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An O(n2)-Time Algorithm for Computing a Max-Min 3-Dispersion
on a Point Set in Convex Position∗
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Takeaki UNO††††d), Members, Yutaro YAMAGUCHI†††††e), Nonmember,

and Katsuhisa YAMANAKA††††††f), Member

SUMMARY Given a set P of n points and an integer k, we wish to place
k facilities on points in P so that the minimum distance between facilities
is maximized. The problem is called the k-dispersion problem, and the set
of such k points is called a k-dispersion of P. Note that the 2-dispersion
problem corresponds to the computation of the diameter of P. Thus, the
k-dispersion problem is a natural generalization of the diameter problem.
In this paper, we consider the case of k = 3, which is the 3-dispersion
problem, when P is in convex position. We present an O(n2)-time algorithm
to compute a 3-dispersion of P.
key words: dispersion problem, facility location

1. Introduction

The facility location problem and many of its variants have
been studied [11], [12]. Typically, given a set P of points
in the Euclidean plane and an integer k, we wish to place k
facilities on points in P so that a designated function on dis-
tance is minimized. In contrast, in the dispersion problem,
we wish to place facilities so that a designated function on
distance is maximized.

The intuition of the problem is as follows. Assume that
we are planning to open several coffee shops in a city. We
wish to locate the shops mutually far away from each other
to avoid self-competition. In other words, we wish to find
k points so that the minimum distance between the shops is
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maximized. See more applications, including result diversi-
fication, in [9], [22], [23].

Now, we define the max-min k-dispersion problem.
Given a set P of n points in the Euclidean plane and an
integer k with k < n, we wish to find a subset S ⊂ P
with |S | = k in which minu,v∈S d(u, v) is maximized, where
d(u, v) is the distance between u and v in P. Such a set S
is called a k-dispersion of P. This is the max-min version
of the k-dispersion problem [22], [26]. Several heuristics to
solve the problem are compared [14]. The max-sum ver-
sion [6]–[10], [15], [18], [22] and a variety of related prob-
lems [4], [6], [10] are studied.

The max-min k-dispersion problem is NP-hard even
when the triangle inequality is satisfied [13], [26]. An
exponential-time exact algorithm for the problem is
known [2]. The running time is O(nωk/3 log n), where ω <
2.373 is the matrix multiplication exponent [17].

The problem in the D-dimensional Euclidean space can
be solved in O(kn) time for D = 1 if a set P of points are
given in the order on the line and is NP-hard for D = 2 [26].
One can also solve the case D = 1 in O(n log log n) time [3]
by the sorted matrix search method [16] (see a good survey
for the sorted matrix search method in [1, Sect. 3.3]), and in
O(n) time [2] by a reduction to the path partitioning prob-
lem [16]. Even if a set P of points are not given in the order
on the line the running time for D = 1 is O((2k2)kn) [5].
Thus, if k is a constant, we can solve the problem in O(n)
time. If P is a set of points on a circle, the points in P are
given in the order on the circle, and the distance between
them is the distance along the circle, then one can solve the
k-dispersion problem in O(n) time [25].

For approximation, the following results are known.
Ravi et al. [22] proved that, unless P = NP, the max-min
k-dispersion problem cannot be approximated within any
constant factor in polynomial time, and cannot be approx-
imated with a factor less than two in polynomial time when
the distance satisfies the triangle inequality. They also gave
a polynomial-time algorithm with approximation ratio two
when the triangle inequality is satisfied.

When k is restricted, the following results for the D-
dimensional Euclidean space are known. For the case
k = 3, one can solve the max-min k-dispersion problem in
O(n2 log n) time [19]. For k = 2, the max-min k-dispersion
of P corresponds to the computation of the diameter of P,
and one can compute it in O(n log n) time [21].

In this paper, we focus on the k-dispersion problem for
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Fig. 1 An example of 3-dispersion. {x, y, z} is a 3-dispersion.

k = 3. For this case, can we improve the running time
O(n2 log n)? We show that the problem can be solved in
O(n2) time when inputs have some restrictions. In this pa-
per, we consider the case where P is a set of points in convex
position and d is the Euclidean distance. See an example of
a 3-dispersion of P in Fig. 1. By the brute force algorithm
and the algorithm in [19] one can compute a 3-dispersion
of P in O(n3) and O(n2 log n) time, respectively, for a set of
points on the plane. In this paper, we present an algorithm
to compute a 3-dispersion of P in O(n2) time using the prop-
erty that P is a set of points in convex position.

As mentioned above, if input points are on a circle, the
problem can be solved efficiently [25]. On the other hand,
we investigate that one can use properties of the convex po-
sition, which is a restriction to input point set looser than a
circle, to design an efficient algorithm.

2. Preliminaries

Let P be a set of n points in convex position on the plane.
In this paper, we assume n ≥ 3. We denote the Euclidean
distance between two points u, v by d(u, v). The cost of a set
S ⊂ P is defined as cost(S ) = minu,v∈S d(u, v). Let S3 be
the set of all possible three points in P. We say S ∈ S3 is a
3-dispersion of P if cost(S ) = maxS ′∈S3 cost(S ′).

We have the following two lemmas, which can be
checked easily.

Lemma 1. If a triangle with corner points pi, pr, p� satisfies
d(pi, pr) ≥ L, d(pi, p�) ≥ L and d(p�, pr) < L for some L,
then ∠p�pi pr < 60◦.

Lemma 2. If a triangle with corner points pi, pr, p� satisfies
d(pi, pr) < L, d(pi, p�) < L and d(p�, pr) ≥ L for some L,
then ∠p�pi pr > 60◦.

3. Algorithm

Let P = 〈p1, p2, . . . , pn〉 be a set of points in convex position
and assume that they appear clockwise in this order. Note
that the successor of pn is p1. Let D be the distance matrix
of the points in P, that is, the element at row y and column
x is d(px, py). Let C1 = {d(pi, p j) | 1 ≤ i < j ≤ n}. The cost
of a 3-dispersion in P is the distance between some pair of
points in P, so it is in C1.

The outline of our algorithm is as follows. Our algo-
rithm is a binary search and proceeds in at most �2 log n

Fig. 2 An example of si and ti for pi. The circle is centered at pi and of
radius r j.

Fig. 3 Illustrations for the square submatrix Di of D for pi.

stages. For each stage j = 1, 2, . . . , k, where k is at most
�2 log n, we (1) compute the median r j of C j, where C j is a
subset of C j−1, which is computed in the ( j − 1)st stage (ex-
cept the case of j = 1), (2) compute n square submatrices of
D defined by r j along the main diagonal in D, and (3) check
if at least one square submatrix among them has an element
greater than or equal to r j, or not. We prove later that at least
one square submatrix above has an element greater than or
equal to r j if and only if P has a 3-dispersion with cost r j or
more. If the answer of (3) is YES then we set C j+1 as the
subset of C j consisting of the values greater than or equal to
r j, otherwise we set C j+1 as the subset of C j consisting of
the values less than r j. Note that in either case the cost of
a 3-dispersion of P is in C j+1 and |C j+1| ≤ �|C j|/2 holds.
Since the size of C j+1 is at most half of C j and |C1| ≤ n2, the
number of stages is at most �log n2 = �2 log n.

Now, we explain the detail of each stage. For the com-
putation of the median in (1), we simply use a linear-time
median-finding algorithm [24].

Next, we explain the detail of (2) for each stage j.
Given r j, for each pi ∈ P, we compute the first point, say
si ∈ P, in P with d(pi, si) ≥ r j when we check the points
clockwise from pi. Similarly, we compute the first point,
say ti ∈ P, in P with d(pi, ti) ≥ r j when we check the points
counterclockwise from pi. See such an example in Fig. 2.
Note that, when we check the points clockwise from si to
ti, a point pc between them may satisfy d(pi, pc) < r j. See
Fig. 2. For each pi we define a square submatrix Di of D
induced by the rows si, . . . , ti and the columns si, . . . , ti. See
Fig. 3 (a). Note that Di is located in D along the main di-
agonal. The square submatrix Di may appear in D as four
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Fig. 4 The point si+1 may appear before si on the clockwise contour.

separated squares if it contains p1 on the clockwise contour
from si to ti. See Fig. 3 (b).

Now, we explain how to compute si and ti of pi. Since
ti can be computed in a similar way for finding si, we fo-
cus on how to find si. If we search each si independently
by scanning then the total running time for the search of
s1, s2, . . . , sn is O(n2) in each stage, and O(n2 log n) in the
whole algorithm. We are going to improve this. Since si+1

may appear before si on the clockwise contour (See Fig. 4)
the search is not so simple.

We first explain how to compute si of pi for each
i = 1, 2, . . . , n in stage 1. Given r1, we check each point
clockwise starting at pi, and si is the first point from pi

which has the distance r1 or more. It can be observed that
the total number of checks for the distance in stage 1 is at
most n + |C1|/2 ≤ n + n2/2. In this estimation, n checks
are required for the pairs of (si, pi) for every i = 1, 2, . . . , n
and |C1|/2 checks are required for the pairs (p, pi) which
satisfies that p appears between pi and si clockwise and
d(p, pi) < r1, for every i = 1, 2, . . . , n. Remember that
r1 is the median of distances in C1. Then, in each stage
j = 2, 3, . . . , k (k ≤ �2 log n), given r j, if the answer to
(3) of the preceding stage j − 1 is YES then we check each
point clockwise starting at si of the preceding stage j − 1
(since r j > r j−1 holds, all points before si of the preceding
stage are within distance r j from pi), otherwise we check
each point clockwise starting again at the starting point of
the preceding stage j − 1. In either case, we check at most
jn + n2/2 + n2/22 + · · · + n2/2 j points in total for the search
for s1, s2, . . . , sn in every stage � for � = 1, 2, . . . , j. In the
estimation, jn is the total number of checks for s1, s2, . . . , sn

and n2/2 + n2/22 + · · · + n2/2 j is the total number of checks
for the points with distance less than r� from its pi. When
j = n, we have the estimation O(n2) for the total number of
checks for computing s1, s2, . . . , sn in all the stages. By the
symmetric way, we can compute t1, t2, . . . , tn in each stage
and the total number of checks for computing t1, t2, . . . , tn in
all the stages is estimated in the same way.

Now, we present a lemma mentioned in (3). Assume
that we are at stage j, and si and ti of pi are given. If there is
a set of three points in P containing pi with cost r j or more,
then the square submatrix Di has an element greater than or
equal to r j. The reverse may be wrong. If the submatrix
Di for some pi has an element greater than or equal to r j at

Fig. 5 An illustration for Lemma 3.

row y and column x, it only ensures d(px, py) ≥ r j. That is,
d(pi, px) < r j and/or d(pi, py) < r j may hold. We show that
this situation cannot occur in the following lemma.

Lemma 3. The square submatrix Di of stage j has an ele-
ment greater than or equal to r j if and only if there is a set
of three points S ⊂ P including pi with cost(S ) ≥ r j.

Proof. If there is a set of three points S ⊂ P including pi

with cost(S ) ≥ r j then clearly the square submatrix Di of
stage j has an element greater than or equal to r j.

We only prove the other direction, that is, if the square
submatrix Di of stage j has an element greater than or equal
to r j, then there is a set of three points S ⊂ P includ-
ing pi with cost(S ) ≥ r j. Assume that Di has an element
greater than or equal to r j at row y and column x, that is
d(px, py) ≥ r j. We have the following four cases and in each
case we show that there exists a set S of three points such
that cost(S ) ≥ r j.

Case 1: d(pi, px) ≥ r j and d(pi, py) ≥ r j.
The set S = {pi, px, py} has cost(S ) ≥ r j.

Case 2: d(pi, px) < r j and d(pi, py) < r j.
We show that, for S = {pi, si, ti}, cost(S ) ≥ r j holds.

We assume for a contradiction that d(si, ti) < r j holds. Then,
we have ∠si piti < 60◦ by Lemma 1 and ∠px pi py > 60◦ by
Lemma 2. This is a contradiction to the convexity of P.

Case 3: d(pi, px) < r j and d(pi, py) ≥ r j.
In this case, we show that the set {pi, si, py} attains

cost(S ) ≥ r j. Since d(pi, py) ≥ r j and d(pi, si) ≥ r j, we
have to prove d(si, py) ≥ r j.

Assume for a contradiction that d(si, py) < r j holds.
See Fig. 5. Now, we first show that {si, px, py} forms an
obtuse triangle with the obtuse angle px, below. We fo-
cus on the rectangle consisting of pi, si, px, and py. Since
d(pi, py) ≥ r j and d(pi, si) ≥ r j, and d(si, py) < r j, we have
∠si pi py < 60◦ by Lemma 1. Let p′ be the point on the
line segment between pi and si with d(pi, p′) = r j. Since
∠pi p′px < 90◦ holds, we can observe that ∠pisi px < 90◦
holds. Since d(pi, py) ≥ r j, d(px, py) ≥ r j, and d(pi, px) <
r j, we have ∠pi pypx < 60◦ by Lemma 1. Now, the sum of
the internal angles of the quadrangle consisting of pi, si, px,
and py implies that ∠si px py ≥ 150◦, and {si, px, py} are the
points of an obtuse triangle with obtuse angle at px. How-
ever d(px, py) ≥ r j and d(si, py) < r j, which is a contradic-
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Algorithm 1 Binary Search for the Dispersion Problem
1: Let C = {d(pi, p j) | 1 ≤ i < j ≤ n}.
2: while |C| ≥ 2 do
3: Let r be the median in C.
4: flag = NO
5: for i = 1 to n do
6: Let si ∈ P be the closest point satisfying d(pi, si) ≥ r from pi

in the clockwise order. /* The search starts at si of the preceding
stage if the flag of the preceding stage is YES, and starts at the
starting point of the preceding point otherwise. */

7: Let ti ∈ P be the closest point satisfying d(pi, ti) ≥ r from pi in
the counterclockwise order.

8: if the submatrix defined by si . . . ti is not empty then
9: Find the maximum value x of the submatrix

10: if x ≥ r then
11: flag = YES
12: end if
13: end if
14: end for
15: if flag = YES then
16: Remove all elements less than r from C.
17: else
18: Remove all elements greater than or equal to r from C.
19: end if
20: end while
21: Output the element in C.

tion.

Case 4: d(pi, px) ≥ r j and d(pi, py) < r j.
Symmetry to Case 3. Omitted. �

Now, we are ready to describe our algorithm and the
estimation of the running time. Our algorithm is shown in
Algorithm 1. First, as a preprocessing, we construct the set
C1 = {d(pi, p j) | 1 ≤ i < j ≤ n} and n × n distance matrix D.
Next, we repeat the following stage for each j = 1, 2, . . . , k,
where k ≤ �2 log n. (1) we compute the median r j of C j,
(2) compute si and ti of pi for i = 1, 2, . . . , n, and (3) check
whether there exists an index i, (1 ≤ i ≤ n), such that the
maximum value of Di is greater than or equal to r j. Then, if
such i exists, we set C j+1 = {d(pi, p j) ∈ C j | d(pi, p j) ≥ r j},
otherwise, we set C j+1 = {d(pi, p j) ∈ C j | d(pi, p j) < r j}.

The analysis of the running time is as follows. The pre-
processing can be done in O(n2) time. For (1), we can com-
pute the median r j of stage j in O(n2/2 j−1) time by using a
linear-time median-finding algorithm [24], and hence O(n2)
time for the whole algorithm. The computation for (2) can
be done in O(n2) time in the whole algorithm, as described
above. For (3), after O(n2)-time preprocessing for D, we can
compute the maximum element in the given submatrix in D
in O(1) time for each query by using the range-query al-
gorithm [27], so we need O(n) time as preprocessing. (For a
separated square as shown in Fig. 3 (b), we need four queries
but total time is still a constant.)

Now, we have our main theorem.

Theorem 1. Let P be a set of n points in convex position.
One can compute a 3-dispersion of P in O(n2) time.

4. Conclusion

In this paper, we have designed an algorithm to solve the
3-dispersion problem for a set of n points in convex posi-
tion. We presented an O(n2)-time algorithm to compute the
3-dispersion of P.
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