ 25. It seems that there exists a
regular rep-cube of order k for any k ∈ S. That is an open
problem.
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